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Abstract:

We propose a new analytical-numerical method for solving nonlinear operator
and differential operator equations. The method possesses the exponential convergence
rate and can provide two-sided approximations. The user can control the exponential
convergence through an embedded control mechanism, i.e. one can arrive the
exponential convergence independent of the value of the Lipschitz constant. The
numerical examples confirm the theoretical results.

1 Introduction

There are various approaches to construct exponentially convergent approximations to
solutions of nonlinear differential equations. To the classical ones belong e.g. the variational
methods [26]. The spectral methods ( see [5] and the literature therein) are based on the spectral
expansions or a special interpolation. One can obtain exponentially convergent methods for a wide
class of differential equations with operator coefficients combining an appropriate quadrature
formula for the Dunford-Cauchy representation of the operator exponential with a specia
interpolation of the nonlinearity (see [20] and the literature cited therein). One more alternative
which seems to be very promising is the use of the homotopy or perturbation idea (see e.g. [15, 16])
which is closely related to the Adomian decomposition method (ADM) [2-4]. One of the important
elements of this approach are Adomian's polynomials [2-4, 34, 48]. There are many publicationsin
the last decade which are devoted to the application of Adomian's decomposition method (ADM)
for the both linear and nonlinear operator and differential operator equations [16, 24, 29-31]. The
class of problem for which these approximations provide the exponential convergence rate is
restricted by the character of the nonlinearity: there are nonlinearities which do not fulfill the known
convergence conditions and the approximation method do not contain some convergence control,
i.e. the convergence is not global. The crucia role for the known convergence conditions plays the

constant L =n!Ma" bounding the n—th Fréchet derivative of the nonlinearity (the generalized
Lipschitz constant) and, roughly speaking, the known convergence results assert convergence
provided that this constant is small enough. In the present paper we propose a control mechanism
which guarantees the exponential convergence for a wide class of nonlinearities independent of the
constant L (i.e. global). The idea of such approach for eigenvalue problems was recently
announced in [32].

Let us remind of the idea of ADM which can be aso interpreted as the FD-method proposed
in [31] for the Sturm-Liouville problems and is very close to the homotopy perturbation methods.

If we have to solve the operator equation

u=-N(u)+F, 1.1
then we can imbed it into the family of equations
u) ==tN@u@)+F, te[0]] (1.2

and obtain obviously
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u(l) =u. (1.3
We look for the solution of (1.1) in the form
u(t) = thu(j), (1.4)
j=0
and represent
NS tluDy = A, (15)
j=0 j=0
where
dIN(Y t*u®))
Aj== k=0 . (1.6)
J! ot
t=0
Substituting (1.4) into (1.1) we have
thu(j) =—tN thu(j) +F. 2.7
j=0 j=0
j+l

Applying to this equality successively the operator and then setting t = 0 we obtain

(j+D!dtI
the following recurrence formulas

ut+D :—Aj(N;u(o),u(l),...,u(j)) j=0,1,...
AO(N;u(O)): N(u(o)), u© =F.
Here Aj(N;u(O),u(l),...,u(j)) are the Adomian polynomials with the following explicit

(1.8)

representation
Aj(N;u(o),u(l),...,u(j)):
-a . T . .
> N(O‘l)(u(o))(u(l))a L ) A | (L9)
e+ (m-a2)t  (ajq-ajp)t  (a))

where the sequence of indices natural ¢; is not increasing, N(i)(u) is the i—th (Fréchet)

derivative of the operator N .
The solution of (1.1) can be now represented by (provided that the convergence radius of
series (1.4) is not lessthen 1)

u=u(l)= Zu(j) (1.10)
j=0
and the truncated sum
m m
U= ZU(” (1.11)
i=0

represents an approximation to the exact solution.
The following theorem from [24] gives some sufficient conditions for the convergence of
(1.4) for all t €[0,1].
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Theorem 1.1 Let H be a Banach space and F € H . If the operator N(u):H — H is
analytic in a ball IW—-ugllk R with the center ug and if for all n>0 there holds

N ™ (o) n'Ma" with some M >0, & > 0, then the conditions
1. AMa<1,for R=,
2. SMa <1, for R< .
provide the convergence of (1.4) for all t €[0,1] and, therefore, the convergence of (1.10).

2 Application to parabolic problems
We consider the problem

ou(t) _
~ Au(t) = f(t,u(t)), te(0/1], (2.1)
u(0) = Ug,

where u(t) is an unknown vector valued function with values in a Banach space X , Uug e X isa
given vector, f(t,u): (P, xX)— X isagiven function (nonlinear operator) and A is a linear
densely defined closed operator with the domain D(A) acting in X . The abstract setting (2.1)

covers many applied problems such as nonlinear heat conduction or diffusion in porous media, the
flow of electrons and holes in semiconductors, nerve axon equations, chemically reacting systems,
equations of the population genetics theory, dynamics of nuclear reactors, Navier-Stokes equations
of the viscous flow etc. (see e.g. [23] and the references therein). This fact together with theoretical
interest are important reasons to study efficient discrete approximations of problem (2.1).

A simple example of a partial differential equation covered by the abstract setting (2.1) is the
nonlinear heat equation

au(t,x) azu(t,x) _
p 2 f(t,x,u) (2.2

with the initial condition u(0, x) = ug(X) , where the operator A is defined by

D(A) ={v e H?(0,1):v(0) = 0,v(1) = 0},

d?v (2.3)
- for all ve D(A).

