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Abstract 

Attribute reduction is an important issue of rough set theory. It has been proven 
that finding the minimal reduct of an information system is a NP-hard problem, so is 
finding the minimal reduct of an incomplete information system. Main reason of causing 
NP-hard is combination problem. In this paper, we theoretically study an attribute 
reduction algorithm. It based on results of Chen Degang et al in consistent and 
inconsistent covering decision system. The time complexity of this algorithm is 
O(|Δ||U|2). An illustrative example is provided that shows the application potential of 
the algorithm  

Keywords: attribute reduction, family of covering rough sets, consistent covering 
decision system, inconsistent covering decision system Introduction 

 

1. Introduction 
Rough set theory is a mathematical tool to deal with vagueness and uncertainty of imprecise 

data. The theory introduced by Pawlak in 1982 has been developed and found applications in the 
fields of decision analysis, data analysis, pattern recognition, machine learning, and knowledge 
discovery in databases. While the equivalence relation is too harsh to meet and is extended to 
tolerance relation and similarity relation. For example, equivalence relation can’t be established 
based on the null value of attribute. In incomplete information systems, which relations are 
established can be the base of further study for rough computation, knowledge reduction and rule 
extraction. On this basis, the covering theory of the generalized rough set is study deeply. 

Cheng Degang et al. [1] have defined consistency and inconsistency covering decision system and 
their attribute reduction. They gave an algorithm to compute reducts from decision systems. Their 
method based on discernibility matrix. But, sometime we only need to find an attribute reduction. 
So we propose an algorithm which is finding a minimal attribute reduct of incomplete information 
decision system. 

 

2. Some relevant concepts and results 

In this section, we first recall the concept of a cover and present an example suitable for 
covering rough sets, and then review the existing research on covering rough sets. Finally, propose 
the definition of induced cover and reveal three basic relations between two objects with respect to 
the induced cover. 

One kind of suitable data set for covering rough sets is the information systems that some 
objects have multiple attribute values for a given attribute. This kind of data set is available when 
some objects have multiselections of attribute values for a given attribute. So we have to list all the 
possible attribute values. One example of this kind of data set is the combination of several 
information systems. This is illustrated with the following example. 
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Example 2.1 ([1]) Let us consider the problem of evaluating credit card applicants. Suppose 
U = {x1,.., x9} is a set of nine applicants, E={education; salary} is a set of two attributes, the values 
of ‘‘education’’ are {best; better; good}, and the values of  ‘‘salary’’ are  {high; middle; low}. We 
have three specialists {A, B, C} to evaluate the attribute values for these applicants. It is possible 
that their evaluation results to the same attribute values may not be the same, listed below:  

For attribute ‘‘education’’  

A:  best ={x1 , x4 , x5 , x7}, better = {x2 , x8}, good= {x3 ; x6 ; x9}  

B:  best ={x1 , x2 , x4 , x7 , x8}, better = {x5}, good= {x3 , x6 , x9 }  

C:  best ={x1 , x4 , x7 }, better = {x2 , x8}, good= {x3 , x5 , x6 , x9 }  

For attribute ‘‘salary’’  

A:  high ={x1 , x2 , x3}, middle = {x4, x5, x6, x7, x8}, low= {x9}  
B:  high ={x1 , x2 , x3}, middle = {x4, x5, x6, x7}, low= {x8, x9}  
C:    high = {x1 , x2 , x3},  middle = {x4, x5, x6, x8}, low= {x7, x9} 

 

Table 1 Classification by evaluation of all three specialists 

Salary Education 

 Best Better Good 

High {x1, x2}  {x2} {x3} 

Middle {x4, x5, x7, x8} {x5, x8} {x5, x6} 

Low {x7, x8} {x8} {x9} 

 

Suppose the evaluations given by these specialists are of the same importance. If we want to 
combine these evaluations without losing information, we should union the evaluations given by 
each specialist for every attribute value as shown in Table 1. This classification is not a partition, 
but a cover, which reflects a kind of uncertainty caused by the differences in interpretation of data.  

2.1. Covering rough sets and induced covers Headings 
Definition 2.1 Let U be a universe of discourse, C a family of subsets of U. C is called a cover of U if no 

subset in C is empty and ∪C = U. 

Definition 2.2 Let C = {C1, C2, ..,Cn} be a cover of U. For every x∈U, let Cx = ∩{Cj: Cj 
∈C, x∈Cj}. Cov(C) = {Cx: x∈U} is then also a cover of U. We call it induced over of C.  

