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Abstract:  
A matrix of fundamental solutions of the equation of dynamic elasticity theory is 

constructed for a homogeneous isotropic medium in the case, when a concentrated 
force changes at time exponentialy-periodicaly. Properties of the indicated matrix and 
its corresponding stress tensor are investigated. Besides, a way of calculation of their 
elements is given.   
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1. Introduction 
Fundamental solutions play important role not only at solving boundary problems by method 

of fundamental solutions and at studying boundary problems with the help of integral equations, but 
also at solving some particular problems of mathematical physics [1, 2]. 

The main restriction at using the method of fundamental solutions from the point of view of 
its practical realization consists in necessity of knowledge of the form of the fundamental solution. 
This drawback essentially restricts the range of application of the method of fundamental solutions. 
Essentially this method is restricted only by a class of well known differential operators, for which 
due to the effort of mathematicians of many generations fundamental solutions are obtained. 

In mathematical physics often arise problems, in which differential equations are "very close" 
to classical equations whose fundamental solutions are known. And in spite of closeness of these 
equations, generally, fundamental solutions of one of them cannot be used for solution of the 
another one (see [3]). Therefore it is natural to try firstly to get fundamental solution of a concrete 
differential equation and then use it for approximate solution of boundary problems. 

Finding of the fundamental solution represents one of the most important and difficult 
problem of theory of equations with partial derivatives. With its help the analytically of the solution 
to the equation with analytic coefficients can be proved (see [4]). Moreover, fundamental solutions 
are essentially used in investigation of character of boundary problems, which may be stated for this 
equation. Therefore finding of the fundamental solutions attracted attention of mathematicians long 
ago. 

Hilbert and Hedrik [4], also Picard and Holmgren [4] dealt with these questions for second 
order linear elliptic equations with analytic coefficients. For elliptic equations of higher order, when 
the equation has constant coefficients and contains only derivatives of higher order, the problem of 
finding corresponding fundamental solutions is fully solved in the Somigliana's work [4]. 

In Levi's work [4] the existence of fundamental solutions of high order equations of elliptic 
type is proved. This proof is constructive in the sense that it gives algorithm of construction of 
fundamental solution also. In this work the case of equations with a large number of variables and 
equations system is considered as well. 

Further Picard [3], Giraud [3], Miranda [5], Bitsadze [3] and others dealt with general 
questions of fundamental solutions. 

The method of fundamental solutions gets special elegancy and simplicity if the fundamental 
solutions are constructed explicitly (in elementary functions). This is the reason of interest in such 
constructions of fundamental solutions. 
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The theory of elasticity represents scientific basis and mathematical apparatus of dynamic 
seismology, studying displacements at sufficiently quick processes inside the Earth. It gives 
possibility of strict statement of the problem of seismology and study of their correctness.  

 
2. On a Matrix of Fundamental Solutions  
It is well-known [1,6] that the basic motion equation of a homogeneous isotropic and elastic 

body )( 3EDD ⊂  has the form (in the vector form)  
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In (2.1) and (2.2): λ  and μ  are the Lame elastic constants, which characterize elastic properties of 
the given body, they are defined experimentally and for all real bodies 0>0,> μλ ; ρ  is the 

density of the body D ;  321 ,, xxx  are the coordinates of the point Dx∈  (before its deformation);  
t  is a time;  ),,(=),( 321 UUUtxU  is the displacement vector of the point Dx∈  at moment t ;  

),,(=),( 321 ΦΦΦΦ tx  is the vector of volume force in time t  (calculated on the unit of a volume 
of the body D ); Δ  is the Laplace operator  
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and the function ),( txΘ  is defined by the formula  
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Let a homogeneous isotropic and elastic body with parameters ρμλ ,,  fill the Euclidean space 3E  
and the concentrated (point) unit force  