Av =
dx

Given a discretization parameter N we are interesting in approximations possessing an
exponential convergence rate with respect to N — o which for a given tolerance & provide
algorithms of optimal or low complexity [12, 13]. Exponentially convergent algorithms were
proposed recently for various linear problems.

The homogeneous equation

—dzt(t) FAT@M) =0, T(O)=1, (2.4

where | istheidentity operator and T (t) is an operator valued function defines the semi-group of

bounded operators T (t) = e M generated by A ( caled aso the operator exponential or the
solution operator of the homogeneous equation (2.1)). Given the solution operator, the initial vector
U and the right-hand side f (t), the solution of the homogeneous initial value problem (2.1) can

be represented by
u(t) = up(t) =T (t)ug = e *u,. (2.5)
Problem (2.1) is equivalent to the nonlinear Volterraintegral equation
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u(t) = up (t) +upy (t), (2.6)
where
up (t) =T (Yuo, 2.7)
T() = e M isthe operator exponentia (the semi-group ) generated by A and the nonlinear term
IS given by

Uy (1) = [~ £ (s,u(s))ds. 2.8)

The equation (2.6) is of thetype (1.1) with u = u(t) = u(t,x), Uy =Uy(X)

N (t,u) = N(u) = uy = [ 4 £ (s,u(s))ds,

(2.9)
F =up = F(t,x) =T (t)up.

Let A be adensely defined strongly positive (sectorial) operator in a Banach space X with
the domain D(A), i.e. its spectrum X(A) liesin the sector

Z:{Z:a0+rei'9:I’e[O,oo),|¢9|<(p<%} (2.10)
and onitsboundary I's and outside the sector the following estimate for the resolvent holds true
Izl - A TK M (2.12)
1+|z]|

with some positive constant M (compare with [17, 27, 28, 33, 41]). The angle ¢ is called the
spectral angle of the operator A. A practically important example of strongly positive operators in
X = Lp(Q), 0< p < represents a strongly dliptic partial differential operator [8-10, 33, 38]

where the parameters ag, ¢ of the sector X are defined by its coefficients.

A convenient representation of the operator exponentia is the one provided by the improper
Dunford-Cauchy integral

—At 1 —tz -1
e =— | e “(z2 -A) dz 2.12
Sl e @ -A (212)

where I'| is an integration path enveloping the spectrum of A. After parametrizing I" we get an
improper integral of the type

a1 a1y = Lo
et=le (zI — A)~tdz o j_wF(t,g)dg. (2.13)

The last integral can be discretized by a quadrature rule (desirable exponentialy convergent)
involving a short sum of resolvents. Such an algorithm inherits atwo-level parallelism with respect
to both the computation of resolvents and the treatment of different time values.

Two efficient methods for solving linear homogeneous parabolic problems based on the
improper Dunford-Cauchy integrals along a path enveloping the spectrum of A were discussed in
[10, 12, 18, 39, 40] where the boundary of a sector containing the spectrum of A or a parabolawere
used as the integration path. The methods from [10, 18, 22] use Sinc-quadratures [1, 42, 43] and
possesse the exponential convergence rates for t > 0 and a polynomial convergence ratesfor t =0
depending on the smoothness of the initial vector Uy from a Hilbert space. An exponential

convergence rate for all t >0 was proved in [11, 47] under assumptions that the initial function ug

belongs to the domain of D(A?) for some o > 1, where the preliminary computation of AUy is

needed. Note that all these algorithms can not be directly applied to inhomogeneous problems due
to the inefficiency of computation of the operator exponential at t = 0. In [19] a hyperbola was
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used as the integration path which allows one to get the uniform exponential convergence rate with
respect to t > 0 without preliminary computation of A%ug. An exponentially convergent algorithm

for the case of an operator family A(t) depending on the parameter t was proposed in [21]. This

algorithm uses an exponentially convergent algorithm for the operator exponential generating by a
constant operator.
We can also use the representation

e Alyg = % jrl e—zt[(zl ~-A) —% | }uodz (2.14)
instead of (2.13) (see[19]), where the integration hyperbolais given by
I ={z(&) =a, cosh& —ib, sinh &2 & e (—o0,0)} (2.15)
(note that the hyperbola
Iy ={z(&) =agcoshé —ibgsinh & 1 & e (—o0,0), by = ag tan ¢} (2.16)

is called the spectral hyperbola, which pathes through the vertex (ag,0) of the spectral angle and

possesses asymptotes which are parallel to the rays of the spectral angle ).
Parametrizing integral (2.14) by (2.15) we get

1 o
u(t) = Z—ﬂij_ooF(t,g)dg (2.17)
with
F(t,$) = Fa(t,$)uo,
Fa(t,$) = o 2(t (a; sinh& —ib, cosh.f){(z(ezﬂ _ A)_l_T];:)I} (2.18)

We approximate integral (2.17) by the following Sinc-quadrature

h M
uv (1) == Y F(t.z(kh)) (219)
27 2y
with an appropriate h. The following result from [19] characterizes the error of this approximation.

