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Abstract 

In this paper, we propose an efficient and a scalable protocol for secure multicast 
communication. This protocol is based on the Iolus and the logical key hierarchy 
protocols. It divides the whole group into several subgroups as in the Iolus protocol. 
Each subgroup in turn is organized in a logical key hierarchy as in the LKH protocol. 
This decomposition reduces the complexity for a member join or leave form O(n) to 
O(log m), where n is the number of the whole group members and m is the number of 
each subgroup members. The performance of the proposed protocol is compared with 
that of the Simple App., Iolus and LKH protocols. The comparison is undertaken 
according to the computational overhead, communication overhead, storage overhead, 
and message size. The results show that the proposed protocol enhances the group 
performance in terms of computation overhead, and communication overhead 
especially at the leave operation. 
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1. Introduction 
Multicasting is defined as delivering data from one sender to multiple recipients [18, 19, 20]. 

There are many multicast applications such as video conferences, Pay-Per-View TV, Internet stock 
quotes, software updates, etc. As a result of increasing multicast applications, data confidentiality 
becomes a big problem in secured multicast [18, 19, 21, 22]. In order to solve this problem a 
symmetric secret key, group key must be shared by the multicast members. These members have 
the authority to access the multicast data by using that group key. 

Transferring data within the multicast occurs by using the secret group key twice; one for 
encrypting the data by the sender and the other for decrypting the ciphered data by the authorized 
receivers. With any change in the multicast resulted from member join or member leave a re-key 
operation for the group key must be occurred and then distributed to all multicast members [1, 3, 4, 
5, 18]. As a result, the joining member can’t access the multicast data sent before his joining the so-
called backward secrecy and the leaving member can’t access the multicast data sent after his 
leaving the so called forward secrecy. 

Many protocols were proposed to solve the problem of group key distribution. These 
protocols were classified into four categories: Simple App., Centralized, Decentralized and 
Distributed key management approaches [1, 3, 4, 5, 8, 18, 23] 

This paper proposes an efficient and a scalable protocol for secure multicast communication. 
This protocol is based on the idea of dividing the whole group into several subgroups as in the Iolus 
protocol. This decomposition reduces the complexity for a member join or leave from O(n) to O(m), 
where n is the number of the whole group members and m is the number of each subgroup 
members. Each subgroup in turn is organized in a logical key hierarchy as in the LKH protocol 
which reduces the complexity for a member join or leave form O(m) to O(log m). The group key is 
only known by the subgroup controllers that are represented by the root of each subgroup. The 
members 
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of each subgroup must know the appropriate subgroup key to make their decryptions. The subgroup 
key is organized using member secrets assigned to each member and server secrets assigned to each 
subgroup, and the inverse value of the member secrets is also used to manage the subgroup key at a 
member leave. 

Each member in a single subgroup needs to store all the inverse values of the other members 
in that subgroup with the exception of its own. When a member joins a subgroup, the subgroup key 
is changed and sent to all existing subgroup members, where there is a join, via multicast. When a 
member leaves, the key server just sends its identity to the remaining members in its subgroup, and 
then they use the inverse value of the leaving member to update the subgroup key. The performance 
of the proposed protocol is compared with the performance of various previous protocols. The 
comparison is undertaken according to the computational overhead, communication overhead, 
storage overhead, and message size. The results show that the proposed protocol enhances the 
group performance in terms of computation overhead, and communication overhead especially at 
the leave operation which represents a big problem for most previous protocols. 

This paper is organized as follows: Section 2 gives a brief summary for some of the previous 
related work. Section 3 presents a detailed description of the proposed protocol. Section 4 describes 
the results of numerical examination for the comparison between the performance of the proposed 
protocol and that of the simple App., LKH based protocols and Iolus protocol. Finally, Section 5 
summarizes this paper. 

 
2. Related work 

 As a result of the increasing of the multicast applications, the need to establish a group key 
becomes a vital requirement. Several solutions were proposed to solve the problem of the group key 
distribution. These approaches can be classified into four categories; Simple, Centralized, 
Decentralized and Distributed approaches [1, 3, 4, 5, 18, 19, 20, 21, 22]. 