)(),,(=)()(=),( 321 tftfzEtzE jjj
jj δδδ                                   (2.3) 

be applied at the point 3
321 ),,( Ezzzz ∈ , which is directed along the axis 1,2,3)=( jOx j , 

changes at time by the law )(tf  and begins action at moment +0=t . It is evident, in this case, that 

the force ),( txjΦ , acting on 3E  will be  

.,,)()(),,(=)(),(=),,( 3321 EzxzxtfzxtzEtzx jjj
jj ∈−−Φ δδδδδ            (2.4) 

In (2.3) and (2.4) )(tf  is known function and 0=)(tf  for 0≤t ;  1,2,3)=,( jkkjδ  is the 
Kronecker symbol  

 
⎩
⎨
⎧

/ ;=0
,=1

=
jkfor
jkfor

kjδ  

)( zx −δ  is the Dirac function and is defined with the following conditions:  
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where 3ED ⊂ , and )(xf  is an arbitrary continuous function at the point zx = . 

By means of the matrix differential operator ),( t
x

A
∂
∂

 the system (2.2) (or the equation (2.1)) 

for the force (2.4) has the form [1]  
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In (2.5) ),,(=),,( 321
jjjj UUUtzxU  is the displacement of the point 3Ex∈  (at moment t ), caused 

by action of the force ),( tzE j ;  (0,0,0)=Θ  is the zero vector. 

From (2.5), it is seen that ),,( tzxU j  represents the fundamental solution of the 
homogeneous equation  
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∂
∂ tExtxUt
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A                                    (2.6) 

corresponding to the force ),,( tzxjΦ . 
The matrix of fundamental solutions of the equations (2.1), (2.2), (2.6) or of the operator 

),( t
x

A
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 is called the matrix (see [1])  

,),,(=),,(),,(
33

321

×
ΨΨΨΨ≡Ψ tzxtzx kj                                    (2.7) 

where  
1,2,3).=,(),,(=),,(),,( 321 jktzxUtzx jjj

jj ΨΨΨ≡Ψ  
In designation of ),,( tzxkjΨ  the index k  denotes a component of a displacement vector of the 
point x . The index j  indicates the cause of a displacement, namely indicates the point force 

),( tzE j , directed along the axis 1,2,3)=( jOx j . x  denotes a moving point, and z  denotes the 
point at which a point force is applied. 

By the Cauchy-Binet formulae it is easy to see that if each column 1,2,3)=(),,( jtzxjΨ  of 
matrix (2.7) represents a solution of equation (2.5), then  
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x
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∂
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where O  and E , respectively, are null and unit quadratic matrices, i.e.,  
.=0,=,=,=

33 kjkjkjkjkj EOEEOO δ
×                                 (2.9) 

   
3. A Matrix of Fundamental Solutions for a Concentrated Force  
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Changing Exponentially-Periodically  
Supposse a homogeneous isotropic elastic medium fills the Euclidean space 3E  and the unit 

concentrated force  
)]([=),( zEeRetzE jtj τ                                                  (3.1) 

is applied at a point ),,(= 321 zzzz , which is directed along the axis jOx  1,2,3)=( j , i.e., 

),,(=)( 321 jjj
j zE δδδ , and begins action at a moment +0=t . In (3.1) ωατ i−= , where i  is 

the imaginary unit, and α  and ω  are some real numbers 0)( ≥ω . From (3.1) it is seen that the 

force ),( tzE j  acts in time by the law teeRetf tt ωατ cos=][=)( . 
It is clear that for 0)(0= ≠αω  the force (3.1) will act exponentially, and for 0)(0= ≠ωα  

− periodically. For 00, ≠≠ ωα  it will be oscillating and will be defferent from pure harmonic 

oscillation by an amplitude of oscillation changing in time by the law teα  (for 0<α  the 
oscillations will be damping, and for 0>α  − reinforcing). 

It is evident, under action of the force (3.1), that the force, acting on 3E  will have the form  

).,(),()]([=),,( 3EzxzxzEeRetzx jtj ∈−Φ δτ                                 (3.2) 
From the point of view of seismology the case of force (3.2) is interesting for investigation of 
isolated regions by artificial vibrators, which change in time periodically and represent sources for 
seismic waves. The law (3.2) is not suitable, since it assumes a steady-state of oscillation, when a 
seismogram of any earthquake gives us a picture of a transient process. 

