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  Abstract: 

In present work we review our results of investigation of multi-particle equations in 
Nambu--Jona-Lasinio model in mean-field expansion.  To formulate the mean-field 
expansion we have used an iteration scheme of solution of the Schwinger-Dyson 
equation with fermions bilocal source, which has been developed in works by V.E. 
Rochev et al. We have considered equations for Green functions of Nambu--Jona-
Lasinio model up to third step for this iteration scheme, which essentially based on 
our previous results. The correction of pion amplitudes to a quark mass are 
calculated, also, in the Nambu-Jona-Lasinio model with 4-dimensional cutoff  
regularization and dimensional-analytically regularized Nambu-Jona-Lasinio model 
in mean-field expansion. The analytical calculation shows that in pole approximation 
of pion amplitude (which corresponds to the leading singularity of pseudo scalar 
amplitude) the pion contribution to quark mass exactly equals zero. But for the non-
pole approximation of pseudo scalar amplitude  the situation is different: value of 
numerical results differ from zero. Coincidence of results in both regularizations one 
can signify that the zero value of the pion correction to quark mass is the 
regularization-independent fact of Nambu-Jona-Lasinio model, in the limit of the 
leading-singularity approximation of amplitude. 
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1. INTRODUCTION AND A BRIEF REVIEW OF NONPERTURBATIV  
      FIELD- THEORETICAL EQUATION  
 
Ever since the success quantum electrodynamics by Feynman et al. ( [1] and references therein), 
corresponding field-theoretic formulations have been in the forefront of strong interaction dynamics 
at once, the main strategy being to device various closed form approaches which are represented as 
appropriate integral equation. One of the earliest efforts in this direction was Tamm-Dancoff 
equation [2] for 'mesodynamics', which was independent from each other is offered by Tamm and 
Dancoff, however ( also see [3]), earlier the similar method has been applied to electrodynamics by 
Fock [4]. The 3-dimensional Tamm-Dancoff equation and 4-dimensional Schwinger-Dayson 
equation (SDE) have been the source of much wisdom underlying the formulation of many 
approaches to strong interaction dynamics. To these one should add the Bethe-Salpeter equation 
(BSE) [5], which is an approximation to SDE for the dynamics of a 4-dimensional two-particle 
amplitude for the effective nucleon-nucleon interaction, but now adapted to the quark level. A 
major bottleneck for the BSE approach is its resistance to a probability interpretation, since the 
logical demands of its 4-dimensional content are incompatible with its approximate nature, which 
has led to many attempts at 3-dimensional reductions: Logunov-Tavkhelidze quasipotentials [6], 
Kadyshevsky formalism [7], and remark Georgian theorists et al. efforts [8], (for more review for 3-
dimensional reductions see [9] and refs. therein, also). 
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The multi-particle (three or more particle) generalizations of the BSE have been also 
studied. A straightforward generalization of two-particle BSE has been intensively studied in 
sixties-seventies of last century. A best exposition of these studies can be found in the work of 
Huang and Weldon [10]. 

An essential imperfection of the original Bethe-Salpeter approach to multi-particle equations 
was a full disconnection of the approach with the field-theoretical equations for Green functions 
(which are known as SDE). This imperfection has been eliminated by Dahmen and Jona-Lasinio, 
which had included the BSE to the field-theoretical Lagrangian formalism with the consideration of 
functional Legendre transformation with respect to bilocal source of fields [11]. Then this approach 
has been generalized for multi-particle equations with consideration of Legendre transformation 
with respect to multi-local sources [12]. 

However, these theoretical constructions had not solved the principal dynamical problem of 
quantitative description of real bound states (nucleons, mesons etc.). A solution of BSE-type 
equations has been founded as a very complicated mathematical tool even for simple dynamical 
model.  There is a main reason of a comparatively small popularity of the method of multi-particle 
BSE-type equations among the theorists. Much more popular approach to the problem of 
hadronization in QCD is based on the 't Hooft's conjecture that QCD can be regarded as an effective 
theory of mesons and glueballs [13]. Subsequently, it was shown by Witten that the baryons could 
be viewed as the solitons of the meson theory [14]. Futher development of these ideas has been 
successful and has leaded to the prediction of pentaquark states in baryon spectrum [15]. 