In the simple approach, all of the group members share a secret group key assigned by the 
Key Distribution Center (KDC). For re-keying a group, the KDC encrypts the new group key by 
each user’s individual key one by one, then constructs such a rekeying message including all these 
encrypted items. The re-keying operation is performed by just multicasting the re-keying message 
and each user only requires one time decryption upon receiving it [24]. 

 If a member joins a group on n members, in order to maintain the backward secrecy, the key 
server must renew the group key and distribute it to the group members. First, it encrypts the new 
group key by the old group key and multicasts it to the group members. Since the old group 
members know the old group key, they can decrypt the message and obtain the new group key. The 
new member un+1 doesn’t know the old group key, it cannot decrypt the key server’s message. 
Instead, the key server sends the new group key to un+1 via unicast encrypted by un+1 individual key.  

For a member to leave a group; suppose having a group of n + 1 members. If the member un+1  
leaves the group, the key server must renew the group key and distribute it to the remaining group 
members in order to maintain the forward secrecy. The key server cannot use the old group key to 
decrypt the new group key because un+1  knows the old group key and can decrypt the key server’s 
message by using it. Instead, the key server has to encrypt the old group key by each member’s 
secret key. It generates a message and then transmits it to the whole group via multicast. On 
receiving the message, each member can recover the group key from the appropriate segment of the 
message using its own secret key [24]. 

In centralized approaches [5, 6, 7, 8] there is an entity plays the role of the group manager 
which is responsible for generating and distributing the group key to all members in the group. The 
centralized approaches are generally based on the idea of Logical Key Hierarchy (LKH). In LKH, a 
key distribution center maintains a key tree as shown in figure 1. The root of the tree plays the role 
of the group controller (GC) and shares a symmetric key with all members in the group, the internal 
nodes of the tree represent intermediate keys and the leaves represent the group members. Each 
member knows all keys from its leaf to the root; these keys will be called the path keys in this 
paper. For example, u1 knows the set of keys {K2,1, K1,1, KG}. It has to be noted that KG is the group 
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key. If u8 joins the group, as shown in figure 1 (a), the set of keys {K2,4, K1,2, KG} must be change 
into {K'2,4,K'1,2,K'G} respectively in order to maintain backward secrecy. The key server makes these 
changes and sends two messages; one to the existing members by multicast and the other to u8 by 
unicast. The message sent by multicast is: {K'2,4}K2,4, {K'1,2}K1,2, {K'G}KG. u7 can obtain K'2,4 by 
decrypting the first part of the message using K2,4, u5,u6 and u7 can obtain K'1,2 by decrypting the 
second part using K1,2 and members from u1 to u7 can obtain K'G by decrypting the third part using 
KG, and the message sent by unicast is: {K'2,4, K'1,2, K'G}K8.  u8 can easily obtain the new keys by 
decrypting the message using K8. If u8 leaves the group as shown in figure 1 (b), the key server has 
to change {K'2,4, K'1,2, K'G} to maintain forward secrecy.  

Since the leaving member knows the old group key and the old intermediate keys, the key 
server has to make a lot of encryptions. u7 obtains the new keys by unicast, {u5,u6} and {u1,u2,u3,u4} 
obtain the new keys by decrypting the key server message using K2,3 and K1,1 respectively. The use 
of key tree will reduce the complexity from O(n) to O(log n), where n represents the number of the 
whole group members. It has to be noted that centralized approaches suffer from the single point of 
failure problem, in addition for a large tree; the server's throughput can represent a bottleneck. 

In the decentralized subgroup approach [9, 10, 11, 18, 19, 20, 21, 22], the whole group is split 
into small subgroups. Different controllers are used to manage each subgroup which minimizes the 
problem of concentrating the work on a single point. Membership changes treated locally which 
means that re-key of a subgroup doesn’t affect the whole group which solves the scalability 
problem. The failure of one subgroup controller (SC) will not lead to the failure of the whole group. 
Iolus is an example of this approach. Mittra proposes Iolus [9], a framework with a hierarchy of 
agents that split the whole group into smaller subgroups. A Group Security Agent (GSA) manages 
each subgroup. GSAs themselves grouped in a top-level group that is managed by a Group Security 
Controller. Iolus uses independent keys for each subgroup and the changes that affect a subgroup 
are not reflected in other subgroups. Although Iolus is scalable, the SC (namely GSA) may become 
a bottleneck because the SC must decrypt the group messages and then re-encrypt it using the 
subgroup key.  