If force (3.2) acts sufficiently long, then the displacement vector ),,( tzxU j  takes the form 
[1]  

,)],([=),,( zxUeRetzxU jtj τ                                              (3.3) 

where ),(2),(1=),( zxiUzxUzxU jjj +  in general case represents a complex vector function. 
Thus, we are interested in such a solution of the equation (2.5), which has form (3.3). 
Then from (2.5) we get  
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For determination the ),( zxU j  from (3.4) we get the equation  
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∂
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A jjj
j δδδδτ                                  (3.5) 

By virtue of (3.5) the complex vector function ),( zxU j  represents a fundamental solution of the 
equation  
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x
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∂
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where ),,(=)( 321 UUUxU  is a complex vector function. 
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Analogously to (2.7) the matrix of fundamental solutions of equation (3.6) or of the operator 

),( τ
x

A
∂
∂

 will be the matrix  

1,2,3),=,(),,(=),,(
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ΨΨ ττ                                  (3.7) 

with complex elements, which satisfies the equation  
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where the matrices O  and E  have form (2.9). 
It should be noted that for 0=τ  and ωτ i−=  the equation (3.6) coincides, respectively, with 

the homogeneous equations of statics and steady oscillation of homogeneous isotropic elastic body 
[1,2]. 

The matrix of fundamental solutions of the equation of statics in explicit form is received by 
Kelvin and for the equation of the steady oscillation is received by V. D. Kupradze and 
systematically is applied to the theory of boundary problems of oscillation [1]. 

By virtue of (3.3) and (3.4) it is evident that after construction of the matrix ),,( τzxΨ , the 
matrix ),,( tzxΨ  of fundamental solutions of the dynamic equation (2.6) or of the operator 

),( t
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A
∂
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 will be given by the formula 
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We shall construct the matrix of fundamental solutions of the equation (3.6) by a simple method. 
With the help of this method at first constructed the matrix of fundamental solutions for the 
equation of the steady oscillation [1]. The mentioned matrix is called the matrix of Kupradze [1]. 

In this method, firstly it is necessary that system (3.6) to be reduced to one equation (see [1]). 
For this, the matrix ),,( τzxΨ  is sought in the form  
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 [1], and )(xϕ  is some unknown scalar 
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Since all elements of the matrix ),( τ
x

D
∂
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 contain the factor ])()[2( 2
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, therefore 

we can seek the matrix ),,( τzxΨ  in the form  
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Thus, for satisfaction (3.18) we must choose the function )(* xϕ  so that the following scalar 
equation  
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For fulfilment the condition (3.19) in the role of the function )(* xϕ  we can take a solution of 
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it seems that we are interested in such a particular (fundamental) solution of the equation (3.19) for 
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will be fulfilled, i.e., the solution, which depends on the parameter ),,( 321 zzzz , for zx ≠  satisfies 

the equation (3.19) and ∞→|)((| * xL ϕ  for zx → . 
Remember that a fundamental solution of the Helmholtz equation [7]  
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where k , in general case is a complex number. 
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On the basis of a pure physical conception from solutions the (3.21) we are interested in such 
a solution, which is regular at the infinity, i.e., in (3.21) we must take a sign according to the 
condition  

0.=),(lim zxh
r ∞→

                                                      (3.22) 

Thus it is necessary to take fundamental solution )(* xϕ  of the equation (3.19) according to the 
conditions  
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From (3.23) we have  
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where by virtue of (3.22) signs before of 1τ  and 2τ  are selected in the following way: if 0<τRe , 
then we take the upper signs; if 0≥τRe  − lower. 

For a simplicity we rewrite the formula (3.24) as follows  
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It is clear that the constructed function ),(* zxϕ  represents the fundamental solution of the equation 
(3.19), satisfies the equation (3.18) for zx ≠ , and for 3, Ezx ∈  --- the equation (3.20). 

