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Abstract:

In present work we review our results of investigation of multi-particle equations in
Nambu--Jona-Lasinio model in mean-field expansion. To formulate the mean-field
expansion we have used an iteration scheme of solution of the Schwinger-Dyson
equation with fermions bilocal source, which has been developed in works by V.E.
Rochev et al. We have considered equations for Green functions of Nambu--Jona-
Lasinio model up to third step for this iteration scheme, which essentially based on
our previous results. The correction of pion amplitudes to a quark mass are
calculated, also, in the Nambu-Jona-Lasinio model with 4-dimensional cutoff
regularization and dimensional-analytically regularized Nambu-Jona-Lasinio model
in mean-field expansion. The analytical calculation shows that in pole approximation
of pion amplitude (which corresponds to the leading singularity of pseudo scalar
amplitude) the pion contribution to quark mass exactly equals zero. But for the non-
pole approximation of pseudo scalar amplitude the situation is different: value of
numerical results differ from zero. Coincidence of results in both regularizations one
can signify that the zero value of the pion correction to quark mass is the
regularization-independent fact of Nambu-Jona-Lasinio model, in the limit of the
leading-singularity approximation of amplitude.
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1. INTRODUCTION AND A BRIEF REVIEW OF NONPERTURBATIV
FIELD- THEORETICAL EQUATION

Ever since the success quantum electrodynamics by Feynman et al. ( [1] and references therein),
corresponding field-theoretic formulations have been in the forefront of strong interaction dynamics
at once, the main strategy being to device various closed form approaches which are represented as
appropriate integral equation. One of the earliest efforts in this direction was Tamm-Dancoff
equation [2] for 'mesodynamics’, which was independent from each other is offered by Tamm and
Dancoff, however ( also see [3]), earlier the similar method has been applied to electrodynamics by
Fock [4]. The 3-dimensional Tamm-Dancoff equation and 4-dimensional Schwinger-Dayson
equation (SDE) have been the source of much wisdom underlying the formulation of many
approaches to strong interaction dynamics. To these one should add the Bethe-Salpeter equation
(BSE) [5], which is an approximation to SDE for the dynamics of a 4-dimensional two-particle
amplitude for the effective nucleon-nucleon interaction, but now adapted to the quark level. A
major bottleneck for the BSE approach is its resistance to a probability interpretation, since the
logical demands of its 4-dimensional content are incompatible with its approximate nature, which
has led to many attempts at 3-dimensional reductions: Logunov-Tavkhelidze quasipotentials [6],
Kadyshevsky formalism [7], and remark Georgian theorists et al. efforts [8], (for more review for 3-
dimensional reductions see [9] and refs. therein, also).
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The multi-particle (three or more particle) generalizations of the BSE have been also
studied. A straightforward generalization of two-particle BSE has been intensively studied in
sixties-seventies of last century. A best exposition of these studies can be found in the work of
Huang and Weldon [10].

An essential imperfection of the original Bethe-Salpeter approach to multi-particle equations
was a full disconnection of the approach with the field-theoretical equations for Green functions
(which are known as SDE). This imperfection has been eliminated by Dahmen and Jona-Lasinio,
which had included the BSE to the field-theoretical Lagrangian formalism with the consideration of
functional Legendre transformation with respect to bilocal source of fields [11]. Then this approach
has been generalized for multi-particle equations with consideration of Legendre transformation
with respect to multi-local sources [12].

However, these theoretical constructions had not solved the principal dynamical problem of
quantitative description of real bound states (nucleons, mesons etc.). A solution of BSE-type
equations has been founded as a very complicated mathematical tool even for simple dynamical
model. There is a main reason of a comparatively small popularity of the method of multi-particle
BSE-type equations among the theorists. Much more popular approach to the problem of
hadronization in QCD is based on the 't Hooft's conjecture that QCD can be regarded as an effective
theory of mesons and glueballs [13]. Subsequently, it was shown by Witten that the baryons could
be viewed as the solitons of the meson theory [14]. Futher development of these ideas has been
successful and has leaded to the prediction of pentaquark states in baryon spectrum [15].

