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Abstract: 
In this study, the quantum state depression (QSD) in metal films and 
semiconductor quantum well (QW) is investigated. The QSD emerge from the 
ridged geometry of the QW boundary. Ridges impose additional boundary 
conditions on the electron wave function and some quantum states become 
forbidden. State density reduces in all energy bands, including conduction 
band (CB). Hence, electrons, rejected from the filled bands, must occupy 
quantum states in the empty bands due to Pauli Exclusion principle. Both the 
electron concentration in CB and Fermi energy increases as in the case of 
donor doping. Since quantum state density is reduced, the ridged quantum 
well (RQW) exhibits quantum properties at widths of hundreds of nm. Wide 
RQW can be used to improve photon confinement in QW-based 
optoelectronics devices. Reduction in the state density increases the carrier 
mobility and makes the ballistic transport regime more pronounced in the 
semiconductor QW devices. Furthermore, the QSD doping does not introduce 
scattering centers and can be used for power electronics. 
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1. Introduction 
Quantum well (QW) lasers, solar cells, and transistors are fabricated based on 

semiconductor heterostructure technologies.1 Typical thickness of the QW layer is 10–20 nm. 
Lower thickness is essential to reduce the density of the quantum states and realize the quantum 
properties of the well. However, thin layers do not confine the photons (needed for optoelectronics) 
and do not carry high currents (needed for power electronics). Recently, quantum state depression 
(QSD) was investigated both theoretically2 and experimentally.3 The QSD allows reduction of 
quantum state density and realization of quantum properties of the thick layer. It is based on the 
ridged geometry of the layer boundary. Periodic ridges impose additional boundary conditions on 
the electron-wave function. Supplementary boundary conditions forbid some quantum states for 
free electrons, and the state density in k space ρ(k) reduces. Due to the Pauli Exclusion principle, 
electrons rejected from the forbidden quantum states have to occupy the states with higher k. Thus, 
Fermi vector kF and Fermi energy EF increase. Under certain conditions an electron in a solid can be 
regarded as a planar wave. The main requirement that should be satisfied is that at least one 
dimension of the solid should be equal to or less than the mean free path of the electron inside the 
solid. In this case, the electron can move without scattering and could be regarded as de Broglie 
wave. It is difficult to satisfy this requirement in metals because the electron mean free path in 
metals is in the range of 1–5 nm at room temperature. Transport properties of metals (charge and 
heat transport) are defined by electrons having energies close to the Fermi level, and the mean free 
path is given for those electrons. Other free electrons, for instance, electrons having energies much 
below Fermi level in metals, do not participate in charge and heat transport, because it is quantum 
mechanically forbidden for them to exchange energy with the environment (all quantum energy 
levels nearby are occupied), and hence the mean free path of such electrons is formally infinite. 
Such electrons will remain ballistic inside relatively large metal structures.   
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We assume a solid with the surface geometry as shown in Fig. 1 (a) in which periodic 
indents are introduced in the flat surface of the solid. Let us consider an electron traveling towards 
the border of the solid as planar wave 1. Wave 1 will reflect back from the border of the solid 
because the electron 
does not have enough energy to leave the solid. Because of the geometry of the surface there will be 
two reflected waves. One will reflect from the top of the indent (wave 3) and the other will reflect 
from the bottom of the indent (wave 2). If the indent depth is one quarter of the de Broglie 
wavelength of the electron, waves 2 and 3 will interfere destructively and there will be no reflected 
wave. As a result, an electron of certain energy cannot reflect back from the surface because of its 
wave nature. On the other hand, the electron cannot leave the solid and enter the vacuum because it 
does not have enough energy to overcome the potential barrier. Electron can not reflect under 
arbitrary angle since all quantum states in the Fermi gas are already occupied by other electrons. 
From the quantum mechanical point of view, we can say that all possible final quantum states for 
that particular electron are forbidden. Consequently, initial quantum state also becomes forbidden. 
As a result, the density of the quantum states inside the solid will be reduced. A three-dimensional 
(3D) drawing of the solid is shown in Fig. 1(b). If we regard the solid as a potential energy box, 
there will be standing de Broglie waves inside the solid. Each standing wave corresponds to the 
quantum state which could be occupied by the free electron. The number of standing waves inside 
such a 3D structure is lower than in the case in which there were no indents and all the walls of the 
solid were plain. 
 