From above mentioned it follows that by virtue of (3.15),(3.16),(3.17) ,(3.20) the matrix 
),,( τzxΨ  satisfies the matrix equation (3.6) for zx ≠ , and for 3, Ezx ∈  − the equation (3.8). 

If we take into account (3.25),(3.23),(3.13) and the condition  
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then from (3.15) we get that the elements of the matrix ),,( τzxΨ  of the equation (3.6) are given by 
the formula  
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where 21,ττ  are defined by the formulae (3.26), and ωατ i−=  (α  and 0)( ≥ωω  are real 
numbers). 

The constructed matrix ),,( τzxΨ  of fundamental solutions has the following properties. 
Theorem I. The matrix ),,( τzxΨ  is symmetric, i.e.,  

 1,2,3)=,(,),,(=),,( jkzxzx jkkj ττ ΨΨ  

and every column (row) ),,( τzxjΨ  of this matrix represents a solution of the equation  

Θ−+Ψ
∂
∂ =)(),,(),,(),( 321 zxzx
x

A jjj
j δδδδττ                            (3.28) 

for 3, Ezx ∈ . 
A symmetry of the matrix ),,( τzxΨ  directly follows from the form of the elements 

),,( τzxkjΨ  of this matrix (see (3.27)). As for the equality (3.28), its correctness is seen from the 
matrix equation (3.8), but we can show it directly. 

Indeed, let  
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Thus, EzxC )(= −−δ .  Q.E.D. 
Theorem II. For every point }{\3 zEx∈   
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where ),( zxΨ  is Kelvin's matrix of fundamental solutions [1,2]. 
Indeed, if we take into account the following equalities  
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we shall obtain  
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 ),,(=))((= 3 zx
r

zxzx
r kj
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'kj' Ψ
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+ μ

δ
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where  
 .)]2()[8(=,)]2()[83(= 11 −− ++++ μλπμμλμμλπμμλλ ''  

Thus, the theorem is proved. 
Theorem III. For every point }{\3 zEx∈   

),,,(),,(=|),,( = ωωτ ωτ zxizxzx i Ψ≡−ΨΨ −                                     (3.30) 

),,,(=),,( ττ zxzx ΨΨ                                                     (3.31) 
where ),,( ωzxΨ  is Kupradze's matrix or a matrix of fundamental solutions for the steady 

oscillation equation of a homogeneous isotropic elastic medium [1], and Ψ  and τ  are complex 
conjugate, respectively, to Ψ  and τ . 

The equality (3.30) is directly obtained from the expression of ),,( τzxkjΨ , if we substitute 

τ  by ωi− , and (3.31) − if we replace τ  by τ  in expression of ),,( τzxkjΨ . 

Theorem IV. For every point }{\3 zEx∈  elements of the stress tensor  

 ),,,(),(=),,,( ττ zxn
x

Tnzx Ψ
∂
∂

Ψ  

(3.32) 

 ,1,2,3)=,(),,,(=),,,(
33

jknzxnzx kj ×
ΨΨ ττ  

corresponding to the matrix ),,( τzxΨ  are given by the formula  

 *))((=),,,(4
3

1=
3

ll
l

l

kj
kj zxxn

r
nzx −−Ψ ∑

δ
τπ  
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where ))(),(),((=)( 321 xnxnxnxn  is a arbitrary unit vector, applied to a point x . 
From(3.32) with the help of the Cauchy-Binet formulae  