Nevertheless, the investigations of multi-quark equations are of significant interest due to
the much less model assumptions in this approach in comparison with the chiral-soliton models.
The solutions of multi-quark equations will provide us almost exhaustive information about the
structure of hadrons.

We shall investigate Nambu--Jona-Lasinio (NJL) model with quark content which is one of
the most successful effective models of QCD in the nonperturbative region (for review see [16],
[17]). In overwhelming majority of the investigations, the NJL model has been considered in the

mean-field approximation or in the leading order of % —expansion. However, a number of
C

perspective physical applications of NJL model is connected with multi-quark functions (for
example: meson decays, pion-pion scattering, baryons, pentaquarks etc.). These multi-quark
functions arise in higher orders of mean-field expansion (MFE) for NJL model. To formulate MFE
we have used an iteration scheme of solution of SDE with fermion bilocal source [18].

We have considered equations for Green functions of NJL model up to third step of
iterations. The leading approximation and first step of iteration maintain equations for the quark
propagator and the two-quark function and also the next-to-leading order (NLO) correction to the
quark propagator. The second step of this iterations maintains the equations for four-quark and
three-quark functions, and third step of iterations maintains the equations for six-quark and five
quark functions [19].

Since the mean-field approximation includes quark loops and the non-renormalizability of
the NJL model implement to the indispensable the successful choice a regularization. Most common
regularizations for NJL model traditionally entail a four-dimensional cutoff (FDC) regularization or
a three-dimensional momentum cutoff regularization. Other regularization schemes also are used
for NJL model [20].

In the framework of dimensional-analytically regularization (DAR) in MFE the scalar
meson contributions in chiral quark condensate are calculated in [21], [22]. It was shown that
sigma-meson contribution in chiral condensate for physical values of parameters is found to be
significant and should be taken into account in the choice of the parameter values. Carry out
improved fit of parameters of SU,, (2)xSU ,(2) symmetric NJL model.

In the work [22] has done a systematical comparison of the dimensional-analytically
regularized NJL model with the NJL model with FDC regularization. Apart from the corrections to
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chiral condensate it was calculated also the corrections to quark mass in both regularizations. The
numerical calculations at two characteristic values of condensate show that the pion contribution to
the quark mass in both regularizations are equal to zero.

The present work, which essentially based on results [19], [23], is devoted to analytical
calculations of pion correction to the quark mass.

2. MEAN-FIELD EXPANSION IN BILOCAL-SOURCE FORMALISM FOR NAMBU -
JONA-LASINIO MODEL

We consider NJL model with the Lagrangian
L=gidy + [ + (Firay]

The Lagrangian is invariant under transformations of chiral group SU, (2)xSU,(2), which

correspond to up and down quark sector.
A generating functional of Green functions (vacuum expectation values of T —products of
fields) can be represented as the functional integral with bilocal source:
G(7)=[D(w,w Jexpi{dxL — [ dxdyi (y)n (y, xJw (x)}.
Here 7(y, x) is the bilocal source of the quark field.
The n—th functional derivative of G over source is the n—particle (2n-point) Green
function:

oG | =i"< x 7z (v. ) -wx o -
577(y1’X1)"'577(yn,Xn),7:o - OlT{l’[/( 1)‘V(y1) ‘//( n)‘/’(yn)}lo S, X y

Translational invariance of the functional-integration measure gives us the functional-differential
SDE for the generating functional G :

Ox=y)6 418, 0 ig{577(§y, x)t{aﬁi )%%W%}} -

= Taxyp(x, xl)ﬁ - 1)

We shall solve this equation employing the method which proposed in work [21].
Functional G™ is
g = pgO
where P is a polynomial of 2n —th order over the bilocal source 7.

