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Abstract:  

We propose a new analytical-numerical method for solving nonlinear operator 
and differential operator equations. The method possesses the exponential convergence 
rate and can provide two-sided approximations. The user can control the exponential 
convergence through an embedded control mechanism, i.e. one can arrive the 
exponential convergence independent of the value of the Lipschitz constant. The 
numerical examples confirm the theoretical results.  

  
 

1  Introduction 
There are various approaches to construct exponentially convergent approximations to 

solutions of nonlinear differential equations. To the classical ones belong e.g. the variational 
methods [26]. The spectral methods ( see [5] and the literature therein) are based on the spectral 
expansions or a special interpolation. One can obtain exponentially convergent methods for a wide 
class of differential equations with operator coefficients combining an appropriate quadrature 
formula for the Dunford-Cauchy representation of the operator exponential with a special 
interpolation of the nonlinearity (see [20] and the literature cited therein). One more alternative 
which seems to be very promising is the use of the homotopy or perturbation idea (see e.g. [15, 16]) 
which is closely related to the Adomian decomposition method (ADM) [2-4]. One of the important 
elements of this approach are Adomian's polynomials [2-4, 34, 48]. There are many publications in 
the last decade which are devoted to the application of Adomian's decomposition method (ADM) 
for the both linear and nonlinear operator and differential operator equations [16, 24, 29-31]. The 
class of problem for which these approximations provide the exponential convergence rate is 
restricted by the character of the nonlinearity: there are nonlinearities which do not fulfill the known 
convergence conditions and the approximation method do not contain some convergence control, 
i.e. the convergence is not global. The crucial role for the known convergence conditions plays the 
constant nMnL α!=  bounding the −n th Fréchet derivative of the nonlinearity (the generalized 
Lipschitz constant) and, roughly speaking, the known convergence results assert convergence 
provided that this constant is small enough. In the present paper we propose a control mechanism 
which guarantees the exponential convergence for a wide class of nonlinearities independent of the 
constant L  (i.e. global). The idea of such approach for eigenvalue problems was recently 
announced in [32]. 

Let us remind of the idea of ADM which can be also interpreted as the FD-method proposed 
in [31] for the Sturm-Liouville problems and is very close to the homotopy perturbation methods. 

If we have to solve the operator equation  
 ,)(= FuNu +−  (1.1) 

 then we can imbed it into the family of equations  
 [0,1],))((=)( ∈+− tFtutNtu  (1.2) 

 and obtain obviously  
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 .=(1) uu  (1.3) 
 We look for the solution of (1.1) in the form  
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 and represent  
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Substituting (1.4) into (1.1) we have  
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 Applying to this equality successively the operator 1

1
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dt
d

j
 and then setting 0=t  we obtain 

the following recurrence formulas  
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 Here ( ))((1)(0) ,,,; j
j uuuNA K  are the Adomian polynomials with the following explicit 

representation  
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 (1.9) 

 where the sequence of indices natural iα  is not increasing, ( ) )(uN i  is the −i th (Fréchet) 
derivative of the operator N . 

The solution of (1.1) can be now represented by (provided that the convergence radius of 
series (1.4) is not less then 1) 

 

 )(

0=
=(1)= j

j
uuu ∑

∞
 (1.10) 

and the truncated sum  

 )(

0=
= j

m

j

m
uu ∑  (1.11) 

 represents an approximation to the exact solution. 
The following theorem from [24] gives some sufficient conditions for the convergence of 

(1.4) for all [0,1]∈t .  
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Theorem 1.1  Let H  be a Banach space and HF ∈ . If the operator HHuN →:)(  is 
analytic in a ball Ruu <0ΠΠ −  with the center 0u  and if for all 0≥n  there holds 

nn MnuN α!)( 0
)( ≤ΠΠ  with some 0>M , 0>α , then the conditions   

    1.  14 ≤αM , for ∞=R , 
    2.  15 ≤αM , for ∞<R .  

 provide the convergence of (1.4) for all [0,1]∈t  and, therefore, the convergence of (1.10).  
 
 

2  Application to parabolic problems 
We consider the problem  

                  
,=(0)

(0,1],)),(,(=)()(

0uu

ttutftAu
t
tu

∈+
∂

∂
                                   (2.1) 

 where )(tu  is an unknown vector valued function with values in a Banach space X , Xu ∈0  is a 
given vector, XXutf →×+ )(:),( Ρ  is a given function (nonlinear operator) and A  is a linear 
densely defined closed operator with the domain )(AD  acting in X . The abstract setting (2.1) 
covers many applied problems such as nonlinear heat conduction or diffusion in porous media, the 
flow of electrons and holes in semiconductors, nerve axon equations, chemically reacting systems, 
equations of the population genetics theory, dynamics of nuclear reactors, Navier-Stokes equations 
of the viscous flow etc. (see e.g. [23] and the references therein). This fact together with theoretical 
interest are important reasons to study efficient discrete approximations of problem (2.1). 