Nevertheless, the investigations of multi-quark equations are of significant interest due to 
the much less model assumptions in this approach in comparison with the chiral-soliton models. 
The solutions of multi-quark equations will provide us almost exhaustive information about the 
structure of hadrons.  

We shall investigate Nambu--Jona-Lasinio (NJL) model with quark content which is one of 
the most successful effective models of QCD in the nonperturbative region (for review see [16], 
[17]). In overwhelming majority of the investigations, the NJL model has been considered in the 
mean-field approximation or in the leading order of −

cn
1 expansion. However, a number of 

perspective physical applications of NJL model is connected with multi-quark functions (for 
example: meson decays, pion-pion scattering, baryons, pentaquarks etc.). These multi-quark 
functions arise in higher orders of mean-field expansion (MFE) for NJL model. To formulate MFE 
we have used an iteration scheme of solution of SDE with fermion bilocal source [18]. 

We have considered equations for Green functions of NJL model up to third step of 
iterations. The leading approximation and first step of iteration maintain equations for the quark 
propagator and the two-quark function and also the next-to-leading order (NLO) correction to the 
quark propagator. The second step of this iterations maintains the equations for four-quark and 
three-quark functions, and third step of iterations maintains the equations for six-quark and five 
quark functions [19]. 

Since the mean-field approximation includes quark loops and the non-renormalizability of 
the NJL model implement to the indispensable the successful choice a regularization. Most common 
regularizations for NJL model traditionally entail a four-dimensional cutoff (FDC) regularization or 
a three-dimensional momentum cutoff regularization. Other regularization schemes also are used 
for NJL model [20]. 

In the framework of dimensional-analytically regularization (DAR) in MFE the scalar 
meson contributions in chiral quark condensate are calculated in [21], [22]. It was shown that 
sigma-meson contribution in chiral condensate for physical values of parameters is found to be 
significant and should be taken into account in the choice of the parameter values. Carry out 
improved fit of parameters of   symmetric NJL model. )2()2( AV SUSU ×
 

In the work [22] has done a systematical comparison of the dimensional-analytically 
regularized NJL model with the NJL model with FDC regularization. Apart from the corrections to 
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chiral condensate it was calculated also the corrections to quark mass in both regularizations. The 
numerical calculations at two characteristic values of condensate show that the pion contribution to 
the quark mass in both regularizations are equal to zero. 

The present work, which essentially based on results [19], [23], is devoted to analytical 
calculations of pion correction to the quark mass. 

 
2. MEAN-FIELD EXPANSION IN BILOCAL-SOURCE FORMALISM FOR NAMBU - 
JONA-LASINIO MODEL 
 

We consider NJL model with the Lagrangian 

( ) ( )[ ]2
5

2

2
τψγψψψψψ igiL ++∂= , 

The Lagrangian is invariant under transformations of chiral group , which 
correspond to up and down quark sector. 

)2()2( AV SUSU ×

A generating functional of Green functions (vacuum expectation values of −T products of 
fields) can be represented as the functional integral with bilocal source: 

( ) ( ) ( ) ( ) ( ){ }∫ ∫−∫= xxyydxdydxLiDG ψηψψψη ,exp, . 
Here ( xy, )η  is the bilocal source of the quark field. 

The th functional derivative of G  over source  is the −n −n particle  ( point) Green 
function: 
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Translational invariance of the functional-integration measure gives us the functional-differential 
SDE for the generating functional G : 
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                                                                   ( ) ( )∫=
1
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xy
Gxxdx

δη
δη    .                                              (1) 

We  shall solve this equation employing the method which proposed in work [21]. 
Functional  is ( )nG

( ) ( ) ( )0GPG nn =  
where  ( )nP  is a polynomial of  th order over the bilocal source −n2 η . 
 