2.1. LEADING ORDER AND FIRST STEP OF ITERATION:
THE EQUATIONS FOR QUARK PROPAGATOR AND TWO-QUARK GREEN
FUNCTION

A leading approximation is an approximation of the functional-differential SDE (1) without
r.h.s. A solution of the leading approximation is the functional
G = exp{Tr(S *7)}
Here and below Tr is a trace in operator sense, * multiplication operator. Function S is a solution
of the equation

5(x)+i0S(x)+igS(xtr[5(0)]=0
The unique connected Green function of the leading approximation is the quark propagator

S . Other connected Green functions appear in the following iteration steps. The quark propagator
in the chiral limit is
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50 =5 =(m-p)",
where m is the dynamical quark mass, which is a solution of gap equation in the chiral limit

where dq :d% ¥
T

The leading approximation generates the linear iteration scheme:
G=GY+GY+...4G"M +...,
where n —th step functional G is a solution of the equation

. d
m= —8|gmncjmi2—ﬁqz, (2)

_sa (n) (n) _ s
6™+ 1ig) L | e L] e B | ea @)
on on on on on on
A solution of first-step equation (i.e. the Eq.(3) at n=1)
is functional

GY = {%Tr(s2 wn?)+Tr(s® *772)}6(0)

The iteration-scheme equations give us the equation for two-particle function S, :

SZ[X yj: —S(x—y')S(x'—y)+ igjdxl{(s(x— X, )S (X, - y))tru[sz(E ;‘1)} _

X! y!

—<s<x—x1>ms<xl-y»(r{ysrs{xl ﬂ} @

Xl y!

(here tr, denotes the trace, which includes the upper line of function S, ) and the equation for NLO
correction to quark propagator s®

. Xy ac [ %1 Y a
S(l)(x—y)zIgjXmS(X—Xl%S{Xi XJ—}/ST S{Xi leysr }+

+ ig.[dx1s(x —X )S (X1 - y)trS " (0) )

The graphical representations of two-quark function see on Fig. 1, where the graphical notations of
Fig. 2 are used.

Figure 1. The equation for two-quark function
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Figure 2. Diagram rules

These equations reduces in the momentum space to a system of simple algebraic forms. The NLO
mass operator ¥¥=5V 5@ xS (where S® NLO quark propagator), is defined in x — space by
equation:

YO(x)=S(x)A, (x)+3S(= x)A, (x)+igs(x)trs¥(0) . (6)

The Egs. (4)-(5) can be easily solved, and the solutions contain singlet scalar quark-antiquark bound
state with mass 2m (sigma-meson) and massless (in the chiral limit) pseudo scalar bound states
(pion). To describe the solution of the equation for two-quark function and for future purposes we
introduce the composite meson propagators by following way:

a) Let us define scalar-scalar function

sg(x—xvztr[s{; ﬂ < Py ). o

From the Eq.(4) for two-quark function we obtain (in momentum space)

1 .
So‘(p):E(l_lAa(p)) ) (8)
Here we define the following function, which we call sigma-meson propagator
Z(p)
A ==\
A= (©)
where ( )
l,(4m?
Z,(p)=-"
(P’
and
1
l,(p)=[dq (10)
(oo o)

The integral (10) is divergent, and it should be considered as a regularization.
b) Pseudoscalar-pseudoscalar function is defined as

S®(x—x')=tr| S e — | ~<pr.—yw Xy, —w(x)> . 11
P(x=x) {Z(X;X;}/sz?/sz} Vs v s y(x) (11)
From the Eq.(4) for two-quark function we obtain (in momentum space):
al 1 al T Adl
s”b(p)=—5(5 > _ia®(p)). (12)

Here we define the pion propagator
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p®(p)=-2" pzz(p) (13)

1,(0)

h Z = .
where Z_(p) (o

2.2. SECOND STEP: THE EQUATIONS FOR FOUR-QUARK AND THREE-QUARK
GREEN FUNCTIONS

Second-step generating functional is

G[y)= {%Tr(SA * 774)+%Tr(83 . 773)+%Tr(8§1) #n?)+Tr(s® *n)}e ©,

The equations for four-quark and three-quark functions see on Figs.