Theorem 2.1 Let A be a densely defined strongly positive operator and
Ug € D(A%), @ € (0,1), then Sinc-quadrature (2.19) represents an approximate solution of the

homogeneous initial value problem, i.e. u(t) = e_Atuo, and possesses a uniform with respect to

t > 0 exponential convergence rate with an estimate which is of the order O(e"cm) uniformly in

t >0 provided that h=O(1/~/M) and of the order O(max{e_”dM/(cllnM), g 12 tM/Z-erainM })
for each fixed t > O provided that h = ¢;InM/M .

In accordance with (1.8), (1.9) for the computation of Adomian's polynomials one should
compute first

t
Po(N;ug) = N(t,ug) = [e A £ (rup(r))d (2.20)
0
and then one after another
t a
N“L(t,ug) = [e A 01 (. uo(@)) 4, (2.21)
0 5Ua1
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Using representation (2.14) of the operator exponential we get, e.g. for N(t,up)

N (t,up) = jo— e—z(t N(zl - A )‘1—%I]f(s,u0(s))dzds

11 ~2(E)(t-s -
=gfrl[(2(§)l—A) 1—@@]} @9 £ (5,up(s))dsz (£)dE,  (2.22)

z(¢) =a, coshé —iby sinhé.
Replacing here the first integral by quadrature (2.19) we get

M 1
Up (1) = Ugp () = 2L7zik :Z_:Mz (kh){(z(kh)l AL —ﬁ | } £ (t) (2.23)
with
fi(®) = [N £ (5,u0(s))ds, k = —M,... M. (2.24)

In order to construct an exponentialy convergent quadrature for these integrals we change the
variables by

t_ -t
57S*F 2tanh§ (2.25)
and get instead of (2.24)
f®=[" R(t.&)de, (2.26)

where

F(t,&) = mexp[—z(kh)t(u tanh &)/2]  (t(1- tanh £)/2,ug (t(1— tanh £)/2)).  (2.27)

The following assertion was proven in [19].

Lemma 2.1. Let f(t,ug(t)) for t €[0,00] can be analytically extended into the sector
s :{,oeie1 :p€[0,:0], |6 [< ¢} and for all complex we X we have
(W, ug (W) ce oWl (2.28)
with & e(O,\/an] , then the integrand F (t,£) can be analytically extended into the strip
Ddl’ 0 <d; < /2 and belongs to the Hardy class Hl(Ddl) [43] with respect to &, where ag, ¢

are the spectral characterizations (2.10) of A.

Let the assumptions of Lemma 2.1 hold, then we can use the following quadrature rule to
compute the integrals (2.26) (see [42], p.144)

M
fk@=fum® =h X @O f(@p(t)), (2.29)
p=—-M
where

s p0) = %exp{—%z(kh)[u tenh(ph)]}/ cosh(ph),

o,(t) = 12[1— tanh(ph)], h = O(L/M), (2.30)
z(£) =a, coshé —iby sinhé.
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Substituting (2.29) into (2.23) we get the following algorithm to compute an approach
Ao,m (N;Ug) to Ag(N;ug)

M [
Aom (N3ug) = Agp m (1) = %k Y.z (kh)[(z(kh)I - A)_l—Tih)ll
=M

M
xh > g p (1) T (@p (1), ug(@p (1))).
p=-M
The next theorem characterizes the error of this agorithm.

Theorem 2.2 Let A be a densely defined strongly positive operator with the spectral
characterization ag, @ and f (t,ug(t)) e D(A%), & >0 for t €[0,0] can be analytically

extended into the sector X¢ :{peml : p€[0,],] 6, [< ¢} where the estimate

=0, [RW|

A% f (w,ug(W))IK c e ,WeX; (2.32)

with &, € (0, \/an] holds, then algorithm (2.31) converges with the error estimate

Iy (7= T (N;Ug)(t) — Aoy (DI ce 1™ (2.33)

uniformly in t with positive constants c,c; depending on «, ¢, a5 and independent of M .

In this way one can compute al Adomian's polynomials needed in (1.11) with an exponential
accuracy.

Let the nonlinear operator f(s,u) for each s is analytic as function of u in some disc
I —-ugll= p <r withthe boundary I, then [7, p. 157] it holds

|1 (s.U0) £ M (s, )t p" <M (o) p", (2.34)
provided that M (s, p) < M (), where M (s, p) = max fi(s,u)l. Thus, for M (p) small enough
uel’

we are in the situation of Theorem 1.1, so that the method (1.11) converges exponentialy.
An aternative exponentially convergent method based on the interpolation of the nonlinearity
on a Gauss-L obatto grid was proposed in [20].

_ t

One can obtain an operator equation of type (1.1) applying to PDE (2.1) the operator L; 1= J.o
analogousdly to [6, 35] but there are not any theoretical justification of convergence of Adomian's
method in this case.

Remark 1 In the recent paper [29] the following modification of ADM was proposed. One
looks the summands of (1.10) in accordance with the recurrence formulas

y (D) :—Kj(u(o),u(l),...,u(j)), j=01,...

(2.35)
u© = F,
where ?J(u (O),u(l),...,u(j)) are the modified Adomian polynomials given by
Kj(u(o),u(l),...,u(j)): N(u(o) +...+u(j))— N(u(o) +...+u(j‘1)) (2.36)
In the paper [29] for the problem
d¥y(t dPy(t —
S0 potom=xo. teon, CX0= p=0i1 @w
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p=0k-1, with M = max IB(t)| and with the right-hand side f(y)
te[0, T]

satisfying the Lipschitz condition with a constant L it was shown that the modified Adomian
methods converges as a geometrical progression with the quotient «« and with the error estimate

with the given Cp

m am
y(©) -y < Tl (2.39)
j=0 —¢
provided that
k
a= LMT <1 (2.39)

k!

