
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 109

Efficient Web Crawling By Detecting and Shunning

Near Duplicate Documents

J Prasanna Kumar1 and Dr. P Govindarajulu2
1MVSR Engineering College, Osmania University, India

prasannakumarphd@gmail.com

Abstract:
Web crawling is an integral piece of infrastructure for search engines. Large

volume public comment campaigns and web portals that encourage the public to
customize form letters produce many near-duplicate documents, which increases
processing and storage costs, but is rarely a serious problem. With the increasing
amount of data and the need to integrate data from multiple data sources, a challenging
issue is to find near duplicate records efficiently. Near-duplicate detection proceeds
more smoothly and efficiently when there are clues about which documents are
duplicates. In this paper, we have proposed an efficient novel approach for the
detection of near duplicates in web crawling. Initially the crawled web pages are stored
in the repositories to detect the near duplications. Then the keywords have been
extracted from the web pages and the similarity score is determined between two pages.
The web page which is having a similarity score greater than a predefined threshold
value is considered as a near duplicate.

Keywords: Data mining, Web mining, Web crawling, Web documents, Stemming,
Common words, Keywords, Near-duplicate document detection, Similarity Score.

1. Introduction
The World Wide Web (WWW) is a vast resource of multiple types of information in varied

formats. With the huge amount of information available online, the WWW is a fertile area for data
mining research. Data mining, often called Web mining when applied to the Internet, is a process of
extracting hidden predictive information and discovering meaningful patterns, profiles, and trends
from large databases [2]. The purpose of Web mining is to develop methods and systems for
discovering models of objects and processes on the World Wide Web and for web-based systems
that show adaptive performance [1]. The web mining research is at the cross road of research from
several communities, such as database, information retrieval, especially the sub-areas of machine
learning and natural language processing [6]. Web Mining integrates three parent areas: Data
Mining, Internet technology and World Wide Web, and for the more recent Semantic Web. [1].
Web mining is an iterative process of discovering knowledge and is proving to be a valuable
strategy for understanding consumer and business activity on the Web [2].

Web mining is the application of data mining techniques to extract knowledge from Web data,
i.e. Web Content [4], Web Structure [5] and Web Usage data [6]. Web content mining is the process
of mining knowledge from the web pages besides other web objects. The process of mining
knowledge about the link structure linking web pages and some other web objects is defined as Web
structure mining. Web usage mining is defined as the process of mining the usage patterns created
by the users accessing the web pages [32]. Web mining can also be used to aid a user by integrating
the implicit information from multiple sources of Web data. At the simplest level, it can be a
keyword oriented search. [7]. However, as the web grows, it is becoming increasingly impractical to
use the whole index of a search engine to determine site crawling. Web crawling has become an
important aspect of web search, as the WWW keep getting bigger and search engines strive to index
the most important and up to date content. Many experimental approaches exist, but few actually try
to model the current behavior of search engines, which is to crawl and refresh certain sites they

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 110

deem as important much more frequently than other sites [8]. A Web search engine crawls the Web,
indexes Web pages, and builds and stores huge keyword-based indices that help locate sets of Web
pages that contain specific keywords. By using a set of tightly constrained keywords and phrases,
an experienced user can quickly locate relevant documents [3].

Web crawling is the process used by search engines to collect pages from the Web. From the
beginning, a key motivation for designing Web crawlers has been to retrieve Web pages and add
them or their representations to a local repository. Such a repository may then serve particular
application needs such as those of a Web search engine. In its simplest form a crawler starts from a
seed page and then uses the external links within it to attend to other pages [9]. The crawler
retrieves a URL from the frontier, downloads the web resource, extracts URLs from the
downloaded resource and adds the new URLs to the frontier. The crawler continues in this manner
until the frontier is empty or some other condition causes it to stop [11].