3 and 4.
Si e =3 u —<—9
>

Figure 3. The equation for four-quark function

:_Z.Dc_z.;@% ;

Figure 4. The equation for three-quark function

The equations for the four-quark function S, and for the three-quark functions S, are new.
In the second step we obtain also the equations for NLO two-particle function Sgl) and next-to-
next-to-leading order (NNLO) correction to propagator S® These equations have the same form as
the corresponding first step equation except of the inhomogeneous terms. The inhomogeneous term
of NNLO quark propagator contains NLO two-quark function SS) and the inhomogeneous term of

equation for NLO two-quark function SS) contains three-quark functionS,, also NLO quark

propagator sW (it is naturally, i.e. the derivatives of first step functional to form the
inhomogeneous term, also (see Eq. (3) ) ).

The equation for the four-quark function has a simple exact solution which is the product of
two-quark functions (see Fig. 5). As is seen from this solution, the 7z —scattering in NJL model is
suppressed, i.e. in the second step of iterations this scattering is absent, and it perhaps arises in the
third step of the iteration scheme only.
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Figure 5. The solution of equation for four-quark function

2.3. VERTEX onr

The existence of the exact solution for the four-quark function gives us a possibility to
obtain a closed equation for the three-quark function. As a first step in an investigation of this rather
complicated equation we shall solve a problem of definition of ozz — vertex with composite sigma-
meson and pions. Let us introduce a function

X X . ) i
W:,?,, (XXIX”) =tr| Sy| X' X' |ys Z—77/5 % ~< VW(X)VJ“S %V/(X’)Wﬂ“s %W(X”) >,
X” X”
and define:
a) scalar vertex
X" X _
V_(xx'x")= tr{s(x - x’)SZ[X” X"H = 2in, [ dx,v (xx'%,)A, (X, = X") . (14)

Here: v, (xx'x")=tr, [S(x—Xx")S,(x"—x")S(x"—x)] is the triangle diagram.
b) pseudo scalar vertex

a 4 b
v (xx") = t{s(x — X' %S{; :"jys %} = 2in, [ dx,v, (3%, )A® (x, — X"). (15)
Here:
v, (Xxx") =tr, [S(x — X )y, S(X' = X")y, S(x" = x)].
With definitions (7)-(15), for vertex function W ® we obtain the following equation:

W2 (xx'x") =W (xx'x")+ 2ign, [ dx, g (x —x, W22 (x,x'x"),

[oy/7/2 ey /2

where I (x)=tr,[S(x)S(-x)] is the scalar quark loop. Inhomogeneous term W™ is:

W (xx'X") =V 2 (xx'X")+V 2 (xx"X") + 4ig [ dx,V 22 (xx,x')8 2 (x, — X")+

/4

+ 4|gjdX1V a0 (XX:LX" 4a (X1 - X’)— Ig j Xm (VJ (Xxlxl)_ 4Vﬂa1a1 (XX1X1 ))S:b (X' . X”)

/4 V4

Using definitions (7)-(15) we have:
W, Goex )" = —2n, Jdbedx,o, (o, A (x, =X JA (= X7)+ A% (x, = X")A% (x, = X')
The equation for W ® can be easy solved in the momentum space and the solution is
W,z (pp'p")=iA, (P " (pp'p”)

19



Georgian Electronic Scientific Journal: Physics 2009|No0.2(2)

where pis o —mesons momentum, and p', p'* are pion momentum: p = p'+p"".
The connected part of W ® is the decay amplitude o — 7z . It has the following form:

a A 2nc 1AM m~1 )| A 22 YT "
W2 (oo™ = e A (p)o, (pp'0) 0, (0" YA ()8 (p)
(See also Fig.6.).

OTT

p//

o

Figure 6. The connected part of sigma-pion-pion

2.4. THIRD STEP: THE EQUATIONS FOR SIX-QUARK AND FIVE-QUARK GREEN
FUNCTIONS

The third-step generating functional is

GOy]= {éTr(s6 *776)+éTr(Ss *775)+$Tr(sf) *774)+%Tr(8§1) 0’ )+

+%Tr($§2> 1% )+ Tr(s® « n)}e 0,

The graphical representations of equations for six-quark function and for five-quark function see on
Figs. 7 and 8.