 Definition 2.3 Let Δ= {Ci: i=1,m} be a  family of covers of U. For every x∈U, let Δx= 
∩{Cix: Cix∈ Cov (Ci), x∈Cix} then Cov (Δ) = {Δx: x∈U} is also a cover of U. We call it the 
induced cover of Δ. 

Clearly Δx is the intersection of all the elements in every Ci including x, so for every x∈U, Δx 
is the minimal set in Cov(Δ) including x. If every cover in Δ is an attribute, then Δx= ∩{Cix: 
Cix∈Cov(Ci), x∈Cix} means the relation among Cix is a conjunction. Cov(Δ) can be viewed as the 
intersection of covers in Δ. If every cover in Δ is a partition, then Cov(Δ) is also a partition and Δx  
is the equivalence class including x. For every x, y ∈ U , if y ∈ Δx , then Δx ⊇ Δy, so if y ∈Δx and x 
∈Δy, then Δx=Δy. Every element in Cov(Δ) can not be written as the union of other elements in 
Cov(Δ). We employ an example to illustrate the practical meaning of Cx and Δx.  

Example 2.2 ([1]) In Example 2.1 if let Δ= {C1, C2}, where C1 denotes the attribute 
‘‘education’’ and C2 denotes the attribute ‘‘salary’’, then  
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C1={C11={x1, x2, x4, x5, x7, x8} (best), C12={x2, x5, x8} (better), C13 = {x3, x5, x6, x9} (good)} 

C2={C21={x1, x2, x3} (high), C22={x4, x3, x6, x7, x8} (middle), C23= {x7, x8, x9} (lower)} 

We have C1x5 =  {x5} = C11∩C12∩C13 , which implies the possible description of x5 is {(best ∨ 
better ∨ good} according to attribute ‘‘education’’. Δ x8  = (C11 ∩ C12) ∩ (C22 ∩ C23) which implies 
the possible description of x8  is {(best ∨ better) ∧ (middle ∨ lower)}.  

For every X ⊆ U, the lower and upper approximation of X with respect to Cov(Δ) are defined 
as follows: 

( ) { : },x xX XΔ = ∪ Δ Δ ⊆  (1) 

( ) { : }x xX XΔ = ∪ Δ Δ ∩ ≠∅  (2) 

The positive, negative and boundary regions of X relative to Δ are computed using the 
following formulas respectively: 

( ) ( ), ( ( ),

( ) ( ) ( )

POS X X NEG U X

BN X X X
Δ Δ

Δ

= Δ −Δ

= Δ −Δ
 

 

(3) 

Clearly in Cov(Δ), Δx is the minimal description of object x. 

Theorem 2.1 ([1]) Supposing U is a finite universe and Δ = {Ci: i=1,..m} be a family of 
covers of U, the following statements hold:  

(1) Δx = Δy if and only if for every Ci ∈Δ we have Cix = Ciy.  

(2) Δx ⊃ Δy if and only if for every Ci ∈Δ we have Cix ⊇ Ciy and there is a Ci ∈Δ such that Ci0 x ⊃ 
Ci0 y .  

(3) Δx ⊄ Δy   and Δy ⊄ Δx hold if and only if there are Ci, Cj ∈Δ such that Cix ⊂ Ciy  and Cjx ⊃ Cjy  or 
there is a Ci0 ∈Δ such that Ci0 x ⊄ Ci0 y   and Ci0 y ⊄ Ci0 x .  

2.2. Attribute reduction of consistent and inconsistent decision systems 
Definition 2.4 ([1]) Let Δ = {Ci: i=1,..m} be a family of covers of U, D is a decision attribute, U/D is a 

decision partition on U. If for ∀x∈U, ∃Dj ∈U/D such that Δx ⊆ Dj, then decision system (U,Δ,D) is called a 
consistent  covering  decision  system,  and  denoted  as  Cov(Δ)≤ U/D.  Otherwise, (U,Δ,D)  is  called an  
inconsistent  covering  decision  system.  The  positive  region  of  D  relative  to  Δ is  defined  as     

/

( ) ( )
X U D

POS D XΔ
∈

= ΔU
 

(4) 

Remark 2.1:  Let  D={d},  then  d(x)  is a decision function d: U → Vd of the universe U into  
value  set  Vd.  For  every xi, xj ∈U ,  if Δxi  ⊆ Δxj, then d(xi) = d([xi]D) =  d(Δxi) = d(Δxj) = d(xj) =  
d([xj]D).  If d(Δxi) ≠ d(Δxj),  then Δxi ∩ Δxj = ∅, i.e Δxi ⊄ Δxj  and Δxj ⊄ Δxi.  