In distributed approaches, the group key is generated in a contributory fashion, where all 
members contribute their own share in computing the group key. Examples of this approach can be 
found in [12, 13, 14]. The distributed approach is generally based on the Diffie-Hellman key 
exchange. The Diffie-Hellman exchange is used to establish a symmetric key between two entities. 

(a) An example of a member joins 

Figure 1: An example of hierarchical key tree 

(b) An example of a member leaves 
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Its security relies on the difficulty of finding logarithms for a large modulo prime number. Although 
this approach doesn’t depend on a single entity to establish the group key, it suffers from the 
scalability problem. There are other proposed protocols based on the idea of mixing the advantages 
of the previous approaches, examples of these protocols can be found in [15, 16]. 

 
3. Proposed protocol 
The proposed protocol is based on the idea of dividing the whole group into several 

subgroups as in Iolus protocol. This decomposition reduces the complexity for a member join or 
leave from O(n) to O(m), where n is the number of the whole group members and m is the number 
of each subgroup members. Each subgroup in turn is organized in a logical key hierarchy as in the 
LKH protocol which reduces the complexity for a member join or leave from O(m) to O(log m). 
The members in each subgroup contribute with each other to generate the subgroup key. This 
process delegates the key update process at a leave operation from the key server side to the 
member side. 

The proposed protocol works in a hierarchy of two levels of controllers; the first for the group 
controller (GC) and the second is the subgroup controller (SC). The GC shares a symmetric key 
with all SCs which are trusted entities. The role of the SCs is to translate the data coming to their 
subgroups. Each SC works as the server of its subgroup. Figure 2 illustrates the structure of the 
proposed protocol.  

 
 
 
 
The main objective is to establish a symmetric key between all group members in order to 

preserve the security of group communication. In case of a change occurs in the group membership 
by joining or leaving the group, the group key should be updated to maintain backward secrecy and 
forward secrecy 

The structure of the subgroup hierarchy in the proposed protocol is shown in figure 4. The 
subgroup is organized in a hierarchy like the LKH approach and KSG1 is the key of the 
subgroup number 1. For the operation of the proposed protocol, the following assumptions are 
made: 

• SCs are trustable and static entities (i.e. they can join the group but they not allowed to leave 
the group). 

•  Members are organized in a hierarchy of a binary tree to enhance the key distribution at 
leave operation. 

Figure 2: Structure of proposed protocol 
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• The total number of subgroups is n, all subgroups are of height h, subsequently, each 
subgroup contains m = 2h users. 

• Grouping operation is done taking into account the balance of the key distribution tree in 
each subgroup. 

• The GC searches for an empty place in all subgroups when a new member wants to join the 
group. If the GC did not found an empty place, it would create a new subgroup where the 
new member will be allocated. 

Figure 3 shows an example of a subgroup in the proposed protocol. From the hierarchy, we can 
see that the number of the subgroup members is m=8 and the height of the LKH is h =log2 8= 3. 

1. u1 and u2 agree on the node key K1,2. 
          u3 and u4 agree on the node key K3,4. 
          u5 and u6 agree on the node key K5,6. 
            u7 and u8 agree on the node key K7,8. 

2. u1, u2 and u3, u4 agree on the node key K1,4. 
            u5, u6 and u7, u8 agree on the node key K5,8. 

3. u1, u2, u3, u4 and u5, u6, u7, u8 agree on the  subgroup key KSG. 
 

The proposed protocol works as follows; the group key is only known by the SCs. The SCs 
share a symmetric key with the subgroup members this key is the subgroup key. The operation of 
the SCs is to decrypt the data come to their subgroups using the group key then they re-encrypt that 
data by their subgroup keys and send it encrypted to their associated subgroups members by 
multicast. The members of the group don’t have to know the group key instead they have to know 
the key of the subgroup which they belong to in order to decrypt the ciphered data come to them 
from their associated SC. In the following paragraphs, we explain the operations of the proposed 
protocol in details. 

