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Abstract: 

 The purpose of this paper is to study the Bose, Chaudhuri, and Hocquenghem 
(BCH) code, with an aim to simulate the encoding and decoding processes. The gain of 
the proposed code in investigated through applying it to binary phase sift keying 
(BPSK) modulation scheme in symmetric additive white Gaussian noise (AWGN) 
channel. The bit error probability (BEP) of coded (63, 36) BCH system was evaluated 
and compared with the performance of un-coded system.  
 

 

1. INTRODUCTION  
 

Channel coding for error detection and correction helps the communication system designers 
mitigate the effects of a noisy transmission channel. Error control coding theory has been the 
subject of intense study since the 1940s and now being widely used in communication systems. As 
illustrated by Shannon in his paper published in 1948 [1], for each physical channel there is a 
parametric quantity called the channel capacity C  that is a function of the channel input output 
characteristics. Shannon showed that there exist error control codes such that arbitrary small error 
probability of the data to be transmitted over the channel can be achieved as long as the data 
transmission rate is less than C .  

A generic block diagram of digital communication system involving coded waveforms is 
shown in Fig.1 [2]. The binary information sequence at the encoder input has a rate of R  bits/sec. 
Mainly there are two types of channel encoding techniques. The first is the block coding, by which 
a blocks of k information bits are encoded into corresponding bits blocks. Each n  burst is called 
a code word with a total number of possible code words. The code rate, defined as the ratio 

n
2k

/cR k n=  is a measure of the amount of the redundancy introduced by the specific block coding 
technique.  

The second type of encoding is the linear convolution encoding. A convolution encoder 
converts the entire information sequence stream, regardless of its length, into a single code word 
[3]. The encoder output sequence is a set of linear combinations of the input sequence that can be 
performed using a finite-state shift register approach. The code rate in this case cR  is defined as the 
reciprocal of the number of the shift register output bits for each data bit.  

In both cases, the bit rate at the encoder output is / cR R . Another designed parameter 
associated with the coding scheme to be used is the error correcting capability of this scheme. That 
is, how many errors that may be introduced by the channel can this code guarantee to correct. 
Hence, a good code is the one that insure a certain error correcting capability at a minimum cR   or 
maximum output encoder rate / cR R . 
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Fig.1: Generic digital communication system with channel coding [2] 

 
 

The binary digits from the encoder are fed into a modulator, which maps them into one of the 
known digital modulation waveforms, say BPSK or BFSK. The channel over which the waveforms 
are transmitted will corrupt the waveforms in general by a multiplicative fading noise besides the 
traditional thermal AWGN. The resulting received noisy signal is demodulated to its binary regime 
and decoded back to the original binary information sequence. 

The decoding decision scheme may be one of two possible decoding schemes hard or soft- 
decision scheme. In the hard decision decoding, the demodulator quantized the incoming signal into 
two levels, denoted as 0 and 1. The information sequence bits are then recovered by the decoder 
that will have a certain error correcting capability. On the other hand, if the unquantized (analog) 
demodulator output is fed to the decoder we call this decoding scheme soft-decision decoding. 

In the hard decision case, the typical BPSK or BFSK result in a symmetric transmission error 
probability in which the probability that 1 is transmitted and 0 is detected  is equal to the 

probability that 0 is transmitted and 1 is detected 
(0 /1P )

( )1/ 0P = . This channel is called a binary 
symmetric channel (BSC). 

p

So many papers deal with the performance analysis of coded digital communication systems. 
The authors in [4] and [5] proposed several decoding techniques for the BCH codes and evaluate 
their performance. The performance of digital radio communication systems with a BCH coding 
scheme under a microwave oven interference environment is investigated in [6]. The authors found 
that performance improvement could be obtained by combining BCH codes with bit interleaving. 
The problem of efficient maximum-likelihood soft decision decoding of binary BCH codes is 
considered by the authors in [7]. On the other hand, the BER performance of severely punctured 
codes and the equivalent systematic codes is obtained assuming maximum likelihood decoding for 
(63,57) Hamming code in [8]. In contrast, the authors in [9] proposed an improved Hamming code 
method which is shown to be highly scalable without such overhead. Furthermore, the paper [10] 
analyzes the performance of concatenated coding systems operating over the BSC by examining the 
loss of capacity resulting from each of the processing steps. Finally, two schemes for differential 
encoding of block coded M-ary PSK signals are presented and compared in [11].  