With the increasing amount of data and the need to integrate data from multiple data sources,
a challenging issue is to find near duplicate records efficiently [20]. Near-duplicate web documents
are abundant. Two such documents differ from each other in a very small portion that displays
advertisements, for example. Such differences are irrelevant for web search. So the quality of a web
crawler increases if it can assess whether a newly crawled web page is a near-duplicate of a
previously crawled web page or not [10]. Duplicate and near-duplicate web pages are creating large
problems for web search engines: They increase the space needed to store the index, either slow
down or increase the cost of serving results, and annoy the users [12].

When crawling documents, when a near duplicate is detected, we can choose to ignore the
document entirely, because we know that its contents are already represented in the index. The
benefits of finding near duplicates also extend to the front end of the search process. Documents
which are near duplicates may appear close together in search results, but provide little benefit to
the user if they are not looking for a document in that particular subject. For example, suppose
consecutive versions of a document have been crawled and are stored in the index. Instead of seeing
multiple versions of the same “wrong” document in the search results, they can be collapsed
together in a way to present more diverse results to the user [13].

Research on duplicate detection was initially done on databases, digital libraries, and
electronic publishing. Lately duplicate detection has been extensively studied for the sake of
numerous web search tasks such as web crawling, document ranking, and document archiving. A
huge number of duplicate detection techniques ranging from manually coded rules to cutting edge
machine learning techniques have been put forth [20, 19, 18, 15, 16, 17]. Recently few authors have
projected near duplicate detection techniques [21, 14, 10]. A variety of issues such as from
providing high detection rates to minimizing the computational and storage resources have been
addressed by them. These techniques vary in their accuracy as well. Some of these techniques are
computationally pricey to be implemented completely on huge collections. Even though some of
these algorithms prove to be efficient they are fragile and so are susceptible to minute changes of
the text.

The primary intent of our research is to develop a novel and efficient approach for detection
of near duplicates in web documents. Initially the crawled web pages are preprocessed using
document parsing which removes the HTML tags and java scripts present in the web documents.
This is followed by the removal of common words or stop words from the crawled pages. Then the
stemming algorithm is applied to filter the affixes (prefixes and the suffixes) of the crawled
documents in order to get the keywords. Finally, the similarity score between two documents is
calculated on basis of the extracted keywords. The documents with similarity scores greater than a
predefined threshold value are considered as near duplicates.

The organization of the paper is as follows: In Section 2, a brief survey about the near
duplicate page detection has been specified. In Section 3, the novel approach for the keywords
based detection of near duplicate documents is presented. The computation of similarity scores for
near duplicates detection is described in Section 4 and conclusions are summed up in Section 5.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 111

2. Literature Review
The proposed research has been motivated by numerous existing works on and near duplicate

documents detection.
Gurmeet Singh Manku et al. [10] made two research contributions while developing a near-

duplicate detection system for a multi-billion page repository. Firstly they illustrated the relevance
of Charikar's fingerprinting technique [28] for the ultimate goal. Secondly, they also put forth an
algorithmic technique for the identification of existing f-bit fingerprints that diverge from a given
fingerprint in at most k bit-positions, for small k. The technique proved beneficial for both online
queries (single fingerprints) and batch queries (multiple fingerprints). Extensive experimental
evaluation illustrated the practicality of the design.

An effective and efficient algorithm for the recognition and removal of duplicates in large-
scale short text databases was projected by Caichun Gong et al [29]. The ad hoc term weighting
technique, the discriminative-term selection technique and the optimization technique are the three
techniques incorporated in SimFinder. SimFinder was found to be an effective solution for short
text duplicate detection with almost linear time and storage complexity as a result of extensive
experimentation.

Broder et al.'s [16] shingling algorithm and Charikar's [28] random projection based approach
are regarded as the cutting edge algorithms for the identification of near-duplicate web pages. The
comparison of both these algorithms on a large scale was carried out by Monika Henzinger [12] on
a set of 1.6B distinct web pages. Results illustrated that both the algorithms were futile in
recognizing near-duplicates on the same site nevertheless they perform exceptionally well in
determining near-duplicate pairs on different sites. Owing to the fact that Charikar's algorithm was
capable of identifying more near-duplicate pairs on different sites, it attains a better precision on the
whole, 0.50 versus 0.38 for Broder et al.'s algorithm to be precise. A combined algorithm that
attains a precision of 0.79 with 79% of the recall of the other algorithms was also presented by her.