 
 
 

Figure 3: The structure of the subgroup hierarchy in the proposed protocol 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2010|No.2(25) 
 

    25

3.1 Key Structure 
The proposed protocol uses the modular exponential function as a one-way function. In this 

function, p is a large prime and g is a primitive element of multiplicative group *Z  [17], it is 
computationally different to determine α given g and gα (mod p). Based on this property, the 
subgroup key and the node keys are organized as follows: 

1. The member secret i
ja  is selected under the condition that 2< i

ja <p-2 and gcd ( s
ja , p-1)=1.  

2. The server secret s
ja is selected under the condition that 2< s

ja < p-2.  
Using those secrets, the subgroup key for subgroup j is calculated by equation 1. 

                                                                                      (1) )(........21

pModgK
S
j

m
jjj aaaa

SGj ≡
The node keys are constructed by multiplying the exponents of its two child node keys in the 

logical key tree. This algorithm for rekeying can be illustrated using a simple example of a 
multicast subgroup of seven members. Figure 4 depicts the logical key tree for this subgroup. 

 

 
 

Figure 4:  Subgroup example in the proposed protocol 
 

Members u1 and u2 own keys K1 and K2 respectively, node keys K1,2 and K1,4, and the subgroup 
key KSG1. 

Members u3 and u4 own keys K3 and K4 respectively, node keys K3,4 and K1,4, and the subgroup 
key KSG1. 

Members u5 and u6 own keys K5 and K6 respectively, node keys K5,6 and K5,7, and the subgroup 
key KSG1. 

Member u7 own keys K7, the node key K5,7 and the subgroup key KSG1.  
 
In this situation, the keys are calculated as follows: 
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When the SC receives the partial keys from its two child node keys he puts his secret value a 
and generates the subgroup key KSG1 using equation 2 and multicasts that key to all subgroup 
members.                                           

                                                                                                (2) )(1
7
1

2
1

1
1 ........

1 pModgK
Saaaa

SG ≡
 
3.2. Subgroup controller join 
In the case of a SC join, suppose that a SCn+1 wants to join the group, the group key must be 

changed from K(G) into Knew(G). The group controller sends the new group key to the existed SCs by 
broadcasting this message: {Knew(G) }K(G) , {Knew(G) }K(GC,SCn+1), where Knew(G) is the new group key, 
K(G)  is the old group key and K(GC,SCn+1) is the symmetric key shared between the Group Controller 
GC and the new SC. The old SCs decrypt the first part of the message using the old group key 
which they already have to get the new group key. The joining SC decrypts the second part of the 
message using the symmetric key shared with him and the GC to get the new group key. Therefore, 
after joining of a new SC, only the subgroup controllers need to update the group key without 
affecting the whole group members. The GC makes two key encryptions; one for the old SCs and 
the other for the new SC. Therefore, the join of a new subgroup containing n members will require 
that the GC makes two encryptions and the whole group members not affected. Subsequently, better 
computation and communication performance can be achieved. 

To illustrate the role of the SC in the data transmissions suppose that a sender wants to send a 
message to subgroup number 1. The sender encrypts his message {M} by using a key KM and that 
key is also encrypted by using the group key KG. The sender sends the following message to the 
SC1: {M}KM,{KM}KG. When the SC1 received that message he uses the group key (KG) to decrypt 
the second part of the message and get the KM which he uses to decrypt the first part of the message 
to get the origin message and then encrypts it using the subgroup1 key (KSC1) and multicast the 
ciphered message to his subgroup members. 
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3.3. Member join 
If a member wants to join a group, he sends a ’join’ request to the GC who looks for a place 

to the new member and then directs him to a specified subgroup. The SC of the specified subgroup 
takes the join request from the group controller and makes changes to maintain the backward 
secrecy of his subgroup.  

The following example illustrates this process. Suppose that member u8 wants to join the 
group, he sends a ’join’ request to the GC who searches for an empty place and finds it in the 
subgroup number 1 (SG1) for example as shown in figure 5. The GC directs the new member to the 
SC1 who performs the following:  
• Creates a new node key K7,8, K7 becomes its left child and the key of the new member K8 

becomes its right child. 
• Assigns an identity to the new member. 
• Assigns a secret value 8

1a  to the new member and calculate its inverse value 8
1a - . 