In this paper, the performance of BPSK coded system will be simulated. We will base our 
analysis on linear BCH block coding scheme with a hard decision decoding over AWGN binary 
symmetric channel. The rest of this paper is organized as follows. A brief description of linear block 
codes and algebraic field concepts will be given in the next section. The BCH codes will be treated 
in deep in section 3. Numerical Results are given in section 4. Finally, brief conclusions are 
provided in section 5.  
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2. LINEAR BLOCK CODES 

A block code C is constructed by breaking up the message data stream into blocks of length 
 has the form {k }0 1,m m 1,..., km − , and mapping these blocks into code words in C . The resulting 

code consists of a set of M  code words { }0 1 1, ,...., MC C C − . Each code word has a fixed length 

denoted by n and has a form . The elements of the code word are selected from an 
alphabet field of elements. In the binary code case, the field consists of two elements, 0 and 1. On 
the other hand, when the elements of the code word are selected from a field that has q alphabet 
elements, the code is nonbinary code. As a special case when q  is a power of 2 (i.e. ) where 

is a positive integer, each element in the field can be represented as a set of distinct  bits. 

( 0 1 1, ,..., nc c c − )
q

2mq =
m m

As indicated above, codes are constructed from fields with a finite number of  elements 
called Galois field and denoted by GF ( ). In general, finite field GF ( q ) can be constructed if is 
a prime or a power of prime number. When is a prime, the GF( q ) consist of the elements 

q
q q

q
{ }0,1,2,.... 1q − with addition and multiplication operations are defined as a modulo- . If q is a 

power of prime (i.e. where is any positive integer), it is possible to extend the field 
GF to the field GF

q
mq p= m

( )p ( )mq p= . This is called the extension field of GF ( )p and in this case 
multiplication and addition operations are based on modulo- p  arithmetic. 

To construct the elements of the extension GF ( )2mq =  from the binary GF(2) with elements 
0 and 1, a new symbol α  is defined with multiplication operation properties as: 
0. .0 0,1. .1i i i i iα α α α= = = =α and . .i j j i i jα α α α α += = . The elements of the GF ( ) that 

satisfy the above properties are {
2mq =

}20,1, , ,..., ,..jα α α . As the field should has elements and be 

closed under multiplication 

2m

α should satisfies the condition 1 1qα − = . Hence; the elements of the 
extension GF are ( )2mq = { }20,1, , ,..., qα α α −2 which is a commutative group under an addition and 
multiplication    (excluding the zero element) operations. α  is called a primitive element since it 
can generate all other field elements and it is a root of a primitive polynomial ( )p x . As mentioned 
before, each element in the field can be represented as a set of  tuple bits. To make the picture 
clear, Table I shows the three representation for the elements of GF( ) with a primitive 
polynomial 

m
42

( ) 41p x x= + + x [4]. 
Besides the code rate parameter cR  defined early, an important parameter of the code word is 

its minimum distance denoted by . As the code weight defined as the number of nonzero 
elements in the code, the minimum distance of a block code is the minimum distance between all 
distinct pairs of code words which is the same as the minimum weight of the code. The minimum 
distance is a measure of the separation between code words and thus a code with minimum distance 

can detect any error pattern of weight less than or equal to 

mind

mind min 1d −  [3]. 
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Table I: Representations of the elements of GF( ) with 42 ( ) 41p x x x= + + [4]. 
 

Power representation Polynomial representation 4-Tuple representation 

0 0 (0 0 0 0) 

1 1 (1 0 0 0) 
α  α  (0 1 0 0) 

2α  2α  (0 0 1 0) 
3α  3α  (0 0 0 1) 
4α  1 α+  (1 1 0 0) 
5α  2α α+  (0 1 1 0) 
6α  2 3α α+  (0 0 1 1) 
7α  31 α α+ +  (1 1 0 1) 
8α  21 α+  (1 0 1 0) 
9α  3α α+  (0 1 0 1) 
10α  21 α α+ +  (1 1 1 0) 
11α  2 3α α α+ +  (0 1 1 1) 
12α  2 31 α α α+ + +  (1 1 1 1) 
13α  2 31 α α+ +  (1 0 1 1) 
14α  31 α+  (1 0 0 1) 