Andrei Z. Broder [30] have presented a technique that can eradicate near-duplicate documents
from a group of hundreds of millions of documents by calculating independently for each document
a vector of features less than 50 bytes long and evaluating only these vectors instead of whole
documents. This process consumes O(mlog m) time where m is the size of the collection. The
project was implemented effectively and is presently utilized in the context of AltaVista search
engine.

The utilization of simple text clustering and retrieval algorithms for the recognition of near-
duplicate public comments was explored in detail by Hui Yang et al. [21]. The experiments with
public comments regarding a modern regulation by the Environmental Protection Agency (EPA)
illustrated the effectiveness of the algorithms.

The approximate elimination of duplicates in streaming environments given a limited space
was targeted by Fan Deng et al. [18]. A data structure, Stable Bloom Filter (SBF), and a new and
easy algorithm were introduced by them on basis of a renowned bitmap sketch. The fundamental
idea is as follows: due to the fact that there was no way to store the whole history of the stream SBF
expels stale information constantly in order to ensure that it has ample room for the more recent
elements. Whenever a particular false positive rate was permitted SBF performed comparatively
better than the alternative methods in terms of both accuracy and time for a fixed amount of space.

DURIAN (DUplicate Removal In lArge collectioN), a refinement of a prior near-duplicate
detection algorithm that utilizes conventional bag-of-words document representation, document
attributes ("metadata"), and document content structure to recognize form letters and their edited
copies in public comment collections, was projected by Hui Yang et al. [14]. According to the
experimental results DURIAN was equally good as the human counterparts. The research was
concluded with a discussion on challenges in moving near-duplicate detection into operational
rulemaking environments.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 112

A document detection algorithm known as I-Match was projected and evaluated for its
performance with the aid of multiple data collections by Abdur Chowdhury et al. [31]. The chief
motive behind the development of I-Match was to support the web document collections. Therefore,
contrasting many of its forerunners, I-Match proficiently processes large collections and does not
ignore small documents. The collections of documents utilized were varied in size, degree of
expected document duplication, and document lengths. NIST and Excite@Home served as sources
for data acquisition.

3. Keywords Based Near Duplicate Documents Detection
This section gives the details about the novel approach for near duplicate detection. For the

task of “remove all duplicates from this collection,” it is helpful to get a list of duplicate document
sets so that one from each set can be retained and the rest removed. Two such documents are
identical in terms of content but differ in a small portion of the document such as advertisements,
counters and timestamps. These differences are irrelevant for web search [10]. Recent duplicate
detection research in the Web environment has focused on issues of computational efficiency and
detection effectiveness. However, for efficient large scale web indexing it is not necessary to
determine the actual resemblance value: it suffices to determine whether newly encountered
documents are duplicates or near-duplicates of documents already indexed.

3.1 Near Duplicate Web Documents
A more recent manifestation of the problem is efficiently finding near-duplicate Web pages,

which is particularly challenging in a Web-scale because of the huge data volume and the high
dimensionality of documents [24]. It is a document with a given minimal percentage of identical
shingle paragraphs of another document in the collection.

3.2 Web Crawling
A Web crawler is a program, which automatically traverses the web by downloading

documents and following links from page to page. They are mainly used by web search engines to
gather data for indexing [9]. Crawling is the most fragile application since it involves interacting
with hundreds of thousands of web servers and various name servers, which are all beyond the
control of the system. Web crawling speed is governed not only by the speed of one’s own Internet
connection, but also by the speed of the sites that are to be crawled. Especially if one is a crawling
site from multiple servers, the total crawling time can be significantly reduced, if many downloads
are done in parallel [26]. The crawling loop involves picking the next URL to crawl from the
frontier, fetching the page corresponding to the URL through HTTP, parsing the retrieved page to
extract the URLs and application specific information, and finally adding the unvisited URLs to the
frontier. Before the URLs are added to the frontier they may be assigned a score that represents the
estimated benefit of visiting the page corresponding to the URL. The crawling process may be
terminated when a certain number of pages have been crawled [27].