• Changes his secret value s
1a  to change the subgroup key to maintain the backward secrecy. 

• Updates the path keys of the new member. 
• Sends the new keys and the inverse values of the existing members to the joined member via 

unicast. 
• Sends the subgroup key and the inverse value of the new member to all subgroup members via 

multicast. 
 

The SC1 sends the following message to the members in his subgroup:  
{K'SG1, }KSG1,{K5,8}K5,7,{K7,8}K7,{K'SG1,K5,8,K7,8, }K8. All existing members obtain the 
new subgroup key K'SG1 and the inverse value of the new member 

-
1
8a 1 2 7

1 1 1.....a a a- - -

-
1
8a  by decrypting the first part of 

the message using the old subgroup key KSG1. The members u5, u6 and u7 obtain the new node key 
K5,8 by decrypting the second part of the message using the old node key K5,7 and obtains the node 
key K7,8 by decrypting the third part of the message,. The new member u8 obtains his path keys and 
the inverse values of the other member's secrets by decrypting the last part of the message as shown 
in figure 5. 

 
 

Figure 5: Keys structure of SG1 when u8 joins it. 
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So the new keys will be updated as follows: 
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3.4. Member leaves 
If a member wants to leave the subgroup he sends a ’leave’ request to the SC of his subgroup. 

The SC sends the identity of the leaving member and the keys which must be updated to the 
remaining subgroup members via multicast. When the members received the SC’s message they use 
the inverse value of the leaving member to update the keys in the message. 

In our example, if u8 wanted to leave the SG1, the keys KSG1, K5,8, K7,8 would be updated to 
maintain forward secrecy. According to our protocol, updated keys need not to be sent to the 
remaining members. Instead, the SC1 just prepare one message for subgroup 1 indicating u8 leaves 
and the keys must be updated. 

The SC1 sends the message {u8, K'SG1} K'SG1, {K5,8} K5,8. When the remaining members receive 
this message and find that the keys in the message are encrypted by the same keys they know that 
there is a leave operation and the identity of the leaving member is 8. 

They use the inverse value of u8 ( -
1
8a ) to update the sent keys. So the new keys will be: 
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 As it is noticed, the key server doesn’t generate new node and subgroup keys after a leave. 
Instead, it just sends the identity of the leaving member and the keys that must be updated to the 
remaining members. The remaining members use the inverse value of the leaving member to update 
these keys. In this way, updating the keys after a leave is shifted to member’s side which improves 
the efficiency of re-keying at leave. 
 

4. Protocol Evaluation 
In this section, we compare the performance of the proposed protocol with that of simple 

App., LKH based protocols and Iolus protocol for join and leave operations. For the comparison to 
be conducted, the following general assumptions are considered: 
• The total number of subgroups in both Iolus and the proposed protocol is N=16 subgroups. 
• The total number of each subgroup members is m members. Subsequently, the total number of 

the whole group is  mN  members. n ×=
•  The height of the proposed protocol's tree is h, where h = log2m, i.e. the total number of each 

subgroup members is equal to m = 2h. 
 
The comparison will be undertaken according to the following criteria: 
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• Computational overhead: 
 Key generation overhead: the number of keys that must be generated at join and leave by the 
key server and a member node. 

 Encryption/Decryption overhead: the number of encryptions at the key server and the 
number of decryptions for a member node. 

• Communication overhead: the number of transmissions from the key server. 
• Message size: the number of keys in one multicast message. 
• Storage overhead: the number of keys stored at the key server, and by a member node. 
 

4.1. Computational overhead 
Computational overhead can be divided into key generation overhead and encryption/ 

decryption overhead. 
 

4.1.1. Key generation overhead 
Key generation overhead is the number of keys that must be generated at join and leave 

events by the key server and a member node.  
In the simple approach, the key server generates two keys; an individual key to the joined 

member and a new group key at a member join operation. At a member leave operation, the key 
server generates only a new group key and distributes it to the group members encrypted with their 
individual keys [24].  

In the LKH protocol, when a new member joins a group, the key server generates a session 
key to the new member and new log2n keys to maintain backward secrecy. When a member leaves a 
group, the key server generates log2n keys [2].  