 

 
 

Fig. 1. (a) de Broglie wave interference diagram. (b) Geometry of modified potential energy box. 
 
2. Experiment  
  

Gold films, having indents on both sides, were prepared to observe the QSD effect (Fig. 2). 
Gold was the material of choice because it does not form natural oxide on the surface and allows 
exposure of the samples to the atmosphere. Au film was deposited on a Si/SiO2 (dry thermal oxide) 
substrate, and, after a conventional cleaning procedure, a layer of photoresist S1813 of thickness of 
0.4 um was attached at 4000 rpm (photoresist was solved prior to attachment). Optical microscope 
MII-4 was used for thickness control. Periodic lines 0.8 um wide were created in the photoresist 
using UV photolithography, and the SiO2 was etched using NH4F+HF+H2O, at a rate of 1 nm/ s to 
a depth of 10–50 nm. In the next step, the photoresist was removed using acetone followed by a 
conventional cleaning procedure. A further layer of photoresist was attached, and another 
photolithographic step was used to form large structures using a lift-off process. The substrate was 
then placed in a deposition chamber and, after a vacuum of 10−6 Torr was obtained, heated to 80°C 
to remove water from the surface.  
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Fig. 2. Schematic cross sections of test samples. Adhesion layers between SiO2 and Au films are omitted for simplicity. 
 
The substrate was cooled to temperatures between −16 and −22 °C, and a thin film of 2–3 nm 
thickness, evaporated from a mixture of Au and Cr, was deposited on SiO2 to form an adhesion 
layer (not shown in Fig. 2 for simplicity). Following deposition, the wafer was moved rapidly 
(maximum of 5 s) to another location, where a Au film of thickness of 60 nm was deposited using 
fast thermal evaporation of Au wire (99.999% purity). The substrate was heated up to room 
temperature and the wafer was taken out of the deposition chamber. The final step was a 
conventional lift-off process to form large structures.  

Measurements of the work function were made using the Kelvin probe (KP) method. All 
measurements were comparative to exclude absolute inaccuracies: the difference between KP 
readings on a flat region of the gold film was compared with the reading from the indented region 
of the film. The structure of the films was analyzed using x-ray diffraction . For all samples 
measured, the indented regions showed a reduced work function (WF) compared with the flat 
regions. The magnitude of this reduction of WF depended on the structure of the gold film and the 
depth of the indents. Films having an amorphous structure show much higher reduction in WF than 
films having a polycrystalline structure. All polycrystalline films show a WF reduction less than 0.1 
eV while for amorphous films the reduction of WF is in the range of 0.2–0.5 eV. Amorphous films 
were obtained by deposition of gold on cooled substrate (as described above), and polycrystalline 
ones were obtained by deposition of gold on room temperature substrate. No other technological 
parameter except substrate temperature was different in the two deposition processes. The 
difference in WF was more pronounced for samples that were deposited in a cleaner environment 
(by plasma cleaning the deposition chamber prior to deposition), since for the cooled wafer the 
residual gas pressure and composition have considerable influence on the structure of the film. The 
difference in WF reduction up to ten times shows that the structure of the film has principal 
importance for observation of the QSD effect. This experimental result is in full agreement with 
theory. One further unplanned experiment confirmed the importance of the structure of the film. 
When the Au film was fabricated in a deposition chamber previously used for Ca, it unexpectedly 
showed a reduction of WF of 0.06 eV instead of the expected 0.5 eV. Subsequent x-ray analysis 
revealed the presence of Ca atoms inside the Au film, and also the Au film was polycrystalline 
instead of amorphous. It was obvious that Ca contamination changed the film structure to 
polycrystalline, resulting in the QSD effect almost vanishing. After the deposition chamber was 
cleaned, new samples were fabricated which showed better amorphousness on x-ray analysis, and 
the WF difference increased to 0.2 eV. Fabrication of samples following further cleaning of the 
chamber, by dismantling followed by chemical and mechanical treatment to remove the thin layer 
of Ca completely from the parts of the deposition chamber, yielded Au films showing a WF 
reduction of 0.4 eV and having amorphous structure by x-ray analysis. It was observed that the 
strength of the effect depends on the depth of the indents. Samples having Au film thickness of 60 
nm and indent depths of 50, 20, and 10 nm show WF reductions of 0.16, 0.25, and 0.56 eV, 
respectively. This experimental result is in quantitative agreement with the prediction of the theory.2  
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3. QSD in semiconductors  
In semiconductors, QSD reduces ρ(E) in all energy bands including the conduction band 