A simple example of a partial differential equation covered by the abstract setting (2.1) is the 
nonlinear heat equation  

 ),,(=),(),(
2

2
uxtf

x
xtu

t
xtu

∂
∂

−
∂

∂
 (2.2) 

 with the initial condition )(=)(0, 0 xuxu , where the operator A  is defined by  

 
).(allfor=

0},=(1)0,=(0):(0,1){=)(
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ADv
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vdAv

vvHvAD

∈−

∈
 (2.3) 

 
Given a discretization parameter N  we are interesting in approximations possessing an 

exponential convergence rate with respect to ∞→N  which for a given tolerance ε  provide 
algorithms of optimal or low complexity [12, 13]. Exponentially convergent algorithms were 
proposed recently for various linear problems. 

The homogeneous equation  

 ,=(0)0,=)()( ITtAT
dt

tdT
+  (2.4) 

where I  is the identity operator and )(tT  is an operator valued function defines the semi-group of 

bounded operators AtetT −=)(  generated by A  ( called also the operator exponential or the 
solution operator of the homogeneous equation (2.1)). Given the solution operator, the initial vector 

0u  and the right-hand side )(tf , the solution of the homogeneous initial value problem (2.1) can 
be represented by  

 .=)(=)(=)( 00 ueutTtutu At
h

−  (2.5) 
 Problem (2.1) is equivalent to the nonlinear Volterra integral equation  
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 ),()(=)( tututu nlh +  (2.6) 
 where  

 ,)(=)( 0utTtuh  (2.7) 

 AtetT −=)(  is the operator exponential (the semi-group ) generated by A  and the nonlinear term 
is given by  

 .))(,(=)( )(
0

dssusfetu stAt
nl

−−∫  (2.8) 

 
The equation (2.6) is of the type (1.1) with )(=),,(=)(= 00 xuuxtutuu   
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Let A  be a densely defined strongly positive (sectorial) operator in a Banach space X  with 

the domain )(AD , i.e. its spectrum )(AΣ  lies in the sector  

 }
2

<|<|),[0,:={= 0
πϕθθ ∞∈+Σ rreaz i  (2.10) 

and on its boundary ΣΓ  and outside the sector the following estimate for the resolvent holds true  

 
||1

)( 1
z

MAzI
+

≤− − ΠΠ  (2.11) 

 with some positive constant M  (compare with [17, 27, 28, 33, 41]). The angle ϕ  is called the 
spectral angle of the operator A . A practically important example of strongly positive operators in 

∞Ω <<0),(= pLX p  represents a strongly elliptic partial differential operator [8-10, 33,  38] 

where the parameters ϕ,0a  of the sector Σ  are defined by its coefficients. 
A convenient representation of the operator exponential is the one provided by the improper 

Dunford-Cauchy integral  

 dzAzIe
i

e tz

I

At 1)(
2
1= −−

Γ
− −∫π

 (2.12) 

where IΓ  is an integration path enveloping the spectrum of A . After parametrizing Γ  we get an 
improper integral of the type  

 .),(
2
1=)(

2
1= 1 ξξ

ππ
dtF

i
dzAzIe

i
e tz

I

At ∫∫
∞

∞−
−−

Γ
− −  (2.13) 

 The last integral can be discretized by a quadrature rule (desirable exponentially convergent) 
involving a short sum of resolvents. Such an algorithm inherits a two-level parallelism with respect 
to both the computation of resolvents and the treatment of different time values. 

Two efficient methods for solving linear homogeneous parabolic problems based on the 
improper Dunford-Cauchy integrals along a path enveloping the spectrum of A  were discussed in 
[10, 12, 18, 39, 40] where the boundary of a sector containing the spectrum of A  or a parabola were 
used as the integration path. The methods from [10, 18, 22] use Sinc-quadratures [1, 42, 43] and 
possesse the exponential convergence rates for 0>t  and a polynomial convergence rates for 0=t  
depending on the smoothness of the initial vector 0u  from a Hilbert space. An exponential 
convergence rate for all 0≥t  was proved in [11, 47] under assumptions that the initial function 0u  

belongs to the domain of )( σAD  for some 1>σ , where the preliminary computation of 0uAσ  is 
needed. Note that all these algorithms can not be directly applied to inhomogeneous problems due 
to the inefficiency of computation of the operator exponential at 0=t . In [19] a hyperbola was 
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used as the integration path which allows one to get the uniform exponential convergence rate with 
respect to 0≥t  without preliminary computation of 0uAσ . An exponentially convergent algorithm 
for the case of an operator family )(tA  depending on the parameter t  was proposed in [21]. This 
algorithm uses an exponentially convergent algorithm for the operator exponential generating by a 
constant operator. 