In the Iolus protocol, when a new member joins a subgroup, the subgroup controller, which 
plays the role of the key server for its subgroup, generates only two keys. At a member leave 
operation, the subgroup controller generates only a new subgroup key and distributes it to its 
subgroup members [9]. 

In the proposed protocol; when a new member joins a subgroup of m members. The subgroup 
controller gives a session key, a secret value and the alternative key of its subgroup to the new 
member. Then it changes all the intermediate node keys from the node of the joining member to the 
root key which represents the subgroup key by factoring and changing its secret value in the 
subgroup key and the intermediate node keys after adding the new member’s secret value to them. 
Consequently, the subgroup controller generates log2m keys, in addition with the session key and 
the secret value of the joining member. 

At a member leave operation the subgroup controller doesn’t generate any keys. Instead it 
multicasts the identity of the leaving member to all the subgroup members to be factored from the 
subgroup key by using the leaving member’s inverse value. 

Table 1 shows the time complexity of key generation overhead at the key server and member 
nodes along the path at join and leave operations for all the examined protocols. Figure 6 shows the 
number of keys generated at the key server at join operation.  

From table 1 and figure 6, we can see that the simple approach and Iolus protocols have the 
smallest overhead of the number of key generated by the key server at a member join. Since the 
height of the subgroup tree hsgrp in the proposed protocol is less than that of the LKH protocol hLKH, 
the proposed protocol has a less overhead than the LKH protocol. In the proposed protocol, the key 
server generates log2m keys, at the same time it generates log2n keys in the LKH protocol. Figure 7 
shows the number of keys generated at the key server at leave operation. From that figure one can 
notice that the proposed protocol has the smallest overhead at the leave operation because the key 
server doesn’t generate any keys in that case. 
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Table 1: Complexity of key generation overhead at the key server and a member node for join and leave 

operations 
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Figure 6: Number of keys generated at the key server at join operation 
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Figure 7: Number of keys generated at the key server at leave operation 
 

 Key server Member nodes 
 Join Leave Join Leave 
Simple App. 0 0 0 0 
LKH O(log2n) O(log2n) 0 0 
Iolus 0 0 0 0 
Our protocol O(log2m) 0 0 0 
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4.1.2. Encryption/decryption overhead 
Encryption/Decryption overhead is the number of encryptions at the key server and the 

number of decryptions for a member node. 
In the simple approach, when a new member joins a group, the key server multicasts a new 

group key to all group members encrypted with the old group key. Further, the key server sends the 
new group key to the new member encrypted by its session key. So, the key sever performs two 
encryptions when a new member joins its group. The new member and the existing member make 
only one decryption. But, when a member leaves the group, the key server sends a new group key to 
the remaining n-1 members encrypted with their individual keys. So, the key server makes n–1 
encryptions at a member leave operation and each of the remaining members makes only one 
decryption [24]. 

In the LKH protocol, when a new member joins a group, the key server performs 3log2n 
encryptions. At a member leave, the key server performs 2log2n encryptions. Each member in the 
LKH protocol makes log2n decryptions at both a member join and member leave operations [2]. 

In the Iolus protocol, the key server makes two encryptions at a member join operation. At a 
member leave, the key server performs m-1 encryptions. Each member in this protocol performs 
only one decryption at both a member join and member leave operations [9]. 

The proposed protocol; is different from the LKH protocol in the number of encryptions per 
node. It uses a one-way function tree, the key server makes one encryption per node but in the LKH 
protocol it makes two encryptions per node. At a join operation, the key server must change the 
path keys of the joining member. The key server encrypts the new keys by its corresponding old 
keys. Since each subgroup of m members is organized in a hierarchical tree, the key server makes 
log2m encryptions. In order to obtain the new keys, the key server sends to the joining member its 
path keys encrypted by its individual key so that the key server makes other log2m encryptions for 
the joining member. So, the overall encryption performed by the key server at the join operation is 
equal to 2log2m.  

When a member leaves a subgroup, the key server must change the path keys of the leaving 
member so it performs log2m encryptions. When the members of a subgroup receive the encrypted 
log2m keys from the key server, each member makes log2m decryptions in a member join 
operations, but it doesn’t make any decryptions at a member leave operation as it only factors the 
leaving member’s secret value from the necessary keys by using the inverse value of the leaving 
member. 

