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Abstract: 
It is shown that the requirement of invariance of the Dirac Hamiltonian under some 
kind of Witten's superalgebra picks out the Coulomb potential only. The problem in the 
arbitrary higher dimensions is also considered. It is derived that the traditional view on 
the Coulomb potential is to be changed in the context of N=2 supersymmetry.  
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In 1916 Arnold J.W. Sommerfeld obtained the energy spectrum formula for the hydrogen atom.  
 This formula reads as follows [1]: 
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Here κ  is the eigenvalue of the Dirac operator  

( )1K lβ= Σ⋅ +
rr

 ,                                    1/ 2jκ = +  
which commutes with the Dirac Hamiltonian 

2,aH p m a Ze Z
r

α β α= ⋅ + − ≡ =
r r

 

l
r

 is the angular momentum vector, α
r

 and β  are usual Dirac matrices and α=2e  is the 

fine structure constant, while Σ
r

 is the electron spin matrix ( ),diag σ σΣ=
r r r

. 

 Eigenvalue 1
2jκ = + . Let us mention the degeneracy of spectrum with respect to signs of 

κ .
.k
 

 It is surprising that for other solvable potentials the degeneracy with respect to signs of κ  
does not take place. 

    Physically this degeneracy leads to the forbidden of the Lamb shift. Indeed, 
1

2jκ= +  is 

positive, when        
1

2j l= + ,                   which corresponds to states ( )31 , , .
2 2

S P etc
, 
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while negative  ( )1
2jκ=− + ,when

1
2j l= − , corresponds to       ( )31 , , .

2 2
p d etc

. So 

the absence of the Lamb shift 1 1
2 2

E ES P
⎛ ⎞

−⎜ ⎟
⎝ ⎠  is a consequence of above mentioned 

degeneracy κ κ→− . 
   
          
Supersymmetry of the Dirac Hamiltonian  
 
for General Central Potenetials 
 

 Let us consider the Dirac Hamiltonian again but now for arbitrary central potential ( )V r : 

( )H p m V rα β= ⋅ + +
r r

               

 In this form scalar function ( )rV  is the fourth component of the Lorentz 4-vector. It is 
easy task to verify, that the K -operator commutes with the Dirac Hamiltonian for arbitrary  

( )rV : 

[ ], 0K H =
 

      Suppose , that there is some operator 1Q , which anticommutes with  K  

{ }, 01Q K =  
Then it is evident that the following operator 

1
2 2

Q K
Q i

K
=

   

anticommutes with K and with 1Q  as well 

{ }, 02Q K =       
Moreover  

                                        { }, 01 2 ,Q Q =                                            
2 2
1 2Q Q H= ≡ %

 
 

One can construct new operators  ( )1 2Q Q iQ= ±± .They are  

nilpotent:     
2 0Q =±    and   { }, 2Q Q H=+ − %

.   So we      
 



Georgian Electronic Scientific Journal: Physics 2009|No.1(1) 
 

5 

 have 2=N  superalgebra (Witten’s algebra,[2]), where H~ plays the role of Witten’s 
Hamiltonian. 
          Supersymmetry means 

[ ] ( ), 0 1,2Q H ii = =          

So, we want to construct the operator, say 1Q ,that commutes with H , and 

anticommutes with  K : 
 
 

[ ] { }, 0, , 01 1Q H Q K= =  
 

The 
5γ matrix has this property. What else? 

 

Theorem[3]: Let V
r

be a vector with respect to the angular momentum l
r

, i.e. 

                                             
,l V i Vi j ijk kε⎡ ⎤=⎣ ⎦  

In the vector product form it can be written as 

2l V V l iV× + × =
r rr r r

. 

 Suppose also that this vector is perpendicular to l
r

 

( ) ( ) 0l V V l⋅ = ⋅ =
r rr r

 

Then K     anticommutes with operator ( )VΣ⋅
rr

, which is scalar with respect of the total 

1
2

J l= + Σ
rr r

 momentum.  

In general needed operator (so-called K odd− ) is of kind ( )ˆ ,O VΣ⋅
rr

 where Ô  is 

commuting with K .   
 