We can also use the representation  

 dzuI
z
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i

ue zt
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At
0

1
0

1)(
2
1= ⎥⎦

⎤
⎢⎣
⎡ −− −−

Γ
− ∫π

 (2.14) 

 instead of (2.13) (see [19]), where the integration hyperbola is given by  
 )},(:sinhcosh=)({= ∞−∞∈−Γ ξξξξ III ibaz  (2.15) 

 (note that the hyperbola  
 }tan=),,(:sinhcosh=)({= 00000 ϕξξξξ abibaz ∞−∞∈−Γ  (2.16) 

 is called the spectral hyperbola, which pathes through the vertex ,0)( 0a  of the spectral angle and 
possesses asymptotes which are parallel to the rays of the spectral angle Σ ). 

Parametrizing integral (2.14) by (2.15) we get  
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We approximate integral (2.17) by the following Sinc-quadrature  

 ))(,(
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khztF
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htu
M

Mk
M ∑

−π
 (2.19) 

 with an appropriate h . The following result from [19] characterizes the error of this approximation.  
 
Theorem 2.1  Let A be a densely defined strongly positive operator and 

(0,1)),(0 ∈∈ ααADu , then Sinc-quadrature (2.19) represents an approximate solution of the 

homogeneous initial value problem, i.e. 0=)( uetu At− , and possesses a uniform with respect to 

0≥t  exponential convergence rate with an estimate which is of the order )( MceO −  uniformly in 

0≥t  provided that )(1/= MOh  and of the order { }( )MctMIacMcdM eeO ln12/1)ln1(/ ,max απ −−−  
for each fixed 0≥t  provided that MMch /ln= 1 .  

 
In accordance with (1.8), (1.9) for the computation of Adomian's polynomials one should 

compute first  

 ττττ dufeutNuNA tA
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 and then one after another  
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Using representation (2.14) of the operator exponential we get, e.g. for ),( 0utN   

 

.sinhcosh=)(

,)())(,(
)(

1))((
2
1=

))(,(]1)[(
2
1=),(

0
))((

0
1

0
1)(

00

ξξξ

ξξ
ξ

ξ
π

π
ξ

II

'stzt

I

stz

I

t

ibaz

ddszsusfeI
z

AIz
i

dzdssusfI
z

AzIe
i

utN

−

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−

−−−
Γ

−−−
Γ

∫∫

∫∫

 (2.22) 

 Replacing here the first integral by quadrature (2.19) we get  
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 with  

 .,...,=,))(,(=)( 0
))((

0
MMkdssusfetf stkhzt

k −−−∫  (2.24) 

 In order to construct an exponentially convergent quadrature for these integrals we change the 
variables by  

 ξtanh
2

=
2

tst
−  (2.25) 

 and get instead of (2.24)  

 ,),(=)( ξξ dtFtf kk ∫
∞

∞−
 (2.26) 

 where  

)/2)).tanh(1()/2,tanh(1()/2]tanh(1)([exp
cosh2

=),( 02 ξξξ
ξ

ξ −−+− tutftkhzttFk     (2.27) 

 
The following assertion was proven in [19]. 
 
Lemma 2.1.  Let ))(,( 0 tutf  for ][0,∞∈t  can be analytically extended into the sector 

}|<|],[0,:{= 1
1 ϕθρρ θ ∞∈Σ i

f e  and for all complex fw Σ∈  we have  

 ||
0 ))(,( wcewuwf ℜ−≤ δΠΠ  (2.28) 

 with ]2(0, 0a∈δ  , then the integrand ),( ξtFk  can be analytically extended into the strip 

/2<<0, 11
ϕdDd  and belongs to the Hardy class )(

1
1

dDH  [43] with respect to ξ , where ϕ,0a  

are the spectral characterizations (2.10) of A.  
 
Let the assumptions of Lemma 2.1 hold, then we can use the following quadrature rule to 

compute the integrals (2.26) (see [42], p.144)  

 )),(()(=)()( ,
=

, tfthtftf ppk

M

Mp
Mkk ωμ∑

−
≈  (2.29) 

 where  

 

.sinhcosh=)(

),(1/=)],(tanh[1
2

=)(

),(cosh)]}/(tanh)[1(
2

{exp
2

=)( 2
,

ξξξ

ω

μ

II

p

pk

ibaz

MOhphtt

phphkhzttt

−

−

+−

 (2.30) 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.4(21) 
 

    37

 Substituting (2.29) into (2.23) we get the following algorithm to compute an approach 
);( 00, uNA M  to );( 00 uNA   
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 The next theorem characterizes the error of this algorithm.  
 