.@. HROD GBS e

3] - 3| |-
=g\ | S8 4T / 2 2

Figure 7. The equation for six-quark function
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Figure 8. The equation for three-quark function

The equations for the six-quark function and for the five-quark function in our iteration
scheme are new. The third step gives us the equations for NLO four-quark S fﬁ) and three-quark S§1)

functions, also NNLO two-quark function ng) (which have the same form as the second-step
equations except of the inhomogeneous term). The inhomogeneous term of the NLO four-quark
function S” contains five-quark S, and S, functions, and NLO two-quark function S%. Into

inhomogeneous term of equation for NLO three-quark function 83(1) enter: NLO four-quark function
s NLO two-quark function S and NNLO one-particle function $®. The equation for NNLO
two-quark function ng), which kernel is same form as the second- and first-steps equations, and it
inhomogeneous term contains NLO 3-quark function S and NNLO one-particle function S
The third step gives us also to the next-to-next-to-next-to-leading order (NNNLO) correction to
quark propagator S®. A inhomogeneous term of equation for NNNLO quark propagator contains
the NNLO two-quark function Sf) (note that the inhomogeneous term of analogous equation for
NNLO quark propagator s@contain NLO two-quark function Sgl)and a inhomogeneous term of

first-step equation for NLO quark propagator maintain two-quark Green function S(z)), and all
equations for quark propagators have the analogous form, except of the inhomogeneous term.

3. TWO-PARTICLE AMPLITUDE AND MESON CONTRIBUTIONS IN
CHIRAL CONDENSATE AND NLO MASS FUNCTIONS

It follows from two-particle equation (4) leading order (LO) two-particle amplitude A
(connected part of amputated two-particle function) consist of two parts: pseudo scalar amplitude
(pion) A_ and scalar amplitude (o —meson) A_ . In momentum space these amplitudes of the NJL
model depend on a momentum p only, where p is a sum of quark and antiquark momentum. They
have the form (see [21], [22] for detail):

A :j—r, 16
" 4nc|0 p2 p2 ( )
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A = 1
" an,1,(p?Jam? - p?)’
Here Io(pz)is two-loop integral, which has the form (10), and it should be considered as a

regularization.

The basic order parameter, which defines a degree of DCSB is a quantity y of chiral
condensate. Meson contribution to the chiral condensate can be calculated in the next-to-leading
term of the MFE. A free quark propagator and gap equation (2) for NJL model give us to
regularization-independent formula for LO condensate

(17)

7 =itrs(0)= —g . (18)
Let us defining NLO condensate:
7Y =itrs?(0) . (19)
For the ratio
Z(l)
r=%— (20)
X

of NLO condensate (19) to the LO condensate (18) we obtain the formula [22]

_ 8ign, dpdqg 2 2 2 _ 2
== Big] J<m2 ey _(p_q)z][[m - p? + 2(pa)la, (@) 3m* - p? + 2(pa)}a, (a)]: (21)
where
] :qup;mz (22)
(m? - p?)

The integral (22) is divergent, and it should be considered as a regularization. It follows from
equation (21), that the ratio r of NLO condensate to the LO condensate consist of two parts: pion
corrections (due to pseudo scalar amplitude A ) and corrections due to scalar amplitude A, :

r=r, +r,.
3.1. NLO MASS FUNCTION

Eq.(5) for NLO quark propagator S® and Eq.(4) for two-amplitude S, give us a possibility for
define the meson corrections to quark mass. First-order equations for iterations define corrections to
quark propagator (see [22]). NLO mass operator = has the form (6).
Let us to introducing dimensionless NLO mass functions a®and b%:
y= a® p —bWm (23)

and using the formula (20) for ratio of NLO condensate to the LO condensate in pion channel, we
obtain from (6) the expressions for a® and b® in momentum space the following formulas:

pal(p?)= Id’dmfi_—(fq)z[Aa(q)—f%Aﬂ(q)], (24)

(p-a)

b®(p?)=r- jdam[&(qHSAﬂ(q)]. (25)

Using expression (23) for the NLO mass operator, we may to rewrite inverse quark
propagator
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St=m-p-3" (26)
as the form:
St ={1+b")m—(1+a(1))p (27)