Useful relation for future is 
 

( ) 1,
2

K V i V l l Vβ⎛ ⎞⎡ ⎤Σ⋅ =− Σ × − ×⎜ ⎟⎣ ⎦⎝ ⎠

r rr r rr r

,    ( )∗          

We have the following physical vectors at hand 
ˆV r=

r r
 (unit radial vector), V p=

r r
(linear momentum) and  V A=

rr
 (LRL vector) [4]  

ˆ
2

iA r p l l p
ma

⎡ ⎤= − × − ×⎣ ⎦
r rr r r r

                    

According to (∗ ) there appears a relation between above three odd operators 
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( )ˆ iA r K p
ma

βΣ⋅ =Σ⋅ + Σ⋅
rr r rr r

                

 
Therefore our choice will be 

r̂Σ⋅
r r

      and      ( )K pΣ⋅
r r

           
 
We construct the most general expression from them 
           

( ) ( ) ( )5ˆ1 1 2 3Q x r ix K p ix K f rγ= Σ⋅ + Σ⋅ +
r rr r

                
Let’s calculate  

( ) ( ) ( ){ }

( )

ˆ,1 2 3

5 12 03

Q H r x V r x f r

xi K mf r x
r

β γ

⎡ ⎤ ′ ′= Σ⋅ − +⎣ ⎦

⎧ ⎫
+ − =⎨ ⎬

⎩ ⎭

r r

 

 
 
 
It follows from these matrix equations,that 

( ) ( )

( )

2 3

1
3

x V r x f r

x
x mf r

r

′ ′=

=  

   

( ) 11
2

xV r
x mr

=
                         

 Therefore the only central potential for which the Dirac Hamiltonian has an additional 
symmetry ( 2N=  supersymmetry in the above mentioned sense) is a Coulomb potential. 
 
 
 
 
 Physical Meaning and Some Applications 
of the Johnson – Lippmann Operator 
 

In order to determine a physical meaning of 1Q operator, note, that using ( )∗ ,   this operator 
may be rewritten in the following form: 

ˆ⎧ ⎫
⎨ ⎬
⎩ ⎭

5iiQ =Σ r- β(p×l-l×p) + Kγ1 2ma mr

r rr r r r
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In the nonrelativistic limit, when   
51, 0β γ→ → ,  

 

1Q A→Σ⋅
rr

 
i.e. projection of LRL vector on Spin direction. 

1QA ≡    is called the Johnson and Lippmann (JL) operator, which was published only in 
the form of  brief abstract in 1950 in Phys. Rev.[5], but not anywhere. One of the most curious fact 
of physics history of 20-th century.  
The first publication about the explicit derivation of this operator appeared in 2005 , by us[6], see 
T.Khachidze and A.Khelashvili, Mod.Phys. Letters, 20,2277-2282(2005). 

 
 
As for further application, let us calculate the square of JL operator. The result is as follows 

2 22 1 12
K HA
a m

⎛ ⎞⎛ ⎞ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
                  

Because all operators in this relation commute with each others, one can replace them by their 
eigenvalues. Therefore one obtains energy spectrum pure algebraically after specifying spectrum of 

2A . Since 2A  is positively defined (it is Witten’s Hamiltonian) the minimal eigenvalue of 2A  
is zero. For this eigenvalue upper relation gives precisely the ground state energy of hydrogen atom, 

( )
1

2 2
10 2

Z
E m

α

κ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

                

Full spectrum can be easily derived by well–known ladder procedure which is known as a  
shape invariance.  This cause to change 

 
2 2 2 2a a nκ κ κ− → − + −                  

It leads to the familiar Sommerfeld formula displayed above. 
 
Inclusion of the Lamb shift terms [7], 

2 24 1 3(ln ) ( ) ( )2 2 353 2

mV r lLamb
m m r

α αδ
μ π

Δ ≈ − + Σ⋅
rrr

 

found by calculating of radiative corrections to the photon propagator and photon – electron vertex 
function, into the Dirac Hamiltonian breaks commutativity of A  with H . However it is evident that 
without radiative corrections, terms like LambVΔ  do not appear in the Dirac Hamiltonian, as in the 
one–electron theory, and as long as only Coulomb potential is considered, the appearance of the 
Lamb shift should be always forbidden. 
 Let us underline that the hidden (dynamical) symmetry, associated to the Coulomb potential, 
governs a wide range of physical phenomena from planetary motion till fine and hyperfine structure 
of atomic spectra. 
 