Theorem 2.2  Let A be a densely defined strongly positive operator with the spectral 

characterization ϕ,0a  and 0>),())(,( 0 ααADtutf ∈  for ][0,∞∈t  can be analytically 

extended into the sector }|<|],[0,:{= 1
1 ϕθρρ θ ∞∈Σ i

f e  where the estimate  

 f
w wecwuwfA Σ∈≤ ℜ− ,))(,( ||

0
αδ

α
α ΠΠ  (2.32) 

 with ]2(0, 0a∈αδ  holds, then algorithm (2.31) converges with the error estimate  

 Mc
MM cetAtuNAtE 1

0,00 )())(;(=)( −≤− ΠΠΠΠ  (2.33) 
 uniformly in t  with positive constants 1,cc  depending on 0,, aϕα  and independent of M .  

 
In this way one can compute all Adomian's polynomials needed in (1.11) with an exponential 

accuracy. 
Let the nonlinear operator ),( usf  for each s  is analytic as function of u  in some disc 

ruu <=0 ρΠΠ −  with the boundary Γ , then [7, p. 157] it holds  

 ,!)(!),(~|),(| 0
)( nnn

nu
nMnsMusf ρρρρ ≤≤  (2.34) 

 provided that )(),(~ ρρ MsM ≤ , where ΠΠ ),(max=),(~ usfsM
u Γ∈

ρ . Thus, for )(ρM  small enough 

we are in the situation of Theorem 1.1, so that the method (1.11) converges exponentially. 
An alternative exponentially convergent method based on the interpolation of the nonlinearity 

on a Gauss-Lobatto grid was proposed in [20]. 

One can obtain an operator equation of type (1.1) applying to PDE (2.1) the operator ∫− t
tL

0
1 =  

analogously to [6, 35] but there are not any theoretical justification of convergence of Adomian's 
method in this case. 

 
Remark 1 In the recent paper [29] the following modification of ADM was proposed. One 

looks the summands of (1.10) in accordance with the recurrence formulas  
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 where ( ))((1)(0) ,,, j
j uuuA K  are the modified Adomian polynomials given by  

 ( ) ( ) ( ).=,,, 1)((0))((0))((1)(0) −++−++ jjj
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 In the paper [29] for the problem  
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 with the given pc , 10,= −kp , with |)(max=
][0,

tM
Tt
βΠ

∈
 and with the right-hand side )(yf  

satisfying the Lipschitz condition with a constant L  it was shown that the modified Adomian 
methods converges as a geometrical progression with the quotient α  and with the error estimate  

 ∞−
≤− ∑ ΠΠ1

0= 1
)()( ytyty

m

j

m

j α
α

 (2.38) 

 provided that  

 1.<
!

=
k

LMT k
α  (2.39) 

 Numerical experiments have shown that the modified ADM converges faster then the ordinary one. 
But it was ignored in [29] that the modified ADM in fact coincides with the usual fixed point 
iteration. Actually, the relations (2.35), (2.36) imply  

 
.=

0,1,=,)(=
0

1

Fu
mFuNu mm K+−+

 (2.40) 

 Now the conclusions of [29] about the advantages of the modified ADM become understandable 
and are well known long ago (see e.g. [36]).  

 
The natural question arises in the case when the assumptions of Theorem 1 are not fulfilled: 

what can we do in order to arrive the convergence? One of the aims of this paper is to answer this 
question and to construct an iteration method which converges whereas the fixed point iteration 
(2.40) can be divergent. An other aim is to show that the odd and the even iterations provide the 
two-sided approximations, therefore they can be used e.g. for aposteriori error estimates. We 
accompany our theoretical considerations by the numerical examples which confirm our 
conclusions. 

 
 
3  Two-sided iteration method 

Let { }raxXxaS r ≤−∈ ΠΠ:=)(  be a closed ball in a Banach space X . Then the following 
assertion about the fixed point iteration for equation (1.1) holds true (see e.g. [26]). 

 
Theorem 3.1  Let the operator N  satisfies the conditions   
 1°   )(, aSvu r∈∀  it holds  

 (0;1),,)()( ∈−≤− qvuqvNuN ΠΠ  (3.1) 

 2°    for )(aSF r∈  it holds  
 ,)(1)( rqFN −≤  (3.2) 

  
 Then the equation  

 0=(0),)(= NFuNu +−  (3.3) 

 possesses a unique solution )(aSu r∈∑ , which can be obtained by the fixed point iteration  
 K0,1,=,)(=1 nFuNu nn +−+  (3.4) 

 with the error estimate  

 .
1 q

rquu
n

n −
≤− ΠΠ∑  (3.5) 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.4(21) 
 

    39

 Let us clarify the conditions on the operator N  under which the iterations (3.4) provide the two-
sided approximations to ∑u . 