2.1. LEADING ORDER AND FIRST STEP OF ITERATION: 
THE EQUATIONS FOR QUARK PROPAGATOR AND TWO-QUARK GREEN 
FUNCTION 
 

A leading approximation is an approximation of the functional-differential SDE (1) without 
r.h.s. A solution of the leading approximation is the functional 

( ) ( ){ }η∗= STrG exp0  
Here and below Tr  is a trace in operator sense, ∗  multiplication operator. Function  is a solution 
of the equation 

S

( ) ( ) ( ) ( )[ ] 00ˆ =+∂+ StrxigSxSixδ  
The unique connected Green function of the leading approximation is the quark propagator 

. Other connected Green functions  appear in the following iteration steps. The quark propagator 
in the chiral limit is 
S
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( ) ( ) 10
1 ˆ −−=≡ pmSS , 

where m is the dynamical quark mass, which is a solution of gap equation in the chiral limit 
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  The leading approximation generates the linear iteration scheme: 
( ) ( ) ( ) ,10 LL ++++= nGGGG  

where th step functional  is a solution of the equation −n ( )nG
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A solution of first-step equation (i.e. the Eq.(3) at 1=n ) 
is functional 
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The iteration-scheme equations give us the equation for two-particle function : 2S
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 (here  denotes the trace, which includes the upper line of function ) and the equation for NLO 
correction to quark propagator  
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The graphical representations of two-quark function see on Fig. 1, where the graphical notations of 
Fig. 2 are used. 
 

 
 

Figure 1. The equation for two-quark function 
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Figure 2. Diagram rules 
 
 

These equations reduces in the momentum space to a system of simple algebraic forms. The NLO 
mass operator  (where ( )( ) ( ) ( )111 1 −− ∗∑ ∗= SSS ( )1S  NLO quark propagator), is defined in −x space by 
equation: 
                                           ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )03 11 trSxigxAxSxAxSx δπσ +−+=∑  .                             (6) 
 
The Eqs. (4)-(5) can be easily solved, and the solutions contain singlet scalar quark-antiquark bound 
state with mass  (sigma-meson) and massless (in the chiral limit) pseudo scalar bound states 
(pion). To describe the solution of the equation for two-quark function and for future purposes we 
introduce  the composite meson propagators by following way: 

m2

a) Let us define scalar-scalar function 
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From the Eq.(4) for two-quark function we obtain (in momentum space) 

                                                       ( ) ( )( pi
ig

pS σσ Δ−= 11 )  .                                              (8) 

Here we define the following function, which we call sigma-meson propagator 
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The integral (10) is divergent, and it should be considered as a regularization. 

b) Pseudoscalar-pseudoscalar function is defined as 
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From the Eq.(4) for two-quark function we obtain (in momentum space): 

                                                                     ( ) ( )( )pi
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pS ababab
ππ δ Δ−−=

1 .                    (12) 

Here we define the pion propagator 
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                                                                            ( ) ( )
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where ( ) ( )
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0 0
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2.2. SECOND STEP: THE EQUATIONS FOR FOUR-QUARK AND THREE-QUARK 
GREEN FUNCTIONS 
 

Second-step generating functional is 
( )[ ] ( ) ( ) ( )( ) ( )( ) ( )0221

2
3

3
4

4
2

2
1

!3
1

!4
1 GSTrSTrSTrSTrG

⎭
⎬
⎫∗+∗+∗+∗

⎩
⎨
⎧= ηηηηη . 

The equations for four-quark and three-quark functions see on Figs. 
3 and 4. 

 
 

Figure 3. The equation for four-quark function 
 
 

 
 

Figure 4. The equation for three-quark function 
 

The equations for the four-quark function  and for the three-quark functions  are new. 
In the second step we obtain also the equations for NLO two-particle function   and next-to-
next-to-leading order (NNLO) correction to propagator 

4S 3S
( )1
2S

( )2 . S These equations have the same form as 
the corresponding first step equation except of the inhomogeneous terms. The inhomogeneous term 
of NNLO quark propagator contains NLO two-quark function ( )1

2S  and the inhomogeneous term of 
equation for NLO two-quark function ( )1

2S  contains three-quark function 3S , also NLO quark 
propagator ( )1S  (it is naturally, i.e. the derivatives of first step functional to form the 
inhomogeneous term, also (see Eq. (3) ) ). 