Numerical experiments have shown that the modified ADM converges faster then the ordinary one.
But it was ignored in [29] that the modified ADM in fact coincides with the usual fixed point
iteration. Actualy, the relations (2.35), (2.36) imply

U™ =_NU™+F, m=0.1,...
u®=F.

Now the conclusions of [29] about the advantages of the modified ADM become understandable
and are well known long ago (see e.g. [36]).

(2.40)

The natural question arises in the case when the assumptions of Theorem 1 are not fulfilled:
what can we do in order to arrive the convergence? One of the aims of this paper is to answer this
guestion and to construct an iteration method which converges whereas the fixed point iteration
(2.40) can be divergent. An other aim is to show that the odd and the even iterations provide the
two-sided approximations, therefore they can be used e.g. for aposteriori error estimates. We
accompany our theoretical considerations by the numerica examples which confirm our
conclusions.

3 Two-sided iteration method

Let Sr(a) = {xe X :HM-alK r} beaclosed ball in a Banach space X . Then the following
assertion about the fixed point iteration for equation (1.1) holds true (see e.g. [26]).

Theorem 3.1 Let the operator N satisfies the conditions
1° VYu,veSr(a) itholds
[Nu)-NV)|<q-vIT qe(01), (3.1)

2° for F €Sy (a) it holds

IN(F)] = (2-a)r, (32)
Then the equation
u=-N@u)+F, N(@©=0 (3.3
possesses a unique solution Uy e Sy (a) , which can be obtained by the fixed point iteration
Uper =—N@uy)+F, n=01,... (3.4)
with the error estimate
q'r
Us-—u : 35
= UnlE - ] (35)
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Let us clarify the conditions on the operator N under which the iterations (3.4) provide the two-
sided approximationsto Usy-.

Let K < X beaconewithapartial order © , i.e. wewrite v° u when u—Vv e K . Further we
make the following assumptions.
3 FekK.
4° Theoperator N is positive in the sense that
N(K)c K (3.6)

5° There exists the Frechét derivative N (v) with the property
HN'(V)qu,Oo N'(Wu Yu,veSr(F)nK (3.7)
60

0° u; = —N(Ug) + F =—N(F)+F (3.9)

Then the following assertion holds true.

Theorem 3.2 Let the conditions 2°--6" hold. Then the fixed point iteration (3.4) converges
to the unique solution uy of the equation (3.3) and provide the two-sided approximation, i.e.

Us® ...% Uy ® ...% Uy® Ug

o o o o o (39)
Ui° Ug® ...% Ug 1° ...°% Uy
Proof. See[30].
Example 3.1 Let us consider the Dirichlet boundary value problem
n _ 3 - _ .
u”(x) — Mu~(x) f(x), xe€(0;1), (3.10)
u(0) =u(d) =0,
with f(x) = z2sinax+M (Sin7z><)3 and a given constant M > 0.
The exact solution of (3.10) is
u(x) =sinzx. (3.11)
Problem (3.10) is equivalent to the following nonlinear Fredholm integral equation
1
u(x) = [G(x,&)[-Mu(&) + f (£)]d¢,
0 (1-8)x<& (3.12)
X(1-¢), x<
G(x,8) =
§(1-x), & <x.

This equation is of the form (3.3) with
1 1
N(u) =M [G(x,&u*()dE, F =[G(x,&)f(£)de.
0 0

For M =1, r=1.2, q=0.54 all assumption of Theorem 3.2 are fulfilled where
X =C[0;1], K ={v(x)eC[0;1]:v(x)>0, xe[0;1]}

FIJ] =1.087...<r, M(F)-FIJ =0.101... < (1-q)r,
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1 3 *
0<NWu =3B Vs < = T
0

r=qr,

1
U = -N(Ug) + F =[G (x,£) f (£)d& + f () 2 0.
0

The numerical results (obtained with Maple) are presented in Table 1 and on Fig. 1, 2. The table
exhibits the advantages of the fixed point iteration to the usua Adomian's method. The figures
demonstrate that the even and the odd Adomian's iterations include the exact solution.

 I—
e — e ——
Teo o — ""--.._\__\_\_h " o4 0 O _
- X S o 3 _"Jf
— g [ |- os T 1 )
T T —— \
T e ———— e — x \.
1e-05 h / i h, r
== *, / -2e-05 '\ /
*, i ] , /
Bt AN ! ] A
*, s B N, y
3 N ; —de—5 y y
=305 \ ;_ ] \\ y
\ . ,
N\ ) s 1 . p
4205 “ Vs ] /
M, #
", A —S=—05 W /.
—=a5 ] Vs E L o
. o | . P
e o e

Figure 1: The errors of the usual (left) and the modified (right) Adomian's iterations number
4, 6 (dash) and 5, 7 (continuous) for M =0.5.