3.3 Parsing of Web Documents
Once a page has been crawled, we need to parse its content to extract information that will

feed and possibly guide the future path of the crawler. Parsing might also involve steps to convert
the extracted URL to a canonical form, remove stopwords from the page's content and stem the
remaining words [27]. HTML Parsers are freely available for many different languages. They
provide the functionality to easily identify HTML tags and associated attribute-value pairs in a
given HTML document.

3.4 Common Words Removal
When parsing a Web page to extract content information or in order to score new URLs

suggested by the page, it is often helpful to remove commonly used words or stopwords such as “it"
and “can". This process of removing stopwords from text is called stoplisting [27].

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 113

3.5 Stemming Algorithm
Stemming algorithms, or stemmers, are used to group words based on semantic similarity.

Stemming algorithms are used in many types of language processing and text analysis systems, and
are also widely used in information retrieval and database search systems [25]. A stemming
algorithm is an algorithm that converts a word to a related form. One of the simplest such
transformations is conversion of plurals to singulars, another would be the derivation of a verb from
the gerund form (the "-ing" word). A number of stemming or conflation algorithms have been
developed for IR (Information Retrieval) in order to reduce morphological variants to their root
form. A stemming algorithm would normally be used for document matching and classification by
using it to convert all likely forms of a word in the input document to the form in a reference
document [22]. Stemming is usually done by removing any attached suffixes, and prefixes from
index terms before the assignment of the term. Since the stem of a term represents a broader
concept than the original term, the stemming process eventually increases the number of retrieved
documents [23].

3.6 Keywords Representation
We posses the distinct keywords and their counts in each of the crawled web page as a result

of stemming. These keywords are then represented in a form to ease the process of near duplicates
detection. Initially the keywords and their number of occurrences in a web page have been sorted in
descending order based on their counts. The n numbers of keywords with highest counts are stored
and used to calculate the similarity measures. In our approach the value of n is set to be 3. The
similarity score between two pages can be calculated if and only the main keywords of the two
pages are similar.

4. Similarity Score Computation
A quantitative way to defining that two pages are near duplicates is to use a similarity score.

The similarity score measures degree of similarity between two pages. A lower similarity value
indicates that the pages are more similar. Thus we can treat pairs of pages with low similarity value
as near duplicates. A similarity value will find all pairs of pages whose similarities are above a
given threshold.

If the main keywords of the new web page are same with a page in a repository, then we have
to calculate the similarity scores of all the keywords. The similarity score between two web pages is
calculated as follows:

The keywords of the web pages and their counts of the keywords are represented as follows:
() () () (){ }nWnWWW CKCKCKCKWP ,,......,,,,,, 4422111 =
() () () (){ }mWmWWW CKCKCKCKWP ,,......,,,,,, 4411222 =

Initially we have to find the similarity measure for all the keywords in a first page WP1. This
is calculated by taking the difference between the number of occurrences of both the keywords. If
the keyword is not present in another web page then their frequency is considered as zero.

[] () ()[]∑
=

−=
1

21
11

1 1 N

i
PWiPWiS KcountKcountAbs

N
WPS ; 0count then WP K 2Wi =∉if

where 11 WPN = .
Then the remaining keywords (RKW) have been taken and find the similarity measure for

those keywords in another web page WP2.
12 WPWPRKW −=

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 114

[] ()[]∑
=

=
2

12
2 1 N

i
RWiS KW

KcountAbs
N

WPS

where 2 KWRN = .
Eventually, the final similarity score is calculated as follows:

[] [] []21 WPSWPSKS SSWS +=
The web documents with final similarity score greater than a predefined threshold are

considered as near duplicates of documents already present in repository.

