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Abstract: 
Proposed by V.Ya. Fainberg et al. "Yang-Mills Field Quantization InModified Axial 
Gauge" is advanced and gluon Green function in a modified axial gauge is calculated. 
Green function evaluation in these gauges is not based on the theory of perturbations. 
The calculation results in a simple algebraic system of the equations and this system 
allows one to calculate Green function in these gauge. We found an expressions, which 
is in a good accordance with the results of earlier works. 
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Since the works by Schwinger [1] and Fradkin [2] an axial gauge 0=μμAn  (in particular 00 =A ) 
in gauge theories began intensively be investigated. These gauges possess a serious of attractive 
features: there are no ghost-fields in them, that in particular simplifies Ward's identities and allows 
to hope for obtaining the 'closed' equations only for fermions and gauge fields [3]- [12],  secondly, 
the presence of residual symmetry enables to take into account non trivial topological 
configurations [13], on canonical quantization. Also, the light-cone gauge  is the most 
convenient in connection with quantization of supersymmetric Yang-Mills theories [14]. But on the 
other hand, the big 'residual' symmetry in gauge 

02 =n

0=μμAn  appearing at canonical quantization in 
non-renormalizable of the physical vectors state satisfying Gauss law, in occurrence of ambiguities 
at avoid of poles of )(1 nk in of propagating function of gauge particles. One of ways definition 
avoid of these poles is introducing of arbitrary rule for avoiding, i.e. introduction definition  
expressions with a pole as a limit at 0→ε analytical function [15]. In particular, to this problem 
are devoted serious of works of A.A. Khelashvili et al. [6], [9]-[10]. Particulary, in [6] using the 
Delbourgo representation [15] for the three-gluon vertex function as the solution of the Slavnov-
Taylor identity, it is shown that the Dyson-Schwinger equation for the gluon propagator in the axial 
gauge reduces to the linear integral equation for the spectral density. By means of going to the light-
like gauge the explicit form of this equation is derived the solution of which has the same behavior 
in both the ultraviolet and infrared regions, in distinction with [15]. It is possible, the approaches for 
avoidance of poles of )(1 nk in the 00 =A  gauge, by obtaining the propagator for 'longitudinal' 
gluon which could describe transition between the physical vectors satisfying Gauss law [16]. 

For avoidance of the above mentioned poles, in the spirit of the works [9],[17], by means of 
modification of the gauge condition 00 =A  the residual gauge degrees of freedom temporarily are 
frozen that after all calculations and the frosts parameter are sent to zero [18]. Thus some 
advantages of gauges are saved.  0=μμAn

It should remark some  works which appeared later: review by R.Alkofer [19] and 
references therein. 

In work [18] by  V.Ya. Fainberg et al. the gauge 2k

k
int μ

μμ ε+=  was proposed and the 

Green function was found. Here ε is a constant and has dimension ][k  and, the gauge is named as 
the generalized axial gauge. 
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In present article we propose scheme for calculation of the Green function in the generalized axial 

gauge like 
( )

22 k
nnk

i
k
k

int μμ
μμ εε −+=  and compute the Green function in this gauge. 

 
Let us write down Lagrangian of the gauge field 
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= , )(AF  is a function fixing the gauge and  is some integer-differential 

operator. 
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Because the Lagrangian is a real function, we conclude, that ( ) ( ktkt −= ∗

νμ ) is unique 

vectors in Euclidian space, and we can choose 12 =μn . Equation for gluon field can be obtained by 
varying the Lagrangian (1): 
 

[( � ( ) ( ) (1 fktkt −+∂∂− ∗
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δ � ] ( ) 0) =xAμ          

 
 
and for the Green function we find in momentum space the following expression: 

     [ ( ) ( )
(1

22
f

k
ktkt

k
kk −

−−
∗
νμνμ

μν α
δ � ] ( )

2)
k

xG s
s

μ
ν

δ
−=      (2) 