I
Se—= T e T T
- T e T
_,_,.,-'-""'-FFF" g e —
- b - e x e
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, i *, /.
~0,0001 - \ J , !
N 7 \ y
\, ~1a—03 *, i
AN i , S/
200015 A / R ;
5 N, / N
A e ] . y
N\ / ~t.50-08 \ ,
~0.000, b P ‘-\ '/
. y . A
e -~ "*-\-..\__\_ ——

Figure 2: The errors of the modified Adomian's iterations (left) number 4, 6 (dash) and 5, 7
(continuous) as well as (right) 12, 14 (dash) and 13,15 (continuous) for M =1.
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n €A EmA

0 4477593957331e-1 .394026825275758¢-1
1 .6148944791993e-2 473705632178769¢-2
2 .114506764843¢-2 .544572291857201e-3
3 .246398359542e-3 .629246333480784e-4
4 .5768833894e-4 .726644599750120e-5
5 14273551991e-4 .839176371831571e-6
6 .367192582e-5 .969127578152334e-7
7 972342751e-6 .111920351333820e-7
8 .26329372e-6 .129251941616996e-8
9 .72571985e-7 .149267628681118e-9
10 .2029413e-7 .172381275559081e-10

Table 1: Error of the usual (&, ) and the modified (&y,4) Adomian's method for M = 0.5

4 An iteration method for nonlinear problems with the controllable exponential
convergence

In this section we give the description of an algorithm with the controllable exponential
convergence. In order to avoid technical difficulties we justify this algorithm in the case of the
following nonlinear model problem

U (X)=NUE))U() =-F(x), xe(0,1),

(4.1)
u(@=u(1)=0
with anonlinear function N (u): P 1,pt satisfying the conditions
N(u)>0, [uN@U) =0, N (u)=0, YuePl (4.2)

Using the Green function for the differential operator defined by

D(A) ={u:ueWZ(0,1):u(0) =u(1)},

2 4.3
Au = _d_g YueD(A) (*+3)
dx

one can reduce problem (4.1) to the operator equation of kind (1.1). In the case when the fixed
point iteration (2.40) is divergent we propose the following method based on the idea of the FD-
method [32] which is closed to a homotopy perturbation method.

We introduce agrid
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;A):{Xi €[0,1],i=1,K: 0=X < X5 <...<Xg_1 < Xk :1}

partitioning the interval [0,1] into subintervals [X;_1,%], i=1,K of the length
h = X; —Xj_1, | |= max h; and imbed problem (4.1) into the parametric family of problems
|
d2u(x,t
G N0t 1 0) +IN @O0) = N (s 1 D)k
=-f(x),xe(0,1),

- (.4
WOy =0, {d“—(x)} 0 i-iK-L
' dx  Jy=y.

u(0,t) =u(L,t) =0, telo,1].

It is clear that for t =1 the solution of problem (4.4) coincides with the solution of problem (4.1),
e

u(x,1) = u(x),
For t = 0 we obtain the following base problem
d2u©(x
U0 NW@ b @0 =~ (),

dx 7
Xe(X_1, %), 1=1,K,

WO (X)]ey =0, {d”(m(x)} =0, i=1,K-1,
| dx e

(4.5)

u@©)=u@@=o

where [V(X)]x=¢ = V(& +0) - V(& —0) denotesthe jump of the function v(x) at the point x =&

The last problem as well as problem (4.4) are representatives of the class of boundary value
problems with piecewise constant argument which are in the focus of attention of many researchers
for some time (see e.g. [46] and the literature therein).

We look for the solution of problem (4.4) in the form

u(x,t) = thu(j)(x). (4.6)
j=0
Substituting (4.6) into (4.4) and comparing the coefficients in front of powers of t we obtain the
following recurrence sequence of problems for u(l)(x) (with piecewise constant argument):

d 2u(j+1) (X) N (U (0) (Xi_l))u(j+l) (X)

d 2
— N'G(O)(Xi—l))u(j-'—D (Xi—l)u(O) (X) n F(j+1) (X), (47)
Xxe (X 1,%), i=1K,

where
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. i )
FUD 0= 3 Ay o(NiUuO (% g),e. w0 P (%) P (x)
p=1

i Zj:[Aj_p(N;u(O)(x),...,u(j_p)(x))

p=0
_ Aj—p(N : u®© (Xi—l)’---’u(j_p) (Xi—l))]u(p) (x) 49)
AL (N U ), u D (x_).0)u@ (),

: (i+1)
WO, =0, {%} -0, i=1K-1
X
X=Xi

u(j+1)(0) — u(j+1)(1) =0, j=01,...,

A;j(N;vg,Vy,...,Vj) are Adomian's polynomials for the nonlinear function N(v) given by the
explicit formula (1.9). The solution of problem (4.1) is then given by

u(x) = Su(x) (4.9)
j=0
(provided that the convergence radius of (4.6) is not less then 1) and the approximate solution by
m m .
u(x) = u(x) = Zu“)(x), (4.10)
j=0

where the exponential convergence will be controlled by the parameter |h|.

Let us consider the base problem (4.6). This problem is equivalent to the system of nonlinear
equations

u@(x,) = }G(xi ENWEE)dE, i1=1,K-1, (4.12)
0

where

N@) = (NU@ )., Nu© (x¢ o)) (4.12)
and G(xi,g,lﬁ) is the Green function of problem (4.5) provided that the vector

0 ={u@(x),u@(x,),....u? (x¢ _1)} isknown.