(CB). Electrons, rejected from the filled bands, occupy the quantum states in the empty bands, and 
the electron concentration in CB increases. This corresponds to donor doping. The QSD depends on 
electron confinement and, therefore, is most pronounced in QW structures. 

Let us now find the distinctive features of the semiconductor RQW. Like in metals, the QSD 
also forbids some quantum states. However, before going into their details, the distinctions and 
similarities between the QSD forbidden state and a hole should be elucidated. The QSD forbidden 
state is forbidden by the boundary conditions and cannot be occupied. However, it is not forbidden 
in an irrevocable way. If the boundary conditions change (e.g., due to charge depletion), then the 
QSD forbidden state can recombine with the electron. As the QSD forbidden state is confined to the 
boundary conditions (macroscopic geometry), it is not localized in the lattice and cannot move like 
a hole.  

The QSD transfers electrons to higher energy levels. If initially the semiconductor is of p 
type, then the QSD will change it to an undoped or even to n type. The QSD is comparable with a 
conventional donor doping, from the point of increase in EF. However, there are no donor atoms in 
the case of QSD doping, which makes it akin to modulation doping. Unlike modulation doping, 
there is no space charge, as the QSD does not redistribute the charge and just transfers the electrons 
from the filled energy bands to the empty ones. Moreover, the material remains uniformly neutral. 

It is convenient to make comparison between the RQW and QW. Furthermore, the main 
parameters, such as ρ(k), ρ(E), and EF, of the RQW can be expressed in terms of the same 
parameters of conventional QW (a=0). It can be assumed that both the wells are made from the 
undoped material and are deep enough (to allow the limit of infinitely deep well). The ρ(k) is 
inversely proportional to the volume of k space elementary cell. Cell volume for the RQW can be 
found 2 on the basis of volume perturbation method of solving the time-independent Schrödinger 
equation (Helmholtz equation).4 However, this method can only be used when a<<Lx. The RQW 
volume is divided into two parts: main volume (MV) and additional volume (AV). It is presumed 
that MV>>AV and it defines the form of the solutions for the whole RQW volume. Subsequently, 
the solutions of the RQW volume are searched in the form of solutions of the MV. The method is 
especially effective in the case when MV has a simple geometry, e.g., rectangular geometry, 
allowing separation of the variables. In this study, the volume of the ridge was regarded as AV 
having dimensions a, w, Lz. The MV had the dimensions, Lx, Ly, Lz. Solutions were plane de Broglie 
waves with discrete k spectrum. Further, the electron-wave function and its derivative were matched 
from the two sides on the border of MV and AV. The result obtained was the reduction of ρ(k) and 
the increase of EF in RQW (detailed description can be found in Ref. 2). Analysis was made within 
the limit of the quantum model of free electrons. Here, we extrapolate the results to Bloch waves 
with the assumption that, the electron energy is *22 2/)( mkkE h=  and *m  is energy independent, 
where h  is the Planks constant and *m  is an electron effective mass.  