5. Conclusion
The growth of the Internet challenges Internet Search Engines as more copies of Web

documents flood over search results making them less relevant to users. The rapid growth of the
World Wide Web poses unprecedented scaling challenges for general-purpose crawlers and search
engines. The detection of duplicate and near duplicate web documents has gained more attention in
recent years amidst the web mining researchers. We have presented a novel approach to detect the
near duplicate among web pages. The proposed approach has detected the duplicates and near
duplicates efficiently based on the extracted keywords and their similarity scores. This approach
provides better search engine quality and the reduced memory space for repositories.

References
[1] Bettina Berendt, Andreas Hotho, Dunja Mladenic, Maarten van Someren, Myra Spiliopoulou, Gerd

Stumme, "A Roadmap for Web Mining:From Web to Semantic Web", Lecture Notes in Artificial
Intelligence , Vol. 3209, Springer-Verlag , pp. 1-22, 2004.

[2] Jiye Ai, James Laffey, "Web Mining as a Tool for Understanding Online Learning", MERLOT Journal of
Online Learning and Teaching , Vol. 3, No. 2, June 2007.

[3] Jiawei Han, Kevin, Chen-Chuan, Chang, "Data Mining for Web Intelligence", In Proceedings of IEEE
Computer, pp: 64-70, 2002.

[4] Pazzani, M., Nguyen, L., and Mantik, S., “Learning from hotlists and coldlists: Towards a www
information filtering and seeking agent”, Proceedings, Seventh International Conference on Tools with
Artificial Intelligence, pp. 492 – 495, 1995.

[5] David, G., Jon, K., and Prabhakar R., “Inferring web communities from link topology”, Proceedings of
the ninth ACM conference on Hypertext and hypermedia: links, objects, time and space-structure in
hypermedia systems, pp.225 – 234, 1998.

[6] Kosala, R., and Blockeel, H., “Web Mining Research: A Survey,” SIGKDD Explorations, vol. 2, Issue. 1,
2000.

[7] P. Desikan, C. DeLong, K. Beemanapalli, A. Bose and J. Srivastava, “Web Mining For Self Directed E-
Learning”, Book Chapter in Data Mining for E-Learning, pp. 21 - 37, WIT Press, 2005 .

[8] Alexandros Batzios, Christos Dimou, Andreas L. Symeonidis and Pericles A. Mitkas, "BioCrawler: An
Intelligent Crawler for the Semantic Web", Expert Systems with Applications, Volume 35, Issues 1-2,
Pages 524-530 , 2008.

[9] S. Balamurugan, Newlin Rajkumar, and J.Preethi, "Design and Implementation of a New Model Web
Crawler with Enhanced Reliability", proceedings of world academy of science, engineering and
technology, Vol: 32, august 2008

[10] Gurmeet S. Manku, Arvind Jain, Anish D. Sarma, "Detecting near-duplicates for web crawling,"
Proceedings of the 16th international conference on World Wide Web, pp: 141 – 150, 2007.

[11] F. McCown, and M.L. Nelson. “Evaluation of Crawling Policies for a Web-Repository Crawler”, 17th
ACM Conference on Hypertext and Hypermedia (HYPERTEXT 2006). pp: 157-168, August 23-25,
2006.

Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.5(22)

 115

[12] M. Henzinger, "Finding near-duplicate web pages: a large-scale evaluation of algorithms," in SIGIR '06:
Proceedings of the 29th annual international ACM SIGIR conference on Research and development in
information retrieval, ACM Press, pp. 284-291, 2006.

[13] Shreyes Seshasai, "Near Duplicate Document Detection for Google Enterprise Search", Massachusetts
institute of technology, USA, 2008.

[14] Yang, H., Callan, J., Shulman, S., "Next steps in near-duplicate detection for eRulemaking",
Proceedings of the 2006 international conference on Digital government research, Vol. 151, pp: 239 –
248, 2006.