The equation for the four-quark function has a simple exact solution which is the product of  
two-quark functions (see Fig. 5). As is seen from this solution,  the −ππ scattering in NJL model is 
suppressed, i.e. in the second step of iterations this scattering is absent, and it perhaps arises in the 
third step of the iteration scheme only. 
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Figure 5. The solution of equation for four-quark function 
 
 
2.3. VERTEX σππ  
 

The existence of the exact solution for the four-quark function gives us a possibility to 
obtain a closed equation for the three-quark function. As a first step in an investigation of this rather 
complicated equation we shall solve a problem of definition of −σππ vertex with composite sigma-
meson and pions. Let us introduce a function 
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and define: 
a) scalar vertex 
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Here: ( ) ( ) ( ) ( )[ ]xxSxxSxxStrxxx aS −′′′′−′′−=′′′ 0υ  is the triangle diagram. 

b) pseudo scalar vertex 
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Here: 
( ) ( ) ( ) ( )[ ]xxSxxSxxStrxxx ap −′′′′−′′−=′′′ 55 γγυ . 

With definitions (7)-(15), for vertex function we obtain the following equation: abW
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where  is the scalar quark loop. Inhomogeneous term is: ( ) ( ) ( )[ xSxStrxl aS −≡ ] abW0
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Using definitions (7)-(15) we have: 
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The equation for   can be easy solved in the momentum space and the solution is abW
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where p is −σ mesons momentum, and ' ,  are pion momentum: p ''p ''' ppp += . 
The connected part of  is the decay amplitude abW ππσ → . It has the following form: 
 

( )[ ] ( ) ( ) ( )[ ] ( ) ( )ppppppppp
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2
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 (See also Fig.6.). 
 

 
 

Figure 6. The connected part of sigma-pion-pion 
 
 

2.4. THIRD STEP: THE EQUATIONS FOR SIX-QUARK AND FIVE-QUARK GREEN 
FUNCTIONS 
 

The third-step generating functional is 
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The graphical representations of equations for six-quark function and for five-quark function see on 
Figs. 7 and 8. 
 
 

 
 
 

Figure 7. The equation for six-quark function 
 
 



Georgian Electronic Scientific Journal: Physics 2009|No.2(2) 
 

21 

 
 

Figure 8. The equation for three-quark function 
 

 
The equations for the six-quark function and for the five-quark function in our iteration 

scheme are new. The third step gives us the equations for NLO four-quark  and three-quark ( )1
4S ( )1

3S  
functions, also NNLO two-quark function ( )2

2S

3

 (which have the same form as the second-step 
equations except of the inhomogeneous term). The inhomogeneous term of the NLO four-quark 
function  contains five-quark  and  functions, and NLO two-quark function ( )1

4S 5S S ( )1
2S . Into 

inhomogeneous term of equation for NLO three-quark function ( )1
3S  enter: NLO four-quark function 

, NLO two-quark function   and NNLO one-particle function ( )1
4S (

2S )1 ( )2S . The equation for NNLO 

two-quark function , which kernel is same form as the second- and first-steps equations, and it 
inhomogeneous term contains NLO 3-quark function 

( )2
2S

( )1
3S  and NNLO one-particle function ( )2S . 

The third step gives us also to the next-to-next-to-next-to-leading order (NNNLO) correction to 
quark propagator . A inhomogeneous term of equation for NNNLO quark propagator contains 

the NNLO two-quark function  (note that the inhomogeneous term of analogous equation for 
NNLO quark propagator contain NLO two-quark function 

( )3S
( )2
2S

( )2S ( )1
2S and a inhomogeneous term of 

first-step equation for NLO quark propagator maintain two-quark Green function ), and all 
equations for quark propagators have the analogous form, except of the inhomogeneous term. 

(2S )

 
3. TWO-PARTICLE AMPLITUDE AND MESON CONTRIBUTIONS IN 
CHIRAL CONDENSATE AND NLO MASS FUNCTIONS 
 

It follows from  two-particle equation (4) leading order (LO) two-particle amplitude  
(connected part of amputated two-particle function) consist of two parts: pseudo scalar amplitude 
(pion)  and scalar amplitude (

A

πA −σ meson) . In momentum space these amplitudes of the NJL 
model depend on a momentum 

σA
p  only, where p  is a sum of quark and antiquark momentum. They 

have the form (see [21], [22] for detail): 
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                                                                   ( )( )222
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1
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A
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Here ( )2
0 pI is two-loop integral, which has the form (10), and it should be considered as a 

regularization. 
The basic order parameter, which defines a degree of DCSB is a quantity χ  of chiral 

condensate. Meson contribution to the chiral condensate can be calculated in the next-to-leading 
term of the MFE. A free quark propagator and gap equation (2) for NJL model give us to 
regularization-independent formula for LO condensate 