Definition 2.5 ([1]) Let (U,Δ, D= {d}) be   a consistent covering decision system. For Ci ∈Δ , if 
Cov(Δ-{Ci}) ≤ U/D, then Ci is called superfluous relative to D in Δ , otherwise Ci is called 
indispensable relative to D in Δ. For every P ⊆ Δ satisfying Cov(P) ≤U/D , if every element in P is 
indispensable, i.e., for every Ci ∈P, Cov(Δ-{Ci}) ≤ U/D is not true, then P is called a reduct of D 
relative to D, relative reduct in short. The collection of all the indispensable elements in D is called 
the core of Δ relative to D, denoted as CoreD(Δ). The relative reduct of a consistent covering 
decision system is the minimal set of conditional covers (attributes) to ensure  every  decision  rule  
still  consistent. For a single cover Ci, we present  some equivalence conditions to judge whether it 
is indispensable. 
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Definition 2.6 ([1]) Suppose U is a finite universe and Δ = {Ci: i=1,..m} be  a  family  of  
covers of U,  Ci ∈Δ, D is a decision attribute relative Δ on U and d: U → Vd is the decision 
function Vd defined as d(x) = [x]D. (U,Δ,D) is an inconsistent covering decision system, i.e., 
POSΔ(D)≠U. If POSΔ(D)=POSΔ-{Ci}(D), then Ci is superfluous relative to D  in Δ. Otherwise Ci 
is indispensable relative to D in Δ. For every P⊆Δ, if every element in P is indispensable relative to 
D, and POSΔ(D)=POSP(D), then P is a reduct of POSΔ(D)=POSΔ-{Ci}(D) relative to D, called 
relative reduct in short. The collection of all the indispensable elements relative to D in Δ is the core 
of Δ relative to D, denoted by CoreD(Δ).  

2.3. Some results of Chang et al 

Theorem 2.2  ([1]) Suppose Cov(Δ)≤ U/D, Ci ∈Δ, Ci  is then indispensable, i.e., Cov(Δ-{Ci}) ≤ 
U/D is not true if and only if there is at least a pair of xi, xj ∈U satisfying d(Dxi)≠ d(Dxj), of which 
the original relation with respect to Δ changes after Ci is deleted from Δ. 

Theorem 2.3 ([1]) Suppose Cov(Δ)≤ U/D,P ⊆ Δ , then Cov(P)≤ U/D if and only if for xi, xj ∈U   
satisfying d(Δxi) ≠ d(Δxj), the relation between xi and xj with respect to Δ is equivalent to their 
relation with respect to P, i.e., Δxi ⊄ Δxj  and Δxj ⊄ Δxi ⇔ Pxi⊄ Pxj, Pxj ⊄ Pxi. 

Theorem 2.4 ([1]) Inconsistent covering decision system (U,Δ, D = {d}) have the following 
properties:  

(1) For ∀xi∈U, if Δxi ⊂ POSΔ(D), then Δxi ⊆[D]xi; if Δxi ⊄ POSΔ(D), then for ∀xk ∈U, Δxi ⊆[xk]D is 
not true. 

(2) For any P⊆Δ, POSP(D)= POSΔ(D) if and only if  

( ) ( )P X X= Δ  (5) 

 for ∀X∈U/D.  

(3) For any P⊆Δ, POSP(D)= POSΔ(D) if and only if  

∀xi∈U, Δxi ⊆[xi]D ⇔ Pxi ⊆[xi]D (6) 

2.4. Two theorems as a base for new algorithm 

Theorem 2.5 Let (U,Δ,D={d}) be  a  covering   decision   system. P ⊆ Δ, then we have: 

a. (U,Δ,D={d}) is a  consistent covering   decision   system when it holds: 

 

 

 

b. Suppose Cov(Δ)≤ U/D, Ci ∈Δ, Ci  is then indispensable, i.e., Cov(Δ-{Ci}) ≤ U/D is  true if and 
only if 

( ( ) ( ) (xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

Δ ∩Δ ∪ ∩ Δ − Δ =∑ ∑ ) 0  (8) 

Where Cov(Δ-{Ci})={Px : x∈U}, Cov(Δ)= {Δx : x ∈U} 

Proof:  

a. By define of a consistent covering decision system, clearly for every x∈U, Δx ⊆ [x]D is 
always true, thus we have 