Let XK ⊂  be a cone with a partial order ° , i.e. we write uv°  when Kvu ∈− . Further we 
make the following assumptions.   

3°    KF ∈ .  
4°   The operator N  is positive in the sense that  

 ( ) KKN ⊂  (3.6) 
  
 5°  There exists the Frechét derivative )(vN'  with the property  

 KFSvuuvNqvN r
'' ∩∈∀≤ )(,)(0,)( °  (3.7) 

         6°    
     

 FFNFuNu +−+− )(=)(=0 01°  (3.8) 
  

 
Then the following assertion holds true. 

 
Theorem 3.2  Let the conditions o2 -- o6  hold. Then the fixed point iteration (3.4) converges 

to the unique solution ∑u  of the equation (3.3) and provide the two-sided approximation, i.e.  

 
∑

∑

uuuu
uuuu

k

k

°°°°°
°°°°°
KK

KK

1231

022

+
 (3.9) 

  
Proof. See [30].    
             
Example 3.1 Let us consider the Dirichlet boundary value problem  

 
0,=(1)=(0)

1),(0;),(=)()( 3

uu
xxfxMuxu ∈−−′′

 (3.10) 

with 32 )sin(sin=)( xMxxf πππ +  and a given constant 0≥M .  
The exact solution of (3.10) is  

 .sin=)( xxu π  (3.11) 
Problem (3.10) is equivalent to the following nonlinear Fredholm integral equation  

 

⎩
⎨
⎧

−
≤−

+−∫

.<),(1
),(1

=),(

,)]()()[,(=)( 3
1

0

xx
xx

xG

dfMuxGxu

ξξ
ξξ

ξ

ξξξξ
 (3.12) 

This equation is of the form (3.3) with  

 .)(),(=,)(),(=)(
1

0

3
1

0
ξξξξξξ dfxGFduxGMuN ∫∫  

For 1= M , 1.2= r ,  0.54= q  all assumption of Theorem 3.2 are fulfilled where  
 

 1]}[0;0,)(:1][0;)({=1],[0;= ∈≥∈ xxvCxvKCX  
 
 ,)(1<0.101=)(,<1.087= rqFFNrF −− ∞∞ KK ΠΠΠΠ  
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 , = 
8
1.44*3=

8
3)()(),(3=)(0

3
2

1

0
qrrrduvxGuvN ≤≤ ∫ ξξξξ  

 0.)()(),(=)(=
1

0
01 ≥+−+− ∫ xfdfxGFuNu ξξξ  

 The numerical results (obtained with Maple) are presented in Table 1 and on Fig. 1, 2. The table 
exhibits the advantages of the fixed point iteration to the usual Adomian's method. The figures 
demonstrate that the even and the odd Adomian's iterations include the exact solution. 

 
 

  
 

Figure  1: The errors of the usual (left) and the modified (right) Adomian's iterations number 
4, 6 (dash) and 5, 7 (continuous) for 0.5=M .  

 
 
 
  

 
 

Figure  2: The errors of the modified Adomian's iterations (left) number 4, 6 (dash) and 5, 7 
(continuous) as well as (right) 12, 14 (dash) and 13,15 (continuous) for 1= M .  
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n  Aε  mAε  

0 .4477593957331e-1 .394026825275758e-1 

1 .6148944791993e-2 .473705632178769e-2 

2 .114506764843e-2 .544572291857201e-3 

3 .246398359542e-3 .629246333480784e-4 

4 .5768833894e-4 .726644599750120e-5 

5 .14273551991e-4 .839176371831571e-6 

6 .367192582e-5 .969127578152334e-7 

7 .972342751e-6 .111920351333820e-7 

8 .26329372e-6 .129251941616996e-8 

9 .72571985e-7 .149267628681118e-9 

10 .2029413e-7 .172381275559081e-10 

 
Table  1: Error of the usual ( Aε ) and the modified ( mAε ) Adomian's method for 0.5= M  

   
 

4  An iteration method for nonlinear problems with the controllable exponential 
convergence 

In this section we give the description of an algorithm with the controllable exponential 
convergence. In order to avoid technical difficulties we justify this algorithm in the case of the 
following nonlinear model problem  

 
0=(1)=(0)

(0,1),),(=)())(()(
uu

xxfxuxuNxu '' ∈−−  (4.1) 

 with a nonlinear function 11:)( ΡΡ →uN  satisfying the conditions  

 .0,)(0,)]([0,)( 1Ρ∈∀≥≥≥ uuNuuNuN '''  (4.2) 

 Using the Green function for the differential operator defined by  

 
)(=

(1)},=(0):(0,1):{=)(

2

2

2
2

ΑΑ

Α

Du
dx

udu

uuWuuD

∈∀−

∈
 (4.3) 

 one can reduce problem (4.1) to the operator equation of kind (1.1). In the case when the fixed 
point iteration (2.40) is divergent we propose the following method based on the idea of the FD-
method [32] which is closed to a homotopy perturbation method. 