                                                         ( )
g
mitrS −== 0χ .                                                            (18) 

Let us defining NLO condensate: 
                                                                   ( ) ( ) ( )011 itrS=χ  .                                                          (19) 
For the ratio 
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χ
χ 1
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of NLO condensate (19) to the LO condensate (18) we obtain the formula [22] 
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The integral (22) is divergent, and it should be considered as a regularization. It follows from 
equation (21), that the ratio r  of NLO condensate to the LO condensate consist of two parts: pion 
corrections (due to pseudo scalar amplitude ) and corrections due to scalar amplitude : 

. 
πA σA

πσ rrr +=
 
3.1. NLO MASS FUNCTION 
 
Eq.(5) for NLO quark propagator  and Eq.(4) for two-amplitude  give us a possibility for 
define the meson corrections to quark mass. First-order equations for iterations define corrections to 
quark propagator (see [22]). NLO mass operator 

( )1S 2S

( )1Σ  has the form (6). 
Let us to introducing dimensionless NLO mass functions ( )1a and ( )1b : 

                                                                  ( )( ) ( )mbpa 11 1 ˆ −∑ ≡                                             (23) 
 

and using the formula (20) for ratio of NLO condensate to the LO condensate in pion channel, we 
obtain from (6) the expressions for  and ( )1a ( )1b  in momentum space the following formulas: 

                                                ( ) ( ) ( )
( )

( ) ( )[ qAqA
qpm

pqpqdpap πσ 3~
22

2
212 −

−−
−

∫= ],             (24) 

 

                                                           ( ) ( )
( )

( ) ( )[ qAqA
qpm

qdrpb πσ 31~
22

21 +
−−

∫−= ] .            (25) 

Using expression (23) for the NLO mass operator, we may to rewrite inverse quark 
propagator 
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                                                                          ( )∑−−=− 11 p̂mS                                          (26) 
as the form: 
                                                                       ( )( ) ( )( )pambS ˆ111 11 +−+=−                                (27) 

 
(where, according gap equation (2),  is LO quark mass). m

Suppose the propagator has a pole in point , which corresponds to a particle with 

mass . According Eq.(27) we obtain following equations for quark mass : 

22
rmp =

rm rm
)()( 22

rrr mammb = . 
Since and are small additions (( )1a ( )1b ( )1a <<1, ( )1b <<1 ), we can to expand  and  
near the point  and to obtain the formula for the quark-mass correction 

)( 2)1(
rma
mmr −≅

)( 2)1(
rmb

m mδ : 

                                                                 ( ) ( )( ) ( ) ( )( )2121 mamb
m
m

−≅
δ .                               (28) 

 
 
4. NJL MODEL WITH DIMENSIONAL-ANALYTICAL  REGULARIZATION AND 
FOUR-DIMENSIONAL CUTOFF  REGULARIZATION 
 
The prediction of the model, however, are intimately compromising with the specific strategy 
adopted to handle the ultraviolet divergences given the nonrenormalizable nature of the model. 
Consequently, the quite essential point of the model is a regularization. Practitioners of the NJL 
model have followed the attitude of using it as a regularization-dependent model, considering the 
regularization procedure part of definition of the model, for example see [24]. 

Most common regularizations for NJL model traditionally entail a four-dimensional cutoff 
in Euclidean momentum or a three-dimensional momentum cutoff. Other regularization schemes 
(Pauli- Villars regularization or non-local Gauss form-factors) also are used for the NJL model. 
Even more often there are a works, which use a dimensional regularization in NJL model. In [25] 
the dimensional regularization is modified (which based on ideas of Wilson and Collins) to keep 
four dimensional properties of the nonrenormalizable theory as much as possible. To achieve this 
goal the dimensional regularization is applied to only the radial part in loop integrals. This is one of 
the analytic regularization. The meson loop contribution to the chiral symmetry breaking is also 
analyzed in the NJL model with the modified dimensional regularization [21]. In this treatment all 
calculations are made in four-dimensional Euclidean momentum space, and the regularization 
parameter is treated as a power of a weight function, which regularizes divergent integrals. It should 
be stressed that in this treatment of dimensional regularization, the regularization parameter is not at 
all a deviation in the physical dimension of space. In [26] it was studied characteristic features of 
the NJL model in the dimensional regularization. As usual the dimensional regularization is applied 
to momentum integrals for internal fermion lines. Since the model is not renormalizable, the authors 
([26]) cannot take the four dimensional limit and they evaluated some physical properties of the 
model in the space-time dimensions less than four. The authors ([26]) take notice of that only the 
radiative corrections should be evaluated in the space-time dimensions less than four to keep the 
four-dimensional properties in the real world. In [22] the meson loop contribution to the chiral 
symmetry breaking is also analyzed in the NJL model with the modified dimensional regularization. 