 
Here (f �  is introduced for maintenance of dimensionless of the third term. Choosing  ) (f � = � 
in the momentum space, we get the following equation 

)
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Substituting into (3) we obtain the functional equation for definition of the gluon Green 
function 
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Having solved the functional equation (4) we can determine gluon Green function. We shall not 
solve the equation (3) but determine gluon Green function employing the following scheme. The 
analysis of Eq.(4) reveals that gluon Green function has the tensor structure: 
 
                                      ( )νννννν βββδβ knknnnkkG ssssss ++++= 4321   .                                 (5) 
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Multiplying Eq.(5) by , skkν sνδ ,  and  we get the following system of the algebraic 
equations: 

snnν sknν
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To define the right part of the system (6) we multiply Eq. (4) by and obtain the following 
system: 
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Having solved the system (7) we find 
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and ssGννδ  is determined by multiplying the equation (4) on sμδ , which results in the equality 
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Thus the system (6) can be rewrite in the following form: 
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Solving the  system (8) we get the following values: 
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Thus for gluon Green function we find the formula: 
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This formula is the gluon Green  function in the gauge - 
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of the works [3], [4], [8]-[10], [11], [12], [20]. It is worth to note that at ( )
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(9) has a pole. It is a simple pole and the rule for avoiding this pole is usual, and it should be noted 

that this pole dapper, that is depending on the value of  ( )
2

2

k
nk  pole is displaced to the right. 

In the work [20] the gauge vector was introduced and demonstrated that the gluon Green  
function is perpendicular to the gauge. The formula (6) at 0=α and 0→ε  is perpendicular to an 
unit vector in the Euclidean space 
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Hence, the gauge and unit vectors in the Euclidean space have the same direction. Now we 
shall consider the generalized axial gauge of the following form: 
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Substituting to in the equation (2) we find: μt
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The analysis of this equation shows that its structure can be presented just as in Eq.(5). 

Repeating the offered order of operations described above,  get the system of the algebraic 
equations similar to (6): 
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Thus, it is necessary to solve the following system of the algebraic equations: 
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Solution of this system has the form: 

;1
21 k

−=β             
( )( ) ( ) ⎭

⎬
⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

++
⎩
⎨
⎧

+
−=

2

2
2

2

222

1
11

k
nkk

inkk
εα

ε
β  

;03 =β                  ( )
( )( )

;1
224

ε
β

inkk
nk

+
⋅−=  

 
and the gluon Green function is given by the equation: 
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The formula (10) has the pole  at the point---. This pole is shifted towards values ----a pole of the 
formula(8). Here transversity of the Green function to the unit vector in the Euclidean space is also 
satisfied. 

Now we shall consider the following modified axial gauge: 
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Substituting value  in the equation (2) and choosing,  μt (f � =�  we  get the following 
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We multiply this equation on  and then on  and find the following equations: μk μn
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Having solved this system we obtain the following expression: 
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Multiplying the equation (10) on   sμδ we find 
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From the equation(10) it follows that the tensor structure of can be submitted as (5). Repeating 
the operation used above to derive formula (8) we obtain the following expression: 
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;03 =β                  

( ) ( )
( )

;2
1

1
22

2

24 ε

ε

β
+

+
⋅=

nk
nk

nk

k
 

 
Thus for the  gluon Green function we derive the following formula: 

{
( )( ) ( ) ( )

( ) ( )
( )( ) }
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ε
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⎝
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nknk
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nk
nk

kk
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s

ss  

 
This formula at 0→ε coincides with results of the works [3], [4], [8]-[10], [11], [12], [20]. At 

( )nki±=ε  the last formula (11) have simple dipolar and these poles lie in plane. A rule of detor of poles is 
usual. From the formula (11) follows that at 0→ε  and 0=α  it cross: 

0== μννμνμ GnGn . 
 

In finally we note, that the obtained results can be applied for calculation of various 
quantum-field functions and physical observables in QCD and in any chromodynamics  models. 
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