We introduce a grid  
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 { }1=<<<<=0:1,=1],[0,=ˆ 121 KKi xxxxKix −∈ Kω  

partitioning the interval 1][0,  into subintervals ],[ 1 ii xx − , Ki 1,=  of the length 

i
i

iii hhxxh max|=|,= 1−−  and imbed problem (4.1) into the parametric family of problems  

 

[ ]{ }

1].[0,0,=)(1,=)(0,

,11,=0,=)(0,=)]([

1),(0,),(=

),()),(()),(()),((),(
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112
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Ki
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x

txu

ixxixx
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 (4.4) 

 It is clear that for 1=t  the solution of problem (4.4) coincides with the solution of problem (4.1), 
i.e.  

 ),(=,1)( xuxu  

For 0=t  we obtain the following base problem  

 

( )
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=
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⎡
∈
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−
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 (4.5) 

 where 0)(0)(=)]([ = −−+ ξξξ vvxv x  denotes the jump of the function )(xv  at the point ξ=x . 
The last problem as well as problem (4.4) are representatives of the class of boundary value 

problems with piecewise constant argument which are in the focus of attention of many researchers 
for some time (see e.g. [46] and the literature therein). 

We look for the solution of problem (4.4) in the form  

 ).(=),( )(

0=
xuttxu jj

j
∑
∞

 (4.6) 

Substituting (4.6) into (4.4) and comparing the coefficients in front of powers of t  we obtain the 
following recurrence sequence of problems for )()( xu j  (with piecewise constant argument):  
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 (4.7) 

 where  
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 (4.8) 

 ),,,;( 10 jj vvvNA K  are Adomian's polynomials for the nonlinear function )(vN  given by the 
explicit formula (1.9). The solution of problem (4.1) is then given by  

 )(=)( )(

0=
xuxu j

j
∑
∞

 (4.9) 

 (provided that the convergence radius of (4.6) is not less then 1) and the approximate solution by  

 ),(=)()( )(

0=
xuxuxu j

m

j

m
∑≈  (4.10) 

 where the exponential convergence will be controlled by the parameter || h . 
Let us consider the base problem (4.6). This problem is equivalent to the system of nonlinear 

equations  

 ( ) ,11,=,)()(,,=)(
1

0

(0) −∫ KidfuNxGxu ii ξξξ
r

 (4.11) 

 where  
 ( ) ( )( ))(,,)(=)( 1

(0)
1

(0)
−KxuNxuNuN K

r
 (4.12) 

 and ( )NxG i
r

,,ξ  is the Green function of problem (4.5) provided that the vector 

)}(),...,(),({= 1
(0)

2
(0)

1
(0)

−Kxuxuxuur  is known. 
We introduce the operator  
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i
i dfuNxGuB ξξξ
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 (4.13) 

 which is continuous on a closed ball  

 
⎭
⎬
⎫

⎩
⎨
⎧ ≤∈

−≤≤∞
− rxuuuS i

KiN
K |)(|max=:= (0)

11ˆ,0,
1

ω
rr

Ρ  

 with r  defined by [0,1],0,∞ΠΠf  and translate the ball S  into itself. Therefore, by Brower's fixed 

point theorem (see e.g. [25] ) there exists a fixed point of this operator in S , i.e. the system of 
equations (4.11) is solvable. 

 
Remark 2 The fixed point iteration for equation (4.11) is equivalent to the solution of 

sequence of the following problems  
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( )

,0,1,=  
0,=(1)=(0)  

1,=),,(  

),(=)()()(

1(0),1(0),
1

1(0),
1

(0),
2

1(0),2

Kn
uu

Kixxx

xfxuxuN
dx

xud

nn
ii

n
i

n
n

++
−

+
−

+

∈

−−

 (4.14) 

 where ( ) Kiixuu 1,=
0(0),0(0), )(=  is an arbitrary vector from the ball S . For this problem there exists 

the following exact difference scheme   
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(4.18) 
 where 1,2=),( αα xW i  are solutions of the following two Cauchy problems  
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 In order to compute the coefficients of the exact difference scheme for one iteration step one 
should solve 1)2( −K  Cauchy problems by an IVP-solver, each on a small interval with the length 
of the corresponding step-size. Then the difference scheme with a tridiagonal matrix can be solved 
by the special elimination method (method of chasing, method ``progonki'') which in our case is 
stable [37].  