[ ]x D

x U x

x
U

∈

Δ ∩
=

Δ∑  
 

(7) 
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[ ]x D xxΔ ∩ = Δ  
(9) 

i.e 

[ ]x D

x U x

x
U

∈

Δ ∩
=

Δ∑  
 

(10) 

b. Let Cov(Δ-{Ci})={Px : x∈U} = Cov(P), Cov(Δ)= {Δx : x ∈U, by theorem 2.3, P is a reduct 
or Ci is indispensable, for xi, xj ∈U satisfying d(Δxi) ≠ d(Δxj), the relation between xi and xj with respect to Δ is 
equivalent to their relation with respect to P, i.e., Δxi ⊄ Δxj  and Δxj ⊄ Δxi ⇔ Pxi⊄ Pxj, Pxj ⊄ Pxi. Follow remark 
2.1, If d(Δxi) ≠ d(Δxj), then Δxi ∩ Δxj = ∅, i.e 

( ) ( )xi xj xi xjP PΔ ∩Δ ∪ ∩ = 0  (11) 

If xi,xj ∈U satisfying d(Δxi) = d(Δxj) then 

( ) ( ) 0xi xjd dΔ − Δ =  (12) 

In other words, it holds: 

( ( )xi xj xi xj xi xj
xi U xj U

P P
∈ ∈

Δ ∩Δ ∪ ∩ Δ −Δ =∑ ∑ 0  (13) 

This completes the proof. 

Theorem 2.6 Let (U,Δ,D={d}) be  a inconsistent covering decision system. P ⊆ Δ, POSP(D) = 
POS Δ(D) if and only if ∀xi∈U, 

[ ] [ ] 0xi i D xi i D

xi U xi xi

x P x
P∈

⎡ ⎤Δ ∩ ∩
− =⎢ Δ⎣

∑ ⎥
⎦

 
 

(14) 

Proof:  

By theorem 2.4, from third condition ∀xi∈U, Δxi ⊆[xi]D ⇔ Pxi ⊆ [xi]D i.e ∀xi∈U, 

xiDxixiDxi PxPx =∩⇔Δ=∩Δ ][][  (15) 

In other words, we have theorem above. 

 

3. Algorithm of attribute reduction 
In this section, an algorithm of attribute reduction is presented. Theorem 2.5 and 2.6 are 

theorical foundation for our proposing. This algorithm finds an approximately minimal reduct. 

3.1. Algorithm of attribute reduction in covering decision system: 

Input: A covering decision system  

S= (U,Δ,D={d}) (16) 

Output: One product RD of  Δ. 
 

Method 

Step 1: Compute 

[ ]x D

x U x

x
CI

∈

Δ ∩
=

Δ∑  
 

(17) 
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Step 2: If CI = |U| {S is a consistent covering decision system} then goto Step 3 else goto Step 5. 

Step 3: Compute  
, ( ),x xd x UΔ Δ ∀ ∈  (18) 

Step 4: Begin 

for each Ci ∈Δ do 
 if 

( ( ) ( ) (xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

Δ ∩Δ ∪ ∩ Δ − Δ =∑ ∑ ) 0   

(19) 

{Where Δ - {Ci }= {Px : x∈U}}then Δ:= Δ - {Ci }; 
 

Endfor; 
goto Step 6. 

End; 

Step 5: Begin  

for each Ci ∈Δ do 
 if  

[ ] [ ] 0xi i D xi i D

xi U xi xi

x P x
P∈

⎡ ⎤Δ ∩ ∩
− =⎢ Δ⎣

∑ ⎥
⎦

 
 

(20) 

then   Δ:= Δ - {Ci }; 

 {Where Δ - {Ci }= {Px : x∈U}} 

Endfor; 
 End; 

Step 6: RD= Δ; the algorithm terminates. 

By using this algorithm, the time complexity to find one reduct is polynomial. 

At the first step, the time complexity to compute CI is O(|U|). 

At the step 2, the time complexity is O(1). 

At the step 3, the time complexity is O(|U|). 

At the step 4, the time complexity to compute ∑∑() is O(|U|2), from i=1..|Δ|, thus the time 
complexity of this step is O(|Δ||U|2),  

At the step 5, the time complexity is the same as step 4. It is O(|Δ||U|2). 

At the step 6, the time complexity is O(1). 

Thus the time complexity of this algorithm is O(|Δ||U|2) (Where we ignore the time complexity 
for computing Δxi, Pxi, i= 1..|Δ|). 