 
   The Lorentz – Scalar Potential 
in the Dirac Equation 
 
  Let us consider the full Hamiltonian  
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( ) ( )H p m V r S rα β β= ⋅ + + +
r r

           

   
Repeating all above considerations, one can find the following general form of the symmetry 
operator   

        

( ) ( )
( )

ˆ ˆ
1 1 1

( ) ( )2 3 5 1 3 5 2

Q x r x r H

ix K p ix K f r ix K f rγ γ β

′≡ Χ = Σ⋅ + Σ⋅ +

′+ Σ⋅ + +

r rr r

r r
 

 
Requiring supersymmetry ,as above, one obtains,  that 

 

                           
( ) 1

2

xS r
x r
′

=
                           

 So, the scalar potential must be Coulombic. 
 Moreover solving for ( )rV , one derives 

                ( )
11( )

1
2

xV r xr x m S
r

= ′
+ − , 

 At last, using here derived expression for ( )rS , we find 

                   mrx
x

rV
2

1)( =
                        

 Therefore we make sure that the 2=N  supersymmetry in the above described content is the 
symmetry of the Dirac Hamiltonian only for Coulomb potential (for any general combination of 
Lorentz–scalar and 4th component of a Lorentz–vector). 
 Now if we take into account above obtained relations and use them into the general 
expression for X , one can reduce it to more compact form  

                 

( ) ( )

( )

ˆ

5

r ma HaV S

iK H mγ β

Χ = Σ⋅ + −

− −

r r

 

 
 
It is not so evident the Physical Interpretation in terms of LRL operator !! 
 
 
 
Algebraic Derivation of the Spectrum of the 
Dirac Hamiltonian for an Arbitrary Combination 
of the Lorentz-Scalar and Lorentz-Vector Coulomb Potential 
 
    We had 
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,1 2
KQ Q i
κ
Χ

=Χ =  

 Then the anticommutativity { } 0, =KX , yields  

{ } 2 2, 0,1 2 1 2Q Q Q Q H= = ≡ %
 

Let us introduce the  SUSY ground state 0 :  

                                              
20 0 0 0 0H =Χ = →Χ =%

                       
     

         ( ) ( )1ˆ ˆH m r a iK iK a rS Vα β α
−⎡ ⎤ ⎡ ⎤= ⋅ + − ⋅⎣ ⎦ ⎣ ⎦

r rr r
                                     

       Diagonalization of this Hamiltonian may be achieved by using two Foldy-Wouthuysen [8] like 
transformations. This gives the following formula for the energy spectrum [9] : 

          

( )

( )
( )

( )

22

2 2 2

2 22 2

a aS V
a n kV

E m
n aa aS V S

a n a nV V

γ

κ γ

κ γ κ γ

−⎧ ⎫±⎪ ⎪
+ − +⎪ ⎪

⎪ ⎪
= ⎨ ⎬⎛ ⎞⎪ ⎪− + −⎜ ⎟⎪ ⎪+⎜ ⎟⎪ ⎪⎜ ⎟+ − + + − +⎝ ⎠⎩ ⎭

                          

2 2 2 2a aV Sγ κ= − +                                                                                           
which coincides with   a correct expression, obtained by explicit solving  of the Dirac equation [10].        
So, this problem is totally integrable. 
 
Arbitrary dimensions 
             
       Generalization for Arbitrary Dimentions of the JL operator was done by Katsura G.H. and Aoki 
H. [11] , Journ. Math. Phys. 47,032302(2006).  
  They define a new operator 
 

         ( )1 0 1 0ix iD i DA K H m
r Zm

γ γ γ γ γ
α

+ += − −  

Here they assumed that there is a matrix,
1+Dγ  a pseudo-scalar,   generalization of 

5γ in (3+1)-
dimensions, and which satisfies the following relations: 
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( )
{ }

1 1 21 , ( ) 1,

1, 0

D DD

D

γ γ γ

μγ γ

+ + ++ = =

+ =  

These relations coincide with that of ordinary 5γ matrix. 

1Dγ +
  is constructed from { }0 1, ,..., Dγ γ γ , but its actual form depends on whether the spatial 

dimension is even or odd. They found the above derived relation 
 

         

2 22 1 12
K HA

Z mα

⎛ ⎞⎛ ⎞ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

and Witten’s algebra. 
    It is evident from this consideration, that the algebra of gamma matrices is unchanged in arbitrary 
dimensions. Therefore, we can repeat all our arguments, given above, and prove, that our 
conclusions are valid also in this case, i.e. only for “Coulomb” r/1  potential Dirac Hamiltonian is 
supersymmetric among all central potentials in the abovementioned sense.  But r/1  is a Coulomb 
potential only in 3-dimensions. r/1  behaviour of a potential is necessary for closeness of orbits in 
arbitrary dimensions, as was mentioned by Errenfest at the beginning of 20th century.  
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