The k space elementary cell volumes for RQW and QW are zawL/)2( 3π and zyx LLL/)2( 3π , 
respectively (as found in Ref. 2). Here, Lx, Ly, and Lz are the well dimensions. Thus, the 
corresponding (not normalized) state densities, Ρ(k) are 
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Factor 2 accounts for the spin. Thus, the normalized state densities are 
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In Eq. (2), the real space volumes of RQW and QW are considered, and we introduced the geometry 
factor 
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awaLLG xy /)2/( += .                                                                  (3) 
Thus, the comparison in Eq. (2) gives that G/)k()k( QWRQW ρρ = . State density in k is reduced by 
factor G. The periodic lattice potential does not depend on QSD, and hence, *m and the dispersion 
relation E(k) are identical for both RQW and QW. The state density in energy 

)k()k/()( 1 ρρ −= ddEE  is reduced by the same factor G, i.e., 
GEE /)()( QWRQW ρρ = .                                                                 (4) 

 
Subsequently, the concentration of the QSD-generated electrons nQSD was determined. The 

quantum well layer was typically grown on a substrate of diverse band structures. A general case 
shown in Fig. 3 demonstrates that the bandgaps of the substrate material are wider. The QSD takes 
place within the electron confinement intervals ΔEj, where j=1, ..., 4. Each ΔEj has the characteristic 
dispersion relation *

j
22

j 2/)( mkkE h=  and density of states )((j) Eρ . Here, *
jm  is the electron effective 

mass within the jth interval. Inside each ΔEj, there exist QSD forbidden states, whose densities are 
and Eq. (4) was used in Eq. (5). 
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Fig. 3. Energy diagram of semiconductor RQW grown on wide bandgap substrate. 
 
The total density of the forbidden states is the sum of the densities of the forbidden states from all 
intervals ΔEj , i.e., 
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The sum )(
j

(j)
QW E∑ρ  depends on the band structures of both the substrate and RQW material, and 

can be calculated for a particular pair. Apparently, the sum does not depend on the QSD. Thus, the 
expression )(

j

(j)
QWCON En ∑≡ ρ  is introduced, and the index shows that it is the electron confinement-

defined number. The nCON does not depend on the energy, since the summation by energy was 
already carried out. Thus, according to Eq. (6), the total number of forbidden quantum states (per 
unit volume) or concentration of QSD-generated electrons can be rewritten as 

)1(n 1
CONFORQSD

−−== Gnρ  .                                                       (7) 
Equation (7) gives the QSD doping. To calculate other RQW parameters, we used the condition of 
electrical neutrality.5 

)1(pnpn 1
CONRQWQSDRQWRQW

−−+=+= Gn .                                              (8) 
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where nRQW and pRQW are the electron and hole concentrations in the RQW. They can be found using 
the semiconductor equation for the non-degenerate limit, as follows: 

2

2
QW

Bg
VC

RQWRQW

n
)/exp(pn

G
TKE
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N

G
N

=−= =ni
2.                                    (9) 

Here, NC and NV are the effective state densities in CB and VB of QW, Eg=Ec–Ev is the bandgap 
width, KB is Boltzmann’s constant, T is the absolute temperature, nQW is the electron concentration 
in QW, and ni is the initial (to QSD doping) electron concentration in RQW. To obtain Eq. (9), we 
divided the state densities by a factor G according to Eq. (4), and used the semiconductor equation 
for the conventional QW nQW

2= )/exp( BgVC TKENN − . The combination of Eq. (8) and Eq. (9) gives 
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where nRQW is similar to nQW in the limits of QSD absence. The first limit is G=1 (no state density 
reduction). Equation (10) shows that for G=1, nRQW = nQW. Another limit is nCON=0 (no confinement), 
in which Eq. (10) gives nRQW = nQW/G, where the latter is not similar to nQW for any value of G. 
Divergence is apparent, since G can have only one value of G=1 in the case of zero confinement. 
Actually, nCON=0 corresponds to no boundaries and no RQW geometry. The pRQW can be obtained 
from Eq. (10) and Eq.(9). 