Table 2 shows time complexity of encryption/decryption overhead at key server and number 
of decryptions at a member node at both join and leave operations. Figures 8(10) and 9(11) show 
the number of encryptions (decryptions) at the key server (a member node) at join and leave 
operations respectively. 

At join operation the Simple App. and Iolus protocols have the smallest number of 
encryptions at the key server and number of decryptions at member nodes as shown from table 2 
and figures 8, and 10. But the proposed protocol has the smallest number of encryptions and 
decryptions at the key server and member nodes respectively at the leave operation as shown from 
table 2 and figures 9 and 11. 

 
 

Table 2: Complexity of encryption/decryption overhead at the key server and a member node for join and 
leave operations 

 
 

 Key server Member nodes 
 Join Leave Join Leave 
Simple App. 0 O(n) 0 0 
LKH O(log2n) O(log2n) O(log2n) O(log2n) 
Iolus 0 O(m) 0 0 
Our protocol O(log2m) O(log2m) O(log2m) 0 
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Figure 8: Number of encryptions at the key server at join operation 
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Figure 9: Number of encryptions at key server at leave operation 
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Figure 10: Number of decryptions at member nodes at join operation 
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Figure 11: Number of decryptions at member nodes at leave operation 
4.2. Communication overhead 
The communication overhead is the number of transmitted control messages from the key 

server. 
In the simple approach, when a new member joins the group, the key server sends two control 

messages including the new group key. One message to the existing group members and the other 
to the joining member. If a member leaves a group of n members, the key server encrypts the new 
group key with the individual keys of the remaining n-1 group members and sends n-1 control 
messages to them [24]. 

In the LKH protocol, when a member joins a group, the key server transmits 2log2n-1 
messages to the group members. When a member leaves a group,   the key server transmits at most 
2log2n messages to the remaining members [2]. 
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In the Iolus protocol, at a member join operation, the subgroup controller multicasts a 
message to all subgroup members with the new subgroup key and sends a message with the new 
subgroup key to the joining member via unicast. At the leave operation, the subgroup controller 
transmits either m-1 separate messages involved the new group key encrypted by each member 
individual key to the remaining members or transmits one message containing m-1 copies of the 
new subgroup key each encrypted with a different individual key [9]. 

In the proposed protocol, when a new member joins a subgroup, the key server changes its 
path keys and transmits only one message involves the new keys encrypted by the old subgroup key 
to the existing subgroup members. When an existing member leaves a subgroup, its path keys must 
be changed. The key server transmits one message containing the identity of the leaving member. 
The remaining members use this identity to obtain the new keys.  

Table 3 shows the time complexity of communication overhead for the key server at leave and 
joins operations. It is important to note that the control messages transmitted only from the key 
server, so considering member node in the table is meaningless. Figure 12 shows the number of 
transmitted control messages from the key server at leave operation. 

 
 Join Leave 
Simple App. 0 O(n) 
LKH O(log2n) O(log2n) 
Iolus 0 O(m) 
Our protocol 0 0 

Table 3: Complexity of communication overhead at the key server for leave and join operations 
 
 
From table 3 and figure 12, one can notice that the Simple App., Iolus and proposed protocol 

have the smallest communication overhead at join operation compared with the LKH protocol. At 
leave operation, the Simple App. has the biggest overhead and the proposed protocol has the 
smallest since the subgroup controller sends a single message at a member leave operation. 
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Figure 12: The communication overhead at leave operation 
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4.3. Message size 
Message size is given by the number of keys included in one multicast message. 
In the simple approach, only two keys are included in the message sent by the key server to all 

group members at a join operation; one encrypted by the old group key and the other encrypted by 
the new member’s individual key. At leave operation, the key server multicasts a message of n-1 
keys that are the new group key encrypted by each member individual key [24]. 

In the LKH protocol, the number of the keys included in one multicast message at a member 
join operation is 2log2n-1 keys. The message size at a leave operation in the LKH protocol is 2log2n 
keys [2]. 