We introduce the operator
K-1

1 —

B(0) = (jG(xi,f, N (u) )f (g)dg] (4.13)
0 i=

which is continuous on a closed ball '

§:{UEPK4JW

ooy, = max 1u@(x) < r}

1<i<K-1
with 1 defined by Ifl§ .01 and transate the ball S into itself. Therefore, by Brower's fixed

point theorem (see e.g. [25] ) there exists a fixed point of this operator in S, i.e the system of
equations (4.11) is solvable.

Remark 2 The fixed point iteration for equation (4.11) is equivalent to the solution of
sequence of the following problems
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d Zu (O),n+1(x) ~

N[ (@00 =~ £ (),

dx? _
X € (Xj_1, Xi), 1=1,K (4.149)
u(O),n+1(o) = U(O),n+1(1) — O,
n=0,1,...,

where u©?° = (u (0)'0(xi ))i=1T< isan arbitrary vector fromthe ball S . For this problem there exists
the following exact difference scheme

(o U@ 00) | (x)uOM ) = —p"(x), =LK,

4.15
u(O),n+l(0) — u(O),n+1(1) — O, ( )
with
-1
a" () = Sy ) = N9 (x ) (4.16)

hfa |

: . : N 1 h
d“(xi):\@tanh\/zz"N”‘_*ltanhw‘”zl il hi:%, (4.17)

9" (%)= Z( 1« {dW 2 (%) Woiz(xi)(_l)aJrl\/,uin—HaCOth T hi1+a}

I a=1
(4.18)
where WO'! (X), «a =1,2 aresolutions of the following two Cauchy problems
d2W J (x -
—djz( )N o) 0 = -1 9,
Xj—2+q <X <Xj_144 (4.19)
- dw J (x)
J = o N = =
W, (Xj+(—1)0‘ ) ™ 0, a=12.

x=xj+(-1)*
In order to compute the coefficients of the exact difference scheme for one iteration step one
should solve 2(K —1) Cauchy problems by an IVP-solver, each on a small interval with the length

of the corresponding step-size. Then the difference scheme with a tridiagonal matrix can be solved
by the specia elimination method (method of chasing, method "“progonki™) which in our case is
stable [37].

Remark 3 An other algorithmic implementation of the fixed point iteration for (4.11) can be
done by the multiple shooting method [44] in the following way. Let

u@x) =uO(x; Xi_1,Si_1,S )1) and : u(o)(x)— u@(x; Xi_1,Si_1,S 1)1) be the solution and
X dx

its derivative of the differential equation (4.5) on the subinterval (X;_1,%;) subject to the initial

values s;_; and 3(1)1 (and obtained by some IVP-solver), i.e. we have
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U(O)(Xi;xi ~1,Si-1,S i(l)l)zsi’

So=0,s¢ =0,.
Analogously to the multiple shooting method this system of equations can be written down in the
form s = F(s) where s = (sél),sl,s(()l),...,sK 1,5}(})1,3(1))T and F(s) for an arbitrary s can be

calculated using an IVP-solver. From the discussion above it follows that the fixed point iteration
m+1 m

s =F(s),m=0,1,... (4.21)

0
converges provided that s was chosen within the corresponding ball.

Let usrewrite the equations (4.7) in the form
2, (j+1)
M q(x)u(l+1)(x)

=N’ @‘”(xi_l))[u“*” U@ (x) —uFD u@(x, )] (4.22)
+FUM ), xe(x_px), i=1K,
ud* ) =ui*(1) =0, j=0,.1,...

with

900 =NUO )+ N U@ D@04y, xelxipx), i=LK. (423

Given u(o)(xi),i =1,...K-1, let G(x,&,q(")) be the Green function corresponding to the

operator on the left side of (4.22) with the Dirichlet boundary conditions. Then problem (4.22) can
be performed to

| ) £ gy
W= 3 [ 6k.ca0) | L CLE G
Xpl

du’

Xp &
-y 6(x.&q0) T n‘”)d WA WID(x ). 424
Xp-1

1 S

—[G(x;, &,9()FUI™P(&)de, i=1,

0

In order to estimate u(j+1)(x) we need to estimate the Green function G(x,£,q(-)), which
can be explicitly represented by the formula (see e.g. [37])

vi(X)Vva(8), x<¢,
i 4.25
Obea0)= {Vl(f)Vz(X) £x @2
Here v, (X), a =1,2 arethe so called stencil functions which satisfy the equations
2
(=g, (=0, 0<x<1

X

a =12, (4.26)

vi(0)=0, Vvj(0)=1, v,(1)=0, vh(l)=-
45
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aswell as the continuity conditions

[va(x)]xzxi =0, [vjx(x)]xzxi =0, =12 i=1,K-1 (4.27)

These functions possess the following properties:
1° v4(x) isanon decreasing, non negative function on [0, 1],

2° V,(X) isnon increasing, non negative function on [0,1],
3 (1) =v2(0),
4° 1 (X)V,(X) = Vo (X)V2(X) = 4 (1) =Vv,(0),
These properties as well as the maximum principal imply the estimates
0<G(x,£,q()) <G(x,£,0),

(4.28)
‘aG<x,5,q<-» <1
OX
Using (4.28) as well as the assumptions (4.2) we obtain from (4.24)
(j+1 © (e (j+1
ini J+_)1_1][-,oo,[0,1] < @, oy N (m )lil,oo,[o,u)U "I 0y (4.29)
+IE(J+ )1_1[,00’[0,1].
For | h | small enough thisinequality can be transformed to
1U(J+l)1_1[,oo,[o,1] <! +1)1_1[,00,[0,1] (4.30)
with
: 1
Cp = [1— | O, oy (1“(0)1_11,00,[0,1] )T : (4.31)
and the norms
NI o101 = max [V(X)|,  NIf 01 =maxX{ max [V(X) |, max [V'(X)[}.
x€[0,1] xe[0,1] xe[0,1]