 
 

Remark 3 An other algorithmic implementation of the fixed point iteration for (4.11) can be 
done by the multiple shooting method [44] in the following way. Let 

),,;(=)( (1)
111

(0)(0)
−−− iii ssxxuxu  and ),,;(=)( (1)

111
(0)(0)

−−− iii ssxxu
dx
dxu

dx
d

 be the solution and 

its derivative of the differential equation (4.5) on the subinterval ),( 1 ii xx −  subject to the initial 

values 1−is  and (1)
1−is  (and obtained by some IVP-solver), i.e. we have  
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 Analogously to the multiple shooting method this system of equations can be written down in the 
form )(= sFs  where T

KKK sssssss ),,,...,,,(= (1)(1)
11

(1)
01

(1)
0 −−  and )(sF  for an arbitrary s  can be 

calculated using an IVP-solver. From the discussion above it follows that the fixed point iteration 

                      0,1,...=),(=
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msFs
mm+

                                                                           (4.21) 

 converges provided that 
0
s  was chosen within the corresponding ball.  

 
Let us rewrite the equations (4.7) in the form  
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 with  
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Given 11,...,=),((0) −Kixu i , let ))(,,( ⋅qxG ξ  be the Green function corresponding to the 
operator on the left side of (4.22) with the Dirichlet boundary conditions. Then problem (4.22) can 
be performed to 
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      (4.24) 

 
In order to estimate )(1)( xu j+  we need to estimate the Green function ( ))(,, ⋅qxG ξ , which 

can be explicitly represented by the formula (see e.g. [37])  
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 Here )(xvα , 1,2=α  are the so called stencil functions which satisfy the equations  
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 as well as the continuity conditions  

 [ ] [ ] .11,=1,2=0,=)(0,=)( == −′ Kixvxv
ixxixx ααα  (4.27) 

 These functions possess the following properties:   
 1°   )(1 xv  is a non decreasing, non negative function on 1][0, , 
 
  2°   )(2 xv  is non increasing, non negative function on [0,1] ,  
  3°   (0)=(1) 21 vv ,  
  4°   (0)=(1))()()()( 212121 vvxvxvxvxv ≡′−′ ,  

These properties as well as the maximum principal imply the estimates  
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Using (4.28) as well as the assumptions (4.2) we obtain from (4.24)  
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For || h  small enough this inequality can be transformed to  
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Further we will need the following two auxiliary statements.  

Lemma 4.1  Let )(uN  be represented by the power series i
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Proof. Since the Adomian polynomials are linear operators with respect to the first argument 

(see (1.9)), i.e.  
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it is sufficient to consider the case iuuN 2=)(  only. For this case we have  
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The lemma is proven.               
 

Lemma 4.2  Let )(uN  be represented by the power series j
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Proof. Proof is obvious.               
Returning to (4.30) and taking into account (4.2), (4.3) we obtain  
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Introducing in (4.34) the new variables by  
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 then changing jv  to jV  and the inequality sign to the equality one we arrive at the following 
system of equations  
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 The solution of this system is a majorant for the solution of  (4.34), i.e. jj Vv ≤ , K0,1,=j . 
Using the method of generating functions we obtain from (4.37)  
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 From this equation we can express z  as a function of f   
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 and then find mf , for which z  arrives its maximum Rzm = . The condition  

 [ ] 1<)(||
2

00 VNVh '    (4.40) 
 guarantees the existence of mf  because under assumption (4.40) we have  

 0=)(lim0,=)( 0 fzVz
f ∞→

 

0.>)(||1=1=)(~
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(0)
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2
∞∞ ′−′−′ ΠΠΠΠ uNuh

c
VN

c
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df
d

Vf  

The value mz  defines the convergence radius of series (4.38), i.e.  
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 ,
1)(
1= 1 ε++j

CVR j
j  (4.41) 

 with an arbitrarily small positive ε . Returning to the old notations we have  
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≤ +∞ εΠΠ  (4.42) 

 which leads to the following sufficient convergence condition for the series j
j

j
Vzzf ∑

∞

0=
=)( :  

 1.≤
R
h

 (4.43) 

 Thus, we have proved the following assertion. 
 