Subsequently, we determined the increase in EF due to QSD doping ΔEF. We used the 
formula ΔEF= )n/nln( iRQWB Tk  for the non-degenerate limit.5 By inserting nRQW from Eq. (10) and ni 
from Eq. (9), we get 
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Figure 4 demonstrates the ΔEF dependence on nCON for some values of G according to Eq. (11). The 
ΔEF is most sensitive to changes in G for low G value ( 1≈G ). For G>3, the dependence is less 
sensitive to changes in G and is linear in the logarithmic scale. Such behavior is natural, as for G 
with somewhat exceeding unity, the state density remains high and small increase in the value of G 
generates large number of QSD-rejected electrons. On the contrary, for G>3, the state density is 
reduced dramatically, and further increase of G, does not generate that much rejected electrons. In 
addition, the ΔEF will further increase for (nCON/nQW)>105. However, we do not extend the curves, 
since Eq. (11) is true only within the non-degenerate limit. In the case of higher nCON/nQW when the 
semiconductor becomes degenerated, Fermi integrals should be used to calculate the nRQW and ΔEF. 
However, this could be done only within the limited energy range near the bottom of CB, since the 
above analysis is true only in the approximation that m* is energy independent. 
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Fig. 4. Fermi energy increase as the function of QSD doping for some values of G. 
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Charge carrier scattering rates are proportional to ρ(E) according to Fermi’s golden rule and 
are reduced in RQW. If τ is the carrier transport lifetime, then according to Eq. (4), we 
have QWRQW ττ G= . Consequently, for mobility */ meτμ = , we get 

QWRQW μμ G=  .                                                                (12) 
The mobility of charge carriers increases G times in the RQW. In the case of heavy QSD doping 
(nRQW>>pRWQ), the hole current can be neglected and the electrical conductivity using Eq. (12) in Eq. 
(13) is given as 

)n/n(n QWRQWQWRQWRQWRQW Ge σμσ == .                                            (13) 
Furthermore, by inserting Eq. (10) in Eq. (13), we get 
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Equation (14) indicates that the conductivity of RQW increases with respect to QW. Figure 5 shows 
the conductivity dependence on QSD-generated electron concentration for some values of G. In the 
general case, the hole current contributes to the mechanism and should be included in Eq. (13), and 
can be calculated in a similar way using pRQW determined from Eqs (10) and (9). 
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Fig.5. Conductivity dependence on QSD doping for some values of G. 

4. Geometry Factor Calculation 
Conventional QW (a=0) has quasi-2D structure Ly,.Lz >> Lx and no quantum features are 

considered in the Y and Z directions. Non-normalized state density is SLEEP x)()( ρ= , where S is a 
layer surface, P(E) is proportional to the product xLE)(ρ . As )(Eρ  in RQW is reduced G 
times, xL can be similarly increased with respect to G times without the loss of quantum properties. 
Let us find G for the arbitrary geometry. There are no analytical solutions to the time-independent 
Schrödinger equation in the ridged well (solution contains infinite sums). However, there are fairly 
accurate mathematical and numerical methods. Mathematically, there is no difference between QSD 
and electromagnetic mode depression, and Helmholtz equation and the same boundary conditions 
are used in both the cases. Helmholtz spectrum calculation can be found in the literature related to 
Casimir effect. Casimir energy exhibits strong dependence on photon spectrum and consequently, 
on the geometry of the vacuum gap.6 A number of geometries, including double-side ridged 
geometry 7 were analyzed. In addition, a software designed for wave-mode calculation in ridged 
waveguides has been developed,8, 9 and can be used to determine G numerically. 

In practice, w>>a, which allows the assumption that k spectrum is quasi-continuous in Y 
direction. Thus, in the first approximation, G can be rewritten in a simpler form as 

aLaaLG x //)2/( x ≈+= .                                                               (15) 
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In Eq. (15), we consider that a<<2Lx, which is satisfied automatically within the perturbation 
method limit [Eq. (3) is obtained using perturbation method]. We presume that this method is 
precise enough in the range of 5<(Lx/a)<10, and Eq. (15) can be used for that range (the method 
cannot be used for 0→a , since diffraction leads to ignoring the ridges by wave). Therefore, we 
used the values of G= 5 ÷ 10 for further estimations. In practice, 20-nm wide conventional QW can 
be replaced by 100 ÷ 200-nm wide RQW. 