Further we will need the following two auxiliary statements.
Lemma 4.1 Let N(u) be represented by the power series N (u) = iaiuz, a; >0 and
i=1
uP(x)ecY0,1], p=0,1,..., then
HAk(N (u);u(o)(x),...,u(k)(x))— Ak(N (u);u(o)(xi_l),...,u(k)(xi_l)]‘w <
< 2h§:iai AN (R AR) IR L = IO ,m(")rllyoo,[o,l]) (4.32)

i=1
=|h| Ak(N '(U)Jm(o)lil,oo,[o,l] ’E[(l)l_ll,oo,[o,l] ""’m(k)l_ll,oo,[o,l])

Proof. Since the Adomian polynomials are linear operators with respect to the first argument
(see(1.9),i.e.

Ak(N (u);u(o)(x),...,u(k)(x)): iaiAk(UZi;u(o)(x),...,u(k)(x))
i=1
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it is sufficient to consider the case N (u) = u? only. For this case we have

AUZu@(x),...,u (x))=
S Otl( (0)(X)\[u(1)(x)]”1 72 .[u(k—l)(x)]”k—l—ak [u(k)(x)]“k _

o+ +ay =k (o —a)! (o1 — o) (e )!

- ¥ 2i(2i—1)-...-(2i—a1+1)[u(°)(x)]2i_alw]ﬂ_)*.2"“
a—a,)!

ag+.. +ay =K

| [u(k—l) (X)]”k—l‘“k [u(k) (X)r‘k

(ak—l — (Zk)! (ak)!
A LZu@(0,....u%0 () AuZ,uO(x, ,)... -’U(k)(xi—l)l‘ :

< Y 2@-Y)...QA-ag+)(2 -+t oyt Aoy oy o)

a1+...+ak:k
m 1—0!2 (k—Drgk-1-2% K
E[(OTlf' n ©[0] E[ 0,[0,1] ¢ )l_lfoo[01]| h|=
OO[Ol] (m-a)!  (ma—a) ()

=2i|h| Ak(UZI ;E[(O)H[,oo,[o,l] 1 )H[,oo,[o,l]v--’m )1_1-[,00,[0,1])
=|h[A ([U2i ]I ;m((»l;[,oo,[o,l] ’m(l)lll,oo,[o,l] ""’m(k)l_l[,oo,[O,l])'
Thelemmais proven.
Lemma 4.2 Let N(u) be represented by the power series N(u) = ZJ 1aju21 then
j+1(N (U);Vo,. eV ,0)
1 d j+1 \
_INC@)-(t@-voON W)t @33

G+ N
j=01,...,

with f(z)= Y z2lv;.

Proof. Proof is obvious.
Returning to (4.30) and taking into account (4.2), (4.3) we obtain

i+,

J .
< D A p (NSO, 10,17 TR 10 47, U P 6 TP, 16
p=1

j .
+h Y Aj_(N '(U)Uim(o)ﬁl,oo,[o,l] e ’M(J_p)l_ll,oo,[o,l])m(p)l_ll,oo,[o,l]
p=0

j+l ©
(Ji1)| j;ﬂ( (Zzsm( )1_1100[01]) ZZ m )1'1[00[01]N ing )11[w[01]))]z o}

(4.34)
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Introducing in (4.34) the new variables by
Ih[mg, =v;, (4.35)
then changing v; to Vv j and the inequality sign to the equality one we arrive at the following
system of equations

j
Via= C’l{ zAj+1—p(N (U);Vo,..-,Vj+1_p)\/p
p=1

i
+ 2 A p(N'(U)usVp,....Vj_p V)
p=0 (4.36)

1 dj+1 o0 s ,
TG\ N &) VN )
- z=0
i=01,..., Vo=vo =1%oy

or

_ g j .
Viqg=— A2 INA NV, Vi
T eN (vo){pzzll I+ p( (U)Vo J+ p)/p

J
+ 2 AL p(N'(W)U;Vp,....Vj_p)V, (4.37)
p=0

1 dj+l o0 s
T N| > z°Vq .
(J+1)dz s=0 7=0

The solution of this system is a mgjorant for the solution of (4.34), i.e. V; SVJ-, ]=01,....

Using the method of generating functions we obtain from (4.37)

VS _ _
f(2)-Vg N 0/()){[f<z) Vol[N(f (2)) - N(Vp)] “38)

+2f 2@N'(f(2))+ N(f (2)) - N(Vo)}-

From this equation we can express z asafunction of f

1 1
: =T{(w—N<f>+ N%))(f Vo)~ N(f)+ N(vo)},
FEN(f) L€ (4.39)
VO S f y 6 = C—l"
1+ ClN (Vo)
and thenfind f,, for which z arrivesitsmaximum z,, = R . The condition
|h |VO[N' (\/o)]2 <1 (4.40)

guarantees the existence of f,,, because under assumption (4.40) we have
zMg)=0, Ilimz(f)=0

f -

d ! 1 ! 1 !
GO PN Ol = 2 N0 = =2 10O o gV @O o) >0

Thevalue z,,, definesthe convergence radius of series (4.38), i.e.
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N
(J +1)1+6‘ !
with an arbitrarily small positive ¢ . Returning to the old notations we have

J
(i C h .