Theorem 4.1 Under the assumptions of Lemma4.1  the method (4.10) for problem (4.38) 
converges super-exponentially (converges) with the error estimate  

 )
1)(
1(,

/1
)/(

)(1 1
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∞

+

+

+∞
+−+

≤− ∑
j

C
Rh

Rh
m
Cuu

mj

mm
ΠΠ  (4.44) 

 provided that  
 ).=(,< RhRh  (4.45) 

  
 
 

5  Examples 
  
Example 5.1 Let us consider the Dirichlet boundary value problem  

 
0,=(1)=(0)

1),(0;),(=)()( 3

uu
xxfxMuxu ∈−−′′

 (5.1) 

 
with 32 )sin(sin=)( xMxxf πππ +  and a given constant 0≥M . The exact solution of (5.1) is  

 .sin=)( xxu π      (5.2) 
 

Problem (5.1) is equivalent to the following nonlinear Fredholm integral equation  
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 (5.3) 

 This equation is of the form (1.1) with  

 .)(),(=,)(),(=)(
1

0

3
1

0
ξξξξξξ dfxGFduxGMuN ∫∫  

For 20=M  the usual fixed point iteration as well as the usual ADM are divergent. Due to 
symmetry we apply the FD-method with two steps to the modified problem (5.1):  

 
0.=(0.5)0,=(0)

0.5),(0,),(=)()( 3

uu
xxfxMuxu
′
∈−−′′

                 (5.4) 

 Problem (4.4) for this example has the form  



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2009|No.4(21) 
 

    50

0=),(0,=)],([0,=)(1/2,0,=)(0,

,(0.25,0.5)

),(=),(),
2
1(),

4
1(

2
1),()],

2
1(),

4
1([

2
1),(

0.25),(0,

),(=),(),
4
1(),(),

4
1(),(

0.25=
0.25=

2
22

2

2

222
2

2

x
x x

txutxu
x

tutu

x

xftxutututxuttutuM
x

txu

x

xftxututxuttuM
x

txu

⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

∈

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−++−

∂
∂

∈

−
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −+−

∂
∂

    

(5.5) 
The numerical results obtained with Maple are presented in Table 2 and Table 3, where 

)()(=)( xuxux
m

m −Δ . 
   

Table  2: Two subintervals ( 2=K )  
  

x  0.25  0.5  

)(0 xΔ  .0109383495 .051202866 

)(1 xΔ  .0020822061 .0068667797

  
   

Table  3: One subinterval ( 1=K ) 
  

x  0.25  0.5  

)(0 xΔ  .02842879773388 .1384486690937460 

)(1 xΔ  .01785603134623 .0287451291955546 

)(2 xΔ  .00133217977494 .0010162058541 

)(3 xΔ  .00455624274781 .0034293443153 

)(4 xΔ  .00003810934901 .00201582469655 

  
  

Example 5.2  This example goes back to Troesch (see e.g. [45]) and represents a well-known 
test problem for numerical software:  

 1.=(1)0,=(0)0,>(0,1),),(sinh= uuxuu '' λλλ ∈  (5.6) 
 Due to the hyperbolic type of the nonlinearity here, moderate increase of λ  leads to tremendous 
variations in the derivative of nonlinear part and therefore of the solution. The exact solution of 
Troesch's test problem can be represented in the form (see, for example [44])  

 ,
4

1=,
),(c2
),(sa2=),(

2
2 sk

kxn
kxnsrcsinhsxu −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

λ
λ

λ
 (5.7) 

 where ),(s kxn λ , ),(c kxn λ  are the elliptic Jacobi functions and the parameter s  satisfies the 
equation  
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 1.=
),(c2
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⎝

⎛
⋅
⋅

kn
knsrcsinh

λ
λ

λ
 

For example, for the parameter value 10=λ  it holds 3104630.35833778= −⋅s . To our best 
knowledge a numerical method working for the highest value of 62=λ  was presented in [14]. 
Furthermore it turns out that modern numerical software (Maple, Mathematica) have difficulties 
even with numerical solution of the algebraic problem above with respect to s  for 62>λ  . 

Our goal here is to illustrate the presented approach rather then to improve the result 
62=λ . However this approach in theory allows one to threat problem (5.6) with any λ  using 

appropriate number of subdivisions K . 
All computation presented below have been performed using QD libary with quad-double 

precision (appx. 60 decimal digits of accuracy) and GSL templates for quadrature formulas and 
matrix calculations. To eliminate the influence of quadrature errors we was using Runge type 
estimate with 2010= −Eps . A final stoping criterion in (4.10) was 10

1
1)( 10< −+ ΠΠ ju . 

 
Table  4: Troesch test with 4=K  and 256=K  

  

4=1,= Kλ  256=10,= Kλ  

m  
1ΠΠ

m
uu −   

1ΠΠ
m
uu −  

0 .111608803790162471570291286e-2  .391955453562892425976436496e-1 

1 .624289421129990539732878093e-4  .940937627128066975285517882e-3 

2 .613274752600453001120360543e-4  .591438908394518928454089104e-4 

3 .491115395175933661739635686e-7  .158072882785682348425691183e-5 

4 .134193613660290576144888419e-8  .143796397730961836994428146e-5 

5 .826036431341936136602905761e-11  .440376842230098521926768794e-7 

7   .531844470733545661060519677e-9 

8   .710761479514132417214021573e-11 
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