(where, according gap equation (2), m is LO quark mass).
Suppose the propagator has a pole in point p> =m?, which corresponds to a particle with

mass m, . According Eq.(27) we obtain following equations for quark mass m, :

b(m?) =m a(m?).
Since a”and b are small additions (a®”<<1, b® <<1 ), we can to expand a®(m?) and b® (m?)
near the point m and to obtain the formula for the quark-mass correction m =m, —m:

AN (@) 4 @(m(@)
m_bl(mz) a®(m®), (28)

4. NJL MODEL WITH DIMENSIONAL-ANALYTICAL REGULARIZATION AND
FOUR-DIMENSIONAL CUTOFF REGULARIZATION

The prediction of the model, however, are intimately compromising with the specific strategy
adopted to handle the ultraviolet divergences given the nonrenormalizable nature of the model.
Consequently, the quite essential point of the model is a regularization. Practitioners of the NJL
model have followed the attitude of using it as a regularization-dependent model, considering the
regularization procedure part of definition of the model, for example see [24].

Most common regularizations for NJL model traditionally entail a four-dimensional cutoff
in Euclidean momentum or a three-dimensional momentum cutoff. Other regularization schemes
(Pauli- Villars regularization or non-local Gauss form-factors) also are used for the NJL model.
Even more often there are a works, which use a dimensional regularization in NJL model. In [25]
the dimensional regularization is modified (which based on ideas of Wilson and Collins) to keep
four dimensional properties of the nonrenormalizable theory as much as possible. To achieve this
goal the dimensional regularization is applied to only the radial part in loop integrals. This is one of
the analytic regularization. The meson loop contribution to the chiral symmetry breaking is also
analyzed in the NJL model with the modified dimensional regularization [21]. In this treatment all
calculations are made in four-dimensional Euclidean momentum space, and the regularization
parameter is treated as a power of a weight function, which regularizes divergent integrals. It should
be stressed that in this treatment of dimensional regularization, the regularization parameter is not at
all a deviation in the physical dimension of space. In [26] it was studied characteristic features of
the NJL model in the dimensional regularization. As usual the dimensional regularization is applied
to momentum integrals for internal fermion lines. Since the model is not renormalizable, the authors
([26]) cannot take the four dimensional limit and they evaluated some physical properties of the
model in the space-time dimensions less than four. The authors ([26]) take notice of that only the
radiative corrections should be evaluated in the space-time dimensions less than four to keep the
four-dimensional properties in the real world. In [22] the meson loop contribution to the chiral
symmetry breaking is also analyzed in the NJL model with the modified dimensional regularization.

The calculating of the gap equation (2) in dimensional-analytical regularization (DAR) and
four-dimensional cutoff (FDC) regularization lead to (in detail see [21], [22]):

o \I+
1:k1“(§)(4”'v2| j | 29)

m
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1= kA(l—llog(n x)j , (30)
X
: gn.A° gn,m? N 2-D , :
respectively. Here, k, = > k= >— X=—5, &=——— (D —dimension of space) and
27 27 m 2

A are regularizations parameters in DAR and in FDC regularization, respectively.
The calculating of the integral (10) in both regularizations (in DARand in FDC
regularization) lead us:

2\PAR é a PP
2yfoc _ 1 X frnam P
[1,(p? ) = = [log(1+ %) 1+XF(1,1,3/2,4m2 - -
P’ £y P’ P’ (11.6/9. P
- 6m?(L+X) F(1,1,5/2, 4m*(L1+ x)]+ 6m’ F[1'1’5/2’W ]

Here F(a,b;c;z) isthe Gauss hypergeometric function.