5. Possible Applications  

Condition for observation of quantum effects TKEE Bnn >>−+1  limits increase in RQW 
thickness. Energy difference between consecutive energy levels should be much more than thermal 
energy. For instance if QW of thickness of 20 nm exhibits quantum properties at T=300 K, then 
RQW made of same material will exhibit quantum properties at thickness of maximum Gx20 nm at 
T=300 K. Thickness could be increased further only in the case temperature is lowered. However 
this limitation applies only to energy levels which are close to Fermi energy (i.e at the top of VB 
and bottom of CB). Electrons having energies E<<EV do not interact with environment and 
consequently are not influenced by thermal fluctuations (Ref 3). Last means that QSD doping is 
practically not limited by thermal fluctuations.   
  
5.1 QSD in solar cells and power electronics 

For optoelectronics and power electronics it is important to have suitable wide bandgap 
materials. 10 Intrinsic semiconductors with Eg>1.5 eV are difficult to utilize as their electrical 
conductivity is very low. Doping is typically used to increase electron concentration in CB.  
However, conventional doping introduces impurity centers and increases electron scattering. QSD 
doping can be used to solve the problem. It increases electron concentration in CB without 
introducing scattering centers.  Besides it, QSD reduces scattering rates in both CB and VB.  
 QW embedded in p-i-n junction is frequently used for solar cells. 11, 12 Typical QW layer is 
only 10-20 nm thick and there is the light confinement problem. To overcome it, complicated 
multiple QW heterostructures are fabricated. QSD can contribute in difficulty solving. Thicker 
RQW layer has the same quantum properties . This increases light confinement. Reduced number of 
RQW layers will be needed. Combination of QW and RQW can also be used for solar cells. Here 
we describe one  
possible combination. Single QW is embedded inside the RQW (Fig. 6(a) shows energy diagram). 
For comparison, in the same figure we give energy diagram of QW, embedded inside the 
conventional QW (Fig. 6(b)). The QW in QW system has low P(E) within the energy range 

C2C3 EEE <<   (EC3, EC2, EC1 are CB bottoms). 
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Fig.6 Energy diagrams for a) QW inside the RQW, b) QW inside the QW heterostructures. Horizontal lines depict 

energy levels. It is assumed that energy spectrum is continious above EC1 and below EV1.. 
 

This is due to narrow internal QW.  In the range C1C2 EEE << , N(E) is higher as external QW is 
wider (Fig.4(b)). We replace external QW by the RQW of same width (Fig.6(a)). Then, P(E) 
reduces due to QSD  inside the energy range C1C2 EEE << . As result, we get system which has low 
P(E) in broad energy range C1C3 EEE << (same is true for holes in VB, Fig.6(a)). Parameter G can 
be selected so that, state densities match (Eq. (4)). Such RQW(QW) heterostructure has quantum 
properties close to the internal QW. Simultaneously it has same low P(E) in broader energy range 
and is itself wider than internal QW. It has almost uniform P(E) over energy range C1C3 EEE << .  
Consequently, broad photon spectrum 21 ωωω <<  (ω is frequency of incident photon) can be 
efficiently converted into electricity as system exhibits quantum properties in broad energy range 

21 ωω hh << E . This is important because in practical devices energy spectrum above Ec1 and 
below Ev1 is continuous and for 2ωω >  energy conversion becomes inefficient. Furthermore, as 
QW embedded inside the RQW  heterostructure is wider, it better confines light. It also has higher 
electrical conductivity due to low P(E).  
 
5.2 QSD laser with tunable wavelength 

QW is often used for heterostructure lasers. 13, 14  Let us consider p-n-n+ junction laser based 
on RQW.  Fig. 7 shows energy diagram for RQW hetrostructure. RQW is embedded between p 
doped and n doped layers. n doped layer is subsequently n+ doped to the depth, not approaching 
RQW from the right side, as shown in Fig 7. RQW is QSD-n doped. When current flows through p-
n-n+ junction, electrons and holes recombine inside the RQW.  Photon with energy 0ωh , is emitted.   
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Fig. 7 Energy diagram of tunable RQW light emitting diode. Horisontal lines, in CB and VB of GaAs, depict energy 
levels. 