The calculating of the gap equation (2) in dimensional-analytical regularization (DAR) and 
four-dimensional cutoff (FDC) regularization lead to (in detail see [21], [22]): 

                                                                                 ( )
ξ

πξ
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ=

1

2

241
m
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                                                                             ( )⎟
⎠
⎞

⎜
⎝
⎛ +−= Λ x

x
k 1log111 ,                                 (30) 

 

respectively. Here, 
2
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,
2 2
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2 D
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xmgnkgnk cc −
=

Λ
==

Λ
=Λ ξ

ππ
 ( −D dimension of space) and 

are regularizations parameters in DAR and in FDC regularization, respectively. Λ
The calculating of the integral (10) in both regularizations (in DAR and in  

regularization) lead  us: 
FDC
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Here  is the Gauss hypergeometric function. );;,( zcbaF
 
5. MESON CONTRIBUTION TO QUARK MASS 
 
5.1. MESON CONTRIBUTION TO QUARK MASS IN POLE APPROXIMATION 
OF SCALAR AND PSEUDOSCALAR AMPLITUDES 
 
 

Pseudo scalar amplitude  naturally is associated with the pion, which in the chiral limit is 
a massless Goldstone particle. In both regularizations under consideration we can define a pion 
propagator as a pole term of , which  leads to the singularity of pseudo scalar amplitude (see 
[22]): 

πA

pole
πA

                                                                       ( ) 2
0 04
1

pIn
A

c

pole =π ,                              (33) 

where  is defined by equation (31) for DAR and by (32) for FDC regularization and has the 
following forms 

)0(0I
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( ) k

iI DAR ξ
π 20 4

0 =  ,                        (34) 
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+
−+=

x
xxiI FDC

1
1log

4
0 20 π

,  (35) 

correspondingly. 
For the scalar amplitude the situation is different. In both regularizations function  

possesses a cut which originates in the point  . Nevertheless, for FDC is possible to 
define a scalar sigma-meson propagator as [22] 

)(0 pI 22 4mp =

                                                            ( )( )222
0 444

1
pmmIn

A
c

pole

−
=σ ,                                     (36) 
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since the integral  (35) is a finite quantity. In a different way the matter is for DAR. 

Quantity  is finite only at 

( )[ ]FDCmI 2
0 4

)]DAR([ mI 2
0 4 21−<ξ : 

( )[ ]
ξ

ξ
ξ 218

4 221
2

0 +
−=−< mgn

imI
c

DAR . 

For the interpretation of the sigma-meson as a particle in the NJL model with DAR we can do the 
following trick: since in the region 211 −<<− ξ  integral  converges we use the above value in 
the point as a foundation an analytical continuation of the pole part of the amplitude on 
parameter 

0I
22 4mp =

ξ  the physical region 10 << ξ . Then the sigma-meson propagator for DAR will be [22] 

                                                        ( )[ ] ( )
( )ξ

ξ
σ 22

2

4
212
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igmpA DARpole

−
+

= .                                 (37) 

This expression was used for a calculation of the sigma-meson contribution in chiral condensate in 
work [21]. Surely, such procedure of definition of sigma-meson propagator seems to be a somewhat 
artificial. A more consistent procedure is a separation of a leading singular part of amplitude in the 
region of physical values of regularization parameter ξ  (see for more detail [21], [22]). 