 3),,1,2=,(),,(),(=),,,(
3

1=

jkzxn
x

Tnzx ijki
i

kj ττ Ψ
∂
∂

Ψ ∑  

we shall easily obtain the expression (3.33), if we take into account the expressions of ),,( τzxijΨ  

and ),( n
x

Tki ∂
∂

 (see [1]),  

 .1,2,3)=,(=),( ik
nx
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x

T kikiikki ∂
∂

+
∂
∂

+
∂
∂

∂
∂ μδμλ  

It is clear, that since the matrix ),( n
x

T
∂
∂

 is non-symmetric, respectively the matrix ),,,( τnzxΨ  is 

non-symmetric and its j -th column 1,2,3)=(),,,( jnzxj τΨ  represents the complex stress 

vector, which corresponds to the complex displacement vector ),,( τzxjΨ . 
Theorem V. For every point }{\3 zEx∈   

),,,,(),,,(=|),,,( = ωωτ ωτ nzxinzxnzx i Ψ≡−ΨΨ −                            (3.34) 
 

),,,,(=),,,( ττ nzxnzx ΨΨ                                                 (3.35) 
where ),,,( ωnzxΨ  is stress tensor, corresponding to the Kupradze's matrix ),,( ωzxΨ . 

The equalities (3.34) and (3.35) are obtained directly from expressions (3.33) of the elements 
matrix ),,,( τnzxΨ . 

Theorem VI. For every point }{\3 zEx∈   
 ),,,(=),,,(lim

0
nzxnzx ΨΨ

→
τ

τ
 

where ),,( nzxΨ  is the stress tensor, corresponding to the matrix ),( zxΨ  of Kelvin. 
Indeed, taking into account (3.29) and the following equalities  
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we get  
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Q.E.D. 
The matrices ),,( τzxΨ  and ),,,( τnzxΨ  have a certain physical sense, which consist in the 

following: 
1) By virtue of Theorem I, j -th column (row) of the matrix ),,( tzxΨ  (see (3.9)) of 

fundamental solutions of the operator ),( t
x

A
∂
∂

 satisfies the dynamic equation  

 .=)()],,([),,(),( 321 θδδδδτ zxeRetzxt
x

A jjj
tj −+Ψ

∂
∂

 

Thus, with the help of j -th column (row) ),,(= 321 jjj
j ΨΨΨΨ  of the matrix ),,( τzxΨ  a real 

displacement of a point 3Ex∈ , under deformation of the homogeneous isotropic elastic medium 

3E  is given by the formula  

2

>)],,,([=),,(
c
rtzxeRetzx jtj ττ ΨΨ                                  (3.36) 

),,,( 3 zxEzx ≠∈  

when this deformation is caused by the unit point force )]([=),( zEeRetzE jtj τ , which is applied 

to a point 3Ez∈ , is directed along the axis 1,2,3)=( jOx j , acts at time by the law 

teeRetf tt ωατ cos)(=)( ≡  (see 3.1)) and begins action at moment +0=t . In (3.36) 2c  is a 
propagation speed of a transverse wave in a medium, i.e., 2/cr  is a value of a time interval in which 
a transverse wave reaches from source z  to a point x . 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.4(21) 
 

    211

On the basis of the mentioned, evidently, in designation ),,( τzxkjΨ  the index k  denotes a 
component of a complex displacement vector of a point x , the index j  indicates to the cause of a 

displacement, namely indicates to the point force, directed along the axis jOx . The symbol x  
denotes a moving point, the symbol z  denotes the point in which a point force is applied or 
conversely, since  

).,,(=),,( ττ xzzx kjkj ΨΨ                                              (3.37) 
2) From Theorem IV, point 1) and formula (3.9), it is evident, that by the j -th column of the 

matrix ),,,( τnzxΨ  a real stress, which is caused by the unit point force )]([=),( zEeRetzE jtj τ  
is given by the formula  

 ,>)],,,,([=),,,(
2c
rtnzxeRetnzx jtj ττ ΨΨ  

 
 ).,,( 3 zxEzx ≠∈  

Concerning the designation ),,,( τnzxkjΨ , all that was said for ),,( τzxkjΨ  remains valid, except 
the condition (3.37). 
     