 
Since RQW could be made as thick as 200 nm, it becomes possible to tune its width using charge 
depletion (depletion region width is typically more than 100 nm). Voltage Vt is applied to p-n 
junction. It modifiers internal potential and charge distribution in the proximity of RQW left 
boundary. Effective Lx of RQW changes and consequently G alters.  G becomes Vt dependent and 
positions of energy levels (both in CB and VB) move on energy scale.  Emitted photon energy 

0ωh is tuned. QSD doping of working area allows low resistive loses and high efficiency. Width of 
RQW can be maximized by choosing high G. At the same time QSD doping of working area can be 
regulated by adjusting nCON (Eq. 10).  
 
5.3 QSD effect MOS transistor     

Ballistic MOSFET transistors are widely discussed in the literature. 14, 16, 17 Ballistic regime 
is difficult to realize in practice because it requires very thin channel. Using RQW in the transistor 
channel reduce n(E) and consequently, channel thickness could be increased G  times. One of the 
possible designs of QSD MOS transistor is shown in Fig. 8(a).  

 
Fig. 8 a) p-i-p type QSD transistor,  b) corresponding energy diagram. 

 
Channel made from undoped material has a single ridge. Insulator layer and gate electrode are 
grown on the top of the ridge. QSD doping converts undoped channel to n-type under the ridge. Far 
from the ridge EF remains unaffected, as there is no QSD influence. Energy diagram is shown on 
Fig. 8(b). There is a pocket for electrons in CB and a potential barrier for holes in VB. FEΔ depends 
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on G and consequently on dimensions a, Lx.  Further, effective a can be altered by applying external 
voltage to the gate electrode and depleting charge under the insulator. FEΔ changes according to Eq. 
(11). As result, gate voltage modulates current in source-drain channel. Above design corresponds 
to p type source and drain electrodes (p-i-p) transistor, since holes are charge carriers (barrier is in 
VB). If carriers are electrons (n-i-n transistor), barrier in CB is needed and different geometry 
should be used.  

For description of channel electrostatic potential φ we used 1D Poisson equation basically 
following calculations made in ref 18.   
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g
2

2

y
V

y
ρ

ε
π
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φφ

−=
−

−                                                                     (13) 

Here, Vg is gate voltage, λ is effective screening length, Sε  is dielectric penetrability of channel. 
Using Eq. (11) we find QSD generated charge density as function of FEΔ in the middle of channel 
(y=0) 

 )/(sinhn2)0( BFQW TKEq Δ=ρ  .                                                             (14) 

Here, q is electron charge. Further, we use bell curve )exp( 2yα− to simulate distribution of QSD 
generated charge density )exp()0()( 2yy αρρ −=  . Coefficient α was determined from boundary 
condition: )10/n()2/3()2/3( QWqww =−= ρρ . Such boundary conditions follow from considering 
that, QSD generated electron concentration is much less than initial electron concentration at the 
channel boundaries (channel length is 3w). Next, we assume that doping level is high in source and 
drain electrodes. Consequently, QSD generated field is fully concentrated inside the channel. We 
used conventional formulas for MOS structure 5 to determine depletion depth under the gate 
electrode   
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= , OXε  is dielectric penetrability inside insulator layer and OXd  

is oxide thickness. Effective ridge height was found as aeff.(Vg)=a-d(Vg). Fig. 9 shows potential 
distribution inside the channel for set of Vg. Following values were used: ΔEF =0.3 eV, source-drain 
voltage VSD=0, source-channel internal potential difference -0.3 V, w=25 nm, Lx=3 nm, a=1 nm,  
dox =2.5 nm, λ=6.8 nm, OXε =4,  Sε =12. 
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Fig. 9 Distribution of hole potential energy φ inside the channel for several gate voltages. λ=6.8 nm, w=25 nm, G=3, 

VSD=0 
 
For transistor I-V characteristics we found source-drain current as JSD=JS-JD, where 

)()(n , DS,, yvyqJ DSDS = . Here DSv , is charge carrier speed. Currents were calculated in the same 
way as in ref. 18.  Resulting I-V characteristics are shown in Fig. 10. Above calculations are made 
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for p-i-p transistor. Thy can be extended to n-i-n. In last case potential will change sign and carrier 
effective mass will change.  
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Fig. 10.  I-V curves of p-MOS QSD transistor for several gate voltages. 