Rlv;=C (4.41)

which leads to the following sufficient convergence condition for the series f (z) = Z 21y i
i=0

h

—<1 4.43

R (4.43)

Thus, we have proved the following assertion.

Theorem 4.1 Under the assumptions of Lemma4.1 the method (4.10) for problem (4.38)
converges super-exponentially (converges) with the error estimate

m c (hR)™ c 5 1

M—ulj, < ( —) (4.44)
Hojoy (1+m)t*¢ 1-hiR j=%:+1(j +1)
provided that
h<R, (h=R). (4.45)
5 Examples
Example 5.1 Let us consider the Dirichlet boundary value problem
" _ 3 - _ .
u"(x)-Mu (x) =—f(x), xe(0;1), (5.1)

u(0) =u(d) =0,

with f(x) = z2sinax+M (sin;zx)3 and a given constant M > 0. The exact solution of (5.1) is
u(x) =sinzx. (5.2

Problem (5.1) is equivalent to the following nonlinear Fredholm integral equation
1
u(x) = [G(x,&)[-Mu3(&) + f (&)]d¢,
0

X(1-¢&),x< &
E(1-x), &< X,

(5.3)
G(x,$) = {

This equation is of the form (1.1) with
1 1
N(u) =M [G(x,&u(&)dE, F =[G(x,&)f(&)de.
0 0

For M = 20 the usual fixed point iteration as well as the usual ADM are divergent. Due to

symmetry we apply the FD-method with two steps to the modified problem (5.1):
u"(x) - Mu3(x) = —f(x), xe(0,0.5), (5.0
u(0)=0, u’(0.5)=0. '

Problem (4.4) for this example has the form
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%— M {u(%,t)z +t{u(x,t)2 —u(%,t)z}}u(x,t) - _f(x),
x € (0,0.25),
82u(x,t) 1. 1 1. .5 , 1( 1 1.\ B
T_M{E[U(Z’t)—i_u(i’t)] +t!U(X,t) —E[U(Z,t)'FU(E,t)) ]}U(X,t)——f(X),
x € (0.25,0.5),
_ ou(l/2,t) _ _ ou(x,t) _
u(0,t) =0, T_O' [u(X,t)]x=0.05 = O, { x }x:o.zs_o

(5.5)
The numerical results obtained with Maple are presented in Table 2 and Table 3, where

A™(x) = u(x)—rS(x).

Table 2: Two subintervals (K = 2)

X 0.25 0.5
A(x) | .0109383495 | 051202866
Al(x) | .0020822061 | 0068667797

Table 3: One subinterval (K =1)

X 0.25 0.5
A(x) .02842879773388 | .1384486690937460
A(x) 01785603134623 | .0287451291955546
A(x) .00133217977494 | 0010162058541
A3(x) 00455624274781 | 0034293443153
A(X) .00003810934901 | .00201582469655

Example 5.2 This example goes back to Troesch (see e.g. [45]) and represents a well-known

test problem for numerical software:

u =Asinh(lu), xe(0,1), A>0, u(0)=0, u(l)=1. (5.6)
Due to the hyperbolic type of the nonlinearity here, moderate increase of A leads to tremendous
variations in the derivative of nonlinear part and therefore of the solution. The exact solution of
Troesch's test problem can be represented in the form (see, for example [44])

2

S SxK) |2y ST (5.7)
2-cn(Ax,k) 4
where sn(Ax,k), cn(Ax,k) are the elliptic Jacobi functions and the parameter s satisfies the

equation

u(x,s) = %arcsinh(
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2 . [ s-sn(4,k)
—arcsinhf ———=
A 2-cn(4,k)

For example, for the parameter value A =10 it holds s = 0.35833778463-10"3. To our best
knowledge a numerical method working for the highest value of 4 =62 was presented in [14].
Furthermore it turns out that modern numerical software (Maple, Mathematica) have difficulties
even with numerical solution of the algebraic problem above with respectto s for 4 > 62 .

Our goal here is to illustrate the presented approach rather then to improve the result
A =62. However this approach in theory allows one to threat problem (5.6) with any A4 using

appropriate number of subdivisions K.

All computation presented below have been performed using QD libary with quad-double
precision (appx. 60 decimal digits of accuracy) and GSL templates for quadrature formulas and
matrix calculations. To eliminate the influence of quadrature errors we was using Runge type

estimate with Eps = 107%°. A final stoping criterion in (4.10) was lt[(j+1)1'1[< 10719,

Table 4: Troesch test with K =4 and K = 256

A=1,K=4 A4 =10, K = 256
m m

m 0-ul] -ul]

0 .1116088037901624715702912866-2 :391955453562892425976436496€- 1
1 .624289421129990539732878093e-4 .9409376271280669752855178826-3
2 613274752600453001120360543¢-4 .591438908394518928454089104¢e-4
3 14911153951759336617396356866- 7 .158072882785682348425691183e-5
4 .134193613660290576144888419%-8 .143796397730961836994428146¢-5
5 .826036431341936136602905761e-11 .440376842230098521926768794e-7
7 .5318444707335456610605196776-9
8 710761479514132417214021573e-11
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