4. On Calculation of Elements of Matrices of the  Fundamental Solutions ),,( tzxΨ  and 
the Stress Tensor ),,,( tnzxΨ    

Let a concentrated force  
,<<),(),,(),()(=),( 321 ∞∞−≡ΦΦ ptfptzEztz jjj

jjj δδδ                (4.1) 
be applied to a point 3Ez∈ , which changes by a law )(tf  and begins action at the moment 

+0=t . 
Evidently, a displacement vector ),,( tzxU j  and a stress vector ),,,( tnzxF j  , which are 

caused by the force (4.1) are calculated from correlations  
 ),,,(=),,( tzxptzxU jj Ψ  

(4.2) 
 ,=1,2,3),=(),,,(=),,,( zxjtnzxptnzxF jj /Ψ  

where ),,( tzxjΨ  is the j -th column (row) of the matrix ),,( tzxΨ , ),,,( tnzxjΨ  is the j -th 

column of the matrix ),,,( tnzxΨ , and || p  is the intensity of the force )(zjΦ , i.e., 

|)(|=|| zp jΦ . 
In order to calculate the values of the functions ),,( tzxkjΨ  and ),,,( tnzxkjΨ  the 

magnitudes tr,,,, ρμλ  involved in them, must be taken in one and the same units' system. 
If the magnitudes tr,,,, ρμλ  are taken in the system SI, then they will have the form (e.g., 

for a rock)  

,10=,10=,10= 3
3

02
9

02
9

0 m
kg

m
n

m
n ρρμμλλ  

(4.3) 
,=,10= 0

3
0 secttmrr  

where constants 000 ,, ρμλ  are sought in corresponding tables. 0r  is distance between of points x  
and z , expressed in km -s. 
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On the basis of (4.3) it is easy to see, that the dimension of the functions ),,( tzxkjΨ  and 

),,,( tnzxkjΨ  in the units' system SI will be  

1,2,3),=(1=)],,,([,=)],,([
2

k
m

tnzx
n
mtzx kjkj ΨΨ                         (4.4) 

and on the basis of (4.2) and (4.4) the dimension of components of the displacement ),,( tzxU j  

and stress ),,,( tnzxF j  in the system SI will be  

 ,==])][,,([=)],,([ mn
n
mptzxtzxU kj

j
k Ψ  

 

 ,=1=])][,,,([=)],,,([ 22 m
nn

m
ptnzxtnzxF kj

j
k Ψ  

where [ ] is the sign of a dimension. 
Thus, considering vectors ),,( tzxjΨ  and ),,,( tnzxjΨ  as displacements and stresses, their 

components must be multiplied by dimension of the force. 
From expression of the function ),,( tzxkjΨ  and ),,,( tnzxkjΨ  (see Section 3) it is seen, that 

substitution in them the magnitudes (4.3) we shall have to do the division on sufficiently large 
numbers, what in turn implies growth of an error of calculation. 

In order to remove the mentioned difficulty we operate in the following way. If in the 
expressions of the functions ),,( tzxkjΨ  and ),,,( tnzxkjΨ  we substitute the magnitudes 

tr,,,, ρμλ  from representation (4.3), then it is easy to see that in front of expression of the 

),,( tzxkjΨ  will be the factor 1210− , and in front of the ),,,( tnzxkjΨ  − 610− , i.e.,  

),,,(10=),,( *12 tzxtzx kjkj ΨΨ −  
(4.5) 

),,,,(10=),,,( *6 tnzxtnzx kjkj ΨΨ −  

where the functions ),,(* tzxkjΨ  and ),,,(* tnzxkjΨ  represent, respectively, values of the functions 

),,( tzxkjΨ  and ),,,( tnzxkjΨ , when tr,,,, ρμλ  from (4.3) are substituted by the magnitudes 

00000 ,,,, trρμλ . On the basis of mentioned we calculate ),,(* tzxkjΨ  and ),,,(* tnzxkjΨ , 

respectively, in the units 
n
m

 and 2
1

m
, and the values of the functions ),,( tzxkjΨ  and we find 

),,,( tnzxkjΨ  from (4.5). 
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