 [15] Brin, S., Davis, J., and Garcia-Molina, H., “Copy detection mechanisms for digital documents”, In
Proceedings of the Special Interest Group on Management of Data (SIGMOD 1995), ACM Press,
pp.398–409, May 1995.

[16] Broder, A. Z., Glassman, S. C., Manasse, M. S. and Zweig, G., “Syntactic clustering of the web”,
Computer Networks, vol. 29, no. 8-13, pp.1157–1166, 1997.

[17] Conrad, J. G., Guo, X. S., and Schriber, C. P., “Online duplicate document detection: signature
reliability in a dynamic retrieval environment”, Proceedings of the twelfth international conference on
Information and knowledge management, pp. 443 -452, 2003.

[18] Deng, F., and Rafiei, D., "Approximately detecting duplicates for streaming data using stable bloom
filters," Proceedings of the 2006 ACM SIGMOD international conference on Management of data, pp.
25-36, 2006.

[19] Henzinger, M., "Finding near-duplicate web pages: a large-scale evaluation of algorithms," Proceedings
of the 29th annual international ACM SIGIR conference on Research and development in information
retrieval, pp. 284-291, 2006.

[20] Xiao, C., Wang, W., Lin, X., Xu Yu, J., “Efficient Similarity Joins for Near Duplicate Detection”,
Proceeding of the 17th international conference on World Wide Web, pp:131-140, 2008.

[21] Yang, H., and Callan, J., "Near-duplicate detection for eRulemaking", Proceedings of the 2005 national
conference on Digital government research, pp: 78 – 86, 2005.

[22] Brijesh Shanker Singh, "Search Algorithms", Documentation Research and Training Centre. Indian
Statistical Institute, 2004.

[23] Lakshmi, K. V. Developing a word-stemming program using Porter's Algorithm, NCSI minor project
report, 2002.

[24] Fan Deng, Davood Rafiei, "Estimating the Number of near Duplicate Document Pairs for Massive Data
Sets using Small Space", University of Alberta, Canada, 2007.

[25] Frakes, W.B., Fox, C.J, "Strength and Similarity of Affix Removal Stemming Algorithms", In
proceedings of the ACM SIGIR Forum. Vol: 37, pp: 26–30, 2003.

[26]" Monica Peshave, Kamyar Dezhgosha, "How Search Engines Work and a Web Crawler Application",
Department of Computer Science, University of Illinois, Springfield USA, 2007.

[27] Pant, G., Srinivasan, P., Menczer, F., "Crawling the Web". Web Dynamics: Adapting to Change in
Content, Size, Topology and Use, edited by M. Levene and A. Poulovassilis, Springer- verlog, pp: 153-
178, November 2004.

[28] Charikar, M., “Similarity estimation techniques from rounding algorithms”. In Proc. 34th Annual
Symposium on Theory of Computing (STOC), pp: 380-388, 2002.

[29] Caichun Gong, Yulan Huang, Xueqi Cheng, Shuo Bai, "Detecting Near-Duplicates in Large-Scale Short
Text Databases", PAKDD, pp: 877-883, 2008.

[30] A. Z. Broder, "Identifying and filtering near-duplicate documents," in COM '00: Proceedings of the 11th
Annual Symposium on Combinatorial Pattern Matching. London, UK: Springer-Verlag, pp. 1-10,
2000,

[31] Abdur Chowdhury, Ophir Frieder, David Grossman, and Mary Catherine Mccabe, "Collection Statistics
for Fast Duplicate Document Detection", In. ACM Transactions on Information Systems (TOIS),
Volume. 20, Issue 2, 2002.

[32] Lim, E.P., and Sun, A., (2006) “Web Mining - The Ontology Approach”, International Advanced
Digital Library Conference (IADLC’2005), Nagoya University, Nagoya, Japan.

Article received: 2009-02-17