For the pseudo scalar amplitude the separation of leading singularity near point  
leads to same result (33), i.e. the pion in DAR possesses all properties of usual observable particle. 
For the scalar amplitude is not so. At  in region 

02 =p

22 4mp >− 10 << ξ  [22]: 
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and, correspondingly, the leading singularity, i.e. leading term in an expansion on powers of 
 is the expression 224 pm −
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5.1.1. PION CONTRIBUTION TO QUARK MASS 
 

According the Eqs. (33)-(35) the expressions for pion amplitudes in pole approximation in 
both regularizations (DAR and FDC regularization) has the forms 
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The pion contribution NLO condensate in pole approximation of pion amplitude in both 
regularizations (DAR Eq.(39) and FDC regularization Eq.(40)) is calculated by Eqs. (21)-(22) in 
pion channel 

( )[ ] ( )
( ) ( )[ ]∫

−−−

+−
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22222

22 2~~
81

24
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Jign
ign

r
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c π . 

 
where  has the form (22). All integrals over dp  and  can be calculated in closed form, and the 
results  in both regularizations are the very simple expressions [21], [22]: 

J dq
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(42) 
According the Eqs. (24)-(25) the NLO mass functions ( )1a  and ( )1b  in pion channel are defined by 
the following equations: 
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Using the leading singularity approximation for ( )DARpoleAπ  (39) and  ( )FDCpoleAπ  (40) in (43) and 
(44) after calculating the integrals in DAR and FDC regularization we obtain for the pion 
corrections to the quark mass in next expressions according to (28) 
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From (45) and (46) it follows that, the pion contribution in quark mass is equal zero, according to 
(41) and (42). 
 
5.1.2. SIGMA-MESON CONTRIBUTION TO QUARK MASS 
 

Consider a contribution of scalar amplitude in pole approximation  in quark mass. In 
correspondence  with Eqs.(24) and (25) we have 

poleAσ
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(48) 
To calculate this contributions we use the leading-singularity approximation for amplitudes: 
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according Eq. (32) in , for FDG regularization and Eq. (38) for DAR. 22 4mp =
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From Eqs. (21)-(22) we obtain the quantity ( )DARrσ
250,

 in DAR. A computation gives us the 

following values for sigma-meson contribution: =ξ  we obtain ( ) ;033,0−=DARrσ  at 4,0=ξ  

we obtain . The sigma-meson contribution is small in comparison of the 
contribution and possesses the opposite sign, i.e. it decrease the common contribution (see [22], 
note, that this result is qualitatively the same as result of work [21], in which was used a pole 
approximation $A_\sigma$. Thus, all conclusions of work [21] about the part of the meson 
contributions stand also for the more exact leading-singularity approximation, which is used in [22], 
or in present work). 

( ) 01,0−=DARrσ

For FDC regularization the leading-singularity approximation for coincides with the pole 
approximation (49). The ratio in sigma-meson channel  calculated by Eqs. (21)-(22). This 
quantity for FDC is a function of . The values of 

σA

σr
22 / mx Λ≡ ( )xFDCrσ  for two characteristic values of 

ratio: at  (which corresponds to value 3=x ( )c 0 = MeV210−  of the LO condensate) - 
. At ( )3 =FDCrσ 007,0− 19=x , which corresponds to value ( )c 0 MeV250−=  of the LO condensate, 

the ratio is: . In contrast to the DAR, the sign of sigma contribution for FDC is 
the same as for pion contribution. 

( )19 116,0−=FDCrσ

A sigma-correction to quark mass for DAR given by formula [22] 
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and attains: at , at . Since a pion 
correction to quark mass in this regularization equal zero (see above), these values are full 
corrections to quark mass for DAR  [22]. 
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5.2. PION CORRECTION TO QUARK MASS IN NON-POLE APPROXIMATION OF 
AMPLITUDE 
 

In sub subsection 5.1.1, using the pole approximation for the pseudo scalar amplitude in 
both regularization ( in FDC regularization and DAR) we obtain the values for −π meson 
contribution in quark mass equal to zero.  However, since the model is not renormalizable in four 
space-time dimensions, the physical results and parameters depend on the regularization method. 
This lead us to calculate the correction to quark mass beyond the non-pole approach of the 
amplitude. Using the expressions of pion amplitude (16) and the integral (31) in DAR, we can to 
calculate the ratio in pion sector . Also, having calculated in DAR NLO mass functions by the 
Eqs. (24) and (25), according the formula (28) of NLO quark mass correction we obtain: 
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From here is clears that the result differ from zero. 
This means, that the zero value of the pion correction to quark mass is independent from 

regularization choice in NJL model in leading singularity approach of pseudo scalar amplitude. 
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