 

4. Illustrative Example 

Suppose U = {x1, x2, .., x9}, Δ = {Ci, i=1..4}, and 
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C1={{x1,x2,x4,x5,x7,x8},{x2,x3,x5,x6,x8,x9}},  

C2={{x1,x2,x3,x4,x5,x6},{x4,x5,x6,x7,x8,x9}}, 

C3={{x1,x2,x3},{x4,x5,x6,x7,x8,x9},{x5,x6,x8,x9}},  

C4={{x1,x2,x4,x5},{x2,x3,x5,x6},{x4,x5,x7,x8},{x5,x6,x8,x9}} 

U/D={{x1,x2,x3}, {x4,x5,x6}, {x7,x8,x9}} 

where, Δi=Δxi, Pi là Pxi (for short) 

Step 1: 

Δ1={x1,x2}, Δ2={x2}, Δ3={x2,x3},  

we have d(Δ1) = d(Δ2) = d(Δ3) = 1, because Δ1, Δ1, Δ1 ⊆ {x1,x2,x3}, Δ4={x4,x5}, Δ5={x5}, 
Δ6={x5,x6},  

we have d(Δ4) = d(Δ5) = d(Δ6) = 2, because Δ4, Δ5, Δ6 ⊆ {x4,x5,x6}, Δ7={x7,x8}, Δ8={x8}, Δ9={x8,x9} 

we have d(Δ7) = d(Δ8) = d(Δ9) = 3, because Δ7, Δ8, Δ9 ⊆ {x7,x8,x9} 

 CI = 9 ⇒ S is consistent 

Step 2: 
 P - {C1}: 

 P1={x1,x2}, P2={x2}, P3={x2,x3}, 

 P4={x4,x5}, P5={x5}, P6={x5,x6}, 

 P7={x7,x8}, P8={x8}, P9={x8,x9} 

( ( ) ( ) (xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

Δ ∩Δ ∪ ∩ Δ − Δ =∑ ∑ ) 0  (21) 

Δ=Δ - {C1}={C2,C3,C4}. 

Step 3:  

 P=Δ - {C2} 

 P1={x1,x2}, P2={x2}, P3={x2,x3}, 

 P4={x4,x5}, P5={x5}, P6={x5,x6}, 

 P7={x7,x8}, P8={x8}, P9={x8,x9} 

( ( ) ( ) (xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

Δ ∩Δ ∪ ∩ Δ − Δ =∑ ∑ ) 0  (22) 

Δ=Δ - {C2}= {C3,C4} 

Step 4:  

 P= Δ - {C3}: 

 P1={x1,x2, x4,x5}, P2={x2}, P3={x2,x3,x5,x6}, 

 P4={x4,x5}, P5={x5}, P6={x5,x6}, 

 P7={x4,x5,x7,x8}, P8={x5,x8}, P9={x5,x6,x8,x9} 

( ( ) ( ) (xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

Δ ∩Δ ∪ ∩ Δ − Δ ≠∑ ∑ ) 0  (23) 

(we can see (Δ1∩Δ4)=∅, but (P1∩P4)≠∅, |d(Δ1)-d(Δ4)|≠0) 
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Δ={C3,C4}. 
Step 5:  

P= Δ - {C4} 

 P1={x1,x2, x3}, P2={x1,x2,x3}, P3={x1,x2,x3}, 

P4={x4,x5,x6,x7,x8,x9},P5={x4,x5,x6,x7,x8,x9}, P6={x4,x5,x6,x7,x8,x9} 

 P7={x7,x8,x9}, P8={x7,x8,x9}, P9={x7,x8,x9} 

( ( ) ( ) (xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

Δ ∩Δ ∪ ∩ Δ − Δ ≠∑ ∑ ) 0  (24) 

(we can see (Δ6∩Δ7)=∅,  but (P6∩P7)≠∅, |d(Δ6)-d(Δ7)|≠0) 

Δ={C3,C4}. 

Step 6:  
RD= {C3,C4} is reduct. i.e attributes with respect to C1, C2 are deleted. 

 

5. Conclusion 
In this paper, we propose an attribute reduction algorithm. It  based on results of Chen Degang 

et al in consistent and inconsistent covering decision system. The time complexity of this algorithm 
is O(|Δ||U|2).  Compare with the results of  Cheng Degang’s the algorithm, our  result is compatible. 
In next time, we are studying algorithms which are developed from the theory of traditional rough 
sets. 
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