In the Iolus protocol, the multicast message includes only two keys at a member join operation 
and it includes m-1 keys at a member leave operations [9]. 

In the proposed protocol, the message contains log2m+1 keys at a join operation; log2m new 
path keys of the joining member and the inverse value of the joining member all encrypted by the 
old subgroup key. At a leave operation, the subgroup controller sends a multicast message including 
only the identity of the leaving member to all the subgroup members. 

Table 4 shows time complexity of message size at the key server for join and leave operations 
in one multicast message. Figures 13 and 14 show the number of keys in one multicast message at 
the join and leave operations respectively. 

 
 Join Leave 
Simple App. 0 O(n) 
LKH O(log2n) O(log2n) 
Iolus 0 O(m) 
Our protocol O(log2m) O(Log2m) 

 
Table 4: Complexity of message size at the key server for join and leave operations 

 
As shown in table 4 and figures 13 and 14, the Simple App. and Iolus protocols have the 

smallest overhead at join. They have the biggest overhead at leave operation. The proposed protocol 
is better than the LKH protocol at join operation and it is the best protocol at leave operation. 

 0

 10

 20

 30

 40

 50

 16  64  256  1024  4096  16384  65536

M
es

sa
ge

 s
iz

e 
at

 th
e 

jo
in

 o
pe

ra
tio

n

Group size

"Our Protocol"
"Simple App."

"Iolus"
"LKH"

 
 

Figure 13: Message size overhead at join operation 
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Figure 14: Message size overhead at leave operation 

 
4.4. Storage overhead 
Storage overhead is the number of keys stored at the key server, and by a member node.  
In the simple approach, a member node stores only its individual key and the group key, but 

the key server stores n individual keys and the group key [24]. 
In LKH, the number of keys stored in the key server in d-ary protocols is equal to 

⎥⎦
⎤

⎢⎣
⎡

−1d
d n. So, 

the key server stores 2n, where n is the number of the group members. Each member stores all its 
path keys from itself to the root key which represents the group key in addition with its session key. 
So, each member stores log2n + 1 keys [2]. 

In the Iolus protocol, the subgroup controller of a subgroup of m members stores m individual 
keys and the subgroup key in addition with the group key shared with the other GSAs. On another 
hand, each member of a subgroup stores only its individual key and the subgroup key [9]. 

In the proposed protocol, the key storage in the key server is the sum of 2m-1 node keys, m 
inverse values of the subgroup members and the alternative key of the subgroup. So, the key server 
stores 3m keys. Each member stores its path keys log2m and m-1 inverse values of the group 
members. So, each member stores m+ log2m-1. 

 
 Key server Member node 
Simple App. O(n) 0 
LKH O(n) O(log2n ) 
Iolus O(m) 0 
Our protocol O(m) O(m) 

 
Table 5: Complexity of storage overhead at the key server and a member node 
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Figure 15: Storage overhead at the key server 

 
Table 5 shows the time complexity of the storage overhead at the key server and a member 

node. Figures 15 shows the number of keys stored at the key server.  
As shown in table 5 and figure 15, the Iolus protocol has the smallest storage overhead at both 

the key server and member nodes. Our protocol is worse at key storage overhead than the Simple 
App. and Iolus protocols at both the key server and member nodes but it is better than the LKH 
protocol as shown in figure 15. 

From the above analysis, we can say that the proposed protocol enhances the group 
performance in terms of communication and computation overhead especially at the leave 
operation. 

 
5. Conclusion 
In this paper, we propose an efficient and a scalable protocol to solve the problem of 

distributing a symmetric key between the whole group members for secure multicast 
communication. It divides the whole group into several subgroups as in the Iolus protocol. Each 
subgroup in turn is organized in a logical key hierarchy as in the LKH protocol. This decomposition 
reduces the complexity for a member join or leave form O(n) to O(log2m), where n is the number of 
the whole group members and m is the number of each subgroup members. The performance of the 
proposed protocol is compared with that of the Simple App., Iolus and LKH protocols. The 
comparison is undertaken according to the computational overhead, communication overhead, 
storage overhead, and message size. The results show that the proposed protocol enhances the group 
performance in terms of computation overhead, and communication overhead especially at the 
leave operation. 
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