 
One more advantage of  transistor shown in Fig.8 is that current do not flow in close 

proximity of the semiconductor insulator junction. Junction is in the “bay” under the gate electrode. 
Such arrangement reduces insulator influence on hole mobility (through insulator impurities and 
surface roughness). 19  

QSD can also be used in diffusion transport MOS transistors, bipolar transistors and diodes. 
Combination of QSD doping with conventional and modulation doping will enable number of new 
designs.   

5.4 RQW fabrication technology  
MBE is typically used to grow quantum well layers. RQW growth do not differs from a 

conventional QW growth, except RQW layer has more thickness.  It can become simpler to 
fabricate from the point of view of thickness accuracy. Ridges could be fabricated using e-beam 
lithography followed by ion etching or wet etching. RQW is thicker than QW and technological 
problems introduced by layer thickness become solvable (for instance, relative thickness of natural 
oxide, developed during lithography, becomes negligible for RQW). Native oxide can be removed 
usind annealing in situ . 20, 21 Since RQW is hundreds of nanometers thick, different fabrication 
methods can also be used. Namely, silicon on insulator (SOI) technology can be utilized to cleave 
and bond layers of that thickness. 22 SOI allows mechanical attachment of RQW layer to the 
substrate, instead of growing it using complicated MBE technology. Universal intermediate transfer 
wafer can be used to attach RQW layers one by one (Fig. 10). After oxidation and Hydrogen 
implantation Si wafer is bonded to transfer wafer.23 Transfer wafer has etched vias for the purpose 
of future debonding. Next, ion-cut process is used to split Si wafer. Afterwards Si layer is polished 
and bonded to heterustructure surface. 
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Fig. 10 RQW heterostructure fabrication by SOI technology and intermediate transfer wafer. a)  Oxidation of Si wafer 

surface followed by Hydrogen inplantation. b) SiO2 bonding to intermediate transfer wafer (having etched vias) 
followed by ion-cut splitting and polishing. c)  Bonding to heterostructure. d) Etching SiO2 and debonding transfer 

wafer. f) Etching ridges. 
 
Final step is debonding of transfer layer by the way of etching Si oxide through the vias. 
Subsequently, ridges can be fabricated using conventional lithography. Process can be repeated to 
attach next RQW, using universal transfer layer  Furthermore, in many cases (devices shown on 
figures  6, 8), ridged layer is the last epitaxial one. This allows conventional methods of ridge 
fabrication both for of SOI and MBE grown layers.  

6. Conclusions 
QSD in semiconductor ridged quantum well was studied. It was shown that QSD reduces 

the density of quantum states by geometry factor G. Electrons from the filled energy bands are 
transferred to CB. Since electron concentration in CB increase, QSD corresponds to donor doping. 
Like modulation doping, QSD doping does not introduce the impurities. QSD increase charge 
carrier mean free path G≈ times. Formulas for carrier concentrations and EF were obtained in non-
degenerate limit. The RQW parameters were expressed in terms of conventional QW parameters. 
 RQW exhibits the same quantum properties as a QW at G times more width. This can be 
used in application such as power electronics, solar cells, semiconductor lasers, and MOS 
transistors. For power electronics, QSD can increase electron concentration in CB, without 
introducing scattering centers. For solar cells, using combination of RQW and QW can widen the 
converted light waveband, and increase efficiency. For lasers, RQW can allow tuning of emitted 
light wavelength. For MOS transistors, RWQ increase channel width and reduce influence of 
insulator layer.  
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