5. MESON CONTRIBUTION TO QUARK MASS

5.1. MESON CONTRIBUTION TO QUARK MASS IN POLE APPROXIMATION
OF SCALAR AND PSEUDOSCALAR AMPLITUDES

Pseudo scalar amplitude A_ naturally is associated with the pion, which in the chiral limit is
a massless Goldstone particle. In both regularizations under consideration we can define a pion
propagator as a pole term of A™*, which leads to the singularity of pseudo scalar amplitude (see

[22]):

1
Apole:—, 33
T anl,(0)p? )

where |, (0) is defined by equation (31) for DAR and by (32) for FDC regularization and has the
following forms

oar 1 &
1,0 = @k (34)
[1,0)]™ = ( 4;)2 {l09(1+ X)—ﬁ} , (35)

correspondingly.
For the scalar amplitude the situation is different. In both regularizations function

I, (p) possesses a cut which originates in the point p* = 4m? . Nevertheless, for FDC is possible to
define a scalar sigma-meson propagator as [22]
Apole — 1
" 4anl,(4m? Jam? - p?)’

(36)
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since the integral [IO(4m2)]FDC (35) is a finite quantity. In a different way the matter is for DAR.
Quantity [I 0(4m2)]DAR is finite only at & <-1/2:
i g

[I0(4m2 )]DAR fe1p = _WLL 2

For the interpretation of the sigma-meson as a particle in the NJL model with DAR we can do the
following trick: since in the region —1< & <—1/2 integral 1, converges we use the above value in

the point p? = 4m?as a foundation an analytical continuation of the pole part of the amplitude on
parameter & the physical region 0 < & <1. Then the sigma-meson propagator for DAR will be [22]

pole ( \PAR 2igm2(1+ Zé‘)
(A= (p)] T - (37)
This expression was used for a calculation of the sigma-meson contribution in chiral condensate in
work [21]. Surely, such procedure of definition of sigma-meson propagator seems to be a somewhat
artificial. A more consistent procedure is a separation of a leading singular part of amplitude in the

region of physical values of regularization parameter & (see for more detail [21], [22]).
For the pseudo scalar amplitude the separation of leading singularity near point p? =0

leads to same result (33), i.e. the pion in DAR possesses all properties of usual observable particle.
For the scalar amplitude is not so. At p?—>4m? inregion 0 < & <1 [22]:

IDAR~i\/;F(§+1/2)_( 4m? J“’Z

° T 16gn,m?T(£) | 4m? - p?
and, correspondingly, the leading singularity, i.e. leading term in an expansion on powers of
4m? — p® is the expression

LsToaR _ igl“(g) . 4m? Hee
A= Jar(E+1/2) (4m2—p2J ' (38)

5.1.1. PION CONTRIBUTION TO QUARK MASS

According the Egs. (33)-(35) the expressions for pion amplitudes in pole approximation in
both regularizations (DAR and FDC regularization) has the forms
(Apme)DAR B 1 __ 2igm* (39)
V4 12p2|(;DAR(O) §p2 !

(Apole )FDC B 1 i Ar? . (40)

- 2 FDC
12p*15°(0) 3(Iog(1+x)—X jpz
1+X

The pion contribution NLO condensate in pole approximation of pion amplitude in both
regularizations (DAR Eq.(39) and FDC regularization Eq.(40)) is calculated by Egs. (21)-(22) in
pion channel

T

C__2dign, o [m” - p® +2(pg)lA, (g
1 (m* - p*f[m? - (p-a)]

~ 1-8ign,J
where J has the form (22). All integrals over dp and dg can be calculated in closed form, and the
results in both regularizations are the very simple expressions [21], [22]:
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MR é (41)
FoC _ log(1+ x)

8[Iog(1+ X)_1+Xx]

(42)
According the Eqgs. (24)-(25) the NLO mass functions a¥ and b in pion channel are defined by
the following equations:

200 _ (p2)= g 99 pse(q). 43
el =(p?)=—3 A (43)
o(p?)=r, ~3]—; 0 AP (g) (44)

m’—(p-qa) ”
Using the leading singularity approximation for (A,f‘"e )DAR (39) and (A,f‘"e )FDC (40) in (43) and

(44) after calculating the integrals in DAR and FDC regularization we obtain for the pion
corrections to the quark mass in next expressions according to (28)

om, o _ .DAR _i
[mj T e 4
8(Iog(1+x)—l+xj

From (45) and (46) it follows that, the pion contribution in quark mass is equal zero, according to
(41) and (42).

5.1.2. SIGMA-MESON CONTRIBUTION TO QUARK MASS

Consider a contribution of scalar amplitude in pole approximation A**° in quark mass. In
correspondence with Eqgs.(24) and (25) we have

~_ p*—(pa)
p*a(p?)=[dd——— PV A (q), (47)
m’—(p-aq)’
o(p?)=1, ~[dT A, ()
m*-(p-q)
(48)
To calculate this contributions we use the leading-singularity approximation for amplitudes:
1
AP = : (49)
an 1 (4m? fam® - p?) _, -
with

2\|[Foe i 1
[I0(4m )] —W{mg(ﬂ X)—\/;arctanﬁ}

according Eq. (32) in p® = 4m?, for FDG regularization and Eq. (38) for DAR.
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From Egs. (21)-(22) we obtain the quantity (r.)™" in DAR. A computation gives us the

following values for sigma-meson contribution: &=0,25 we obtain (r, )*** =-0,033; at &=0,4

)DAR

we obtain (r, —-0,01. The sigma-meson contribution is small in comparison of the

contribution and possesses the opposite sign, i.e. it decrease the common contribution (see [22],
note, that this result is qualitatively the same as result of work [21], in which was used a pole
approximation $A_\sigma$. Thus, all conclusions of work [21] about the part of the meson
contributions stand also for the more exact leading-singularity approximation, which is used in [22],
or in present work).

For FDC regularization the leading-singularity approximation for A_ coincides with the pole
approximation (49). The ratio in sigma-meson channel r_ calculated by Egs. (21)-(22). This
quantity for FDC is a function of x = A?/m?. The values of rFDC( ) for two characteristic values of

ratio: at x=3 (which corresponds to value ¢ = 21OMeV of the LO condensate) -
r°°(3)=-0,007. At x=19, which corresponds to value ¢'® =—-250MeV of the LO condensate,

o

the ratio is: r °°(19)=-0,116. In contrast to the DAR, the sign of sigma contribution for FDC is

the same as for pion contribution.
A sigma-correction to quark mass for DAR given by formula [22]

am "% COS .
( mvj :rUDAR—4l+§n§ (1/2-¢)
and attains: até=0,25: om>** =-0,086m, at £=04: om>*=-0,066m. Since a pion

correction to quark mass in this regularization equal zero (see above), these values are full
corrections to quark mass for DAR [22].

[5m6 ]FDC _ Foe 4log(1+x/4)-log(1+x)

m 8n, [log(1+x)+ \/;arctanxfllx] '

At x=3: om.°® =-0.022m; ;at x=19: ;"¢ =-0.158m [22].

5.2. PION CORRECTION TO QUARK MASS IN NON-POLE APPROXIMATION OF
AMPLITUDE

In sub subsection 5.1.1, using the pole approximation for the pseudo scalar amplitude in
both regularization ( in FDC regularization and DAR) we obtain the values for 7 —meson
contribution in quark mass equal to zero. However, since the model is not renormalizable in four
space-time dimensions, the physical results and parameters depend on the regularization method.
This lead us to calculate the correction to quark mass beyond the non-pole approach of the
amplitude. Using the expressions of pion amplitude (16) and the integral (31) in DAR, we can to
calculate the ratio in pion sector r_. Also, having calculated in DAR NLO mass functions by the

Egs. (24) and (25), according the formula (28) of NLO quark mass correction we obtain:

DAR ]non pole
om DAR Jnon-pole ®©

s - —k)'(3/2-k k,1+k; 2-¢;
{[mJ } e er(z s T KrE2— kR vk 1vk 2-6)

where

DAR Jnon-pole _ Sln(ﬂf) © Z—l—g 1 1-u 1+ U( 2)2
[rzz ] =-2 7[5 .[0 dz F(1+§,l;3/2;—2/4)".0d [1+U( )]1+§ {1 5"’(1 f) (1—U)Z:|
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From here is clears that the result differ from zero.
This means, that the zero value of the pion correction to quark mass is independent from
regularization choice in NJL model in leading singularity approach of pseudo scalar amplitude.
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