The linearity property of a code is fairly a simple concept. Suppose that and iC jC  are two 

code words in an block code and let ( ,n k ) 1α  and 2α are any two of the field elements over where 
the code is defined, then the code is called a linear code if and only if 1 2iC C jα α+ is also a code 
word in . C

 

2.1 The generator matrix and parity check matrix  

let ( )1 2, ,...,m m m mkx x x=X k

)
be the  information bite at the encoder input and 

is the encoder output vector. The encoding operation performed in linear 
binary block encoder can be represented in matrix form as 

( 1 2, ,...,m m m mnc c c=C

m m=C X G                                                                       (1)  

where G is called the generator matrix of the code, is 
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1 11 12 1

2 21 22 2

1 2

.

.
. . . . .

.

n

n

k k k k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦n

g g g g
g g g g

G

g g g g

                                                      (2) 

and hence; any code word is a linear combination of the rows { }ig of , i.e., G

 1 1 2 2 ...m m m mkx x x= + + +C kg g g                                                       (3) 

Since the linear ( ) code with distinct code words is a subset of dimension , the rows 
of must be a set of linearly independent rows, and hence, is not unique. Any generator matrix 
of ( ) linear block code can be reduced by row operation which will keep the linearly 
independence property of G  to a symmetric form given as 

,n k 2k k
G G

,n k

 

11 12 1,

21 22 2,

1 2 ,

. 1 0 . 0

. 0 1 . 0
. . . . . . . .

. 0 0 . 1

n k

n k
k

k k k n k

p p p
p p p

p p p

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎦⎣

G P I                                      (4) 

where is a k identity matrix and is a I k× P ( )k n k× − matrix that determines the code redundant 
bits. In this case the last  bits of each code word are identical to the  information bits. 
Associated with any linear ( ) block code there is a linear  (

k k
,n k ,n n k− ) dual code with 2n k− code 

words which is the null space of the ( ) code. The generator matrix associated with the dual 
code, consists of ( ) linearly independent rows and denoted by . Since G and are in the 
null space of each other, any code word generated by is orthogonal to every row in . That is 

,n k
n k− H H

G H
 ORT

m
T= =C H 0 GH 0                                                         (5) 

Now if the block code is in symmetric form, it follows from the last equation that  
 n k−= ⎡ ⎤⎣ ⎦H I P                                                                    (6) 

and since for linear block code the minimum distance is equal to the minimum weight of the code, 
another conclusion one can draw from (5) is that the minimum distance for a linear block code is 
the minimum number of columns in  that may add up to the zero vector. H
 
 

2.2 Cyclic codes 
BCH code is a subset of a general linear block codes called cyclic codes. Cyclic codes are a 

class of linear codes which satisfy the following cyclic shift property: if  is a code word of a 
cyclic code, then any cyclically shifts of is also a code word. In discussing cyclic code and later a 
BCH code, its more convenient to deal with polynomials representation rather than matrices 
representation of the code. So, to develop the algebraic properties of a cyclic code, we represent the 
components of a code word as the coefficients of a polynomial called a code 
polynomial as follows 

C
C

( 0 1 1, ,..., nC c c c −= )

1 ( ) 2
0 1 2 1... n

nc x c c x c x c x −
−= + + + +                                                    (7) 

it can be shown that the code polynomial resulting from cyclically shifting the code word C  -th 
times denoted by 

i
( ) ( )ic x is the remainder resulting from dividing the polynomial ( )ix c x by 

[4]. 1nx +
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We can generate a binary  cyclic code by using a generator polynomial ( ,n k ) ( )g x of degree 
has the form n k−

 ( ) 0 1 ... n k
n kg x g g x g x −
−= + + +                                                        (8) 

where ’s is either 0 or 1 in the binary code case. A number of important properties of the 
generator polynomial can be summarized [4]: 

ig

1. The coefficients 0g and n kg −  have to be 1.  
2. Any code word polynomial ( )c x  is multiple of ( )g x (i.e. ( ) ( ) ( )x g x ) where 

1
1

k
km x

c x m=

0 1 2 ...m x m m x m x( ) 2 −
− is the message polynomial. = + + + +

3. ( )g x is a factor of 1nx + . 

The last property says that any factor of 1nx + with degree n k− , generates an cyclic 

code. For large , may have many factors of degree n
( ,n k )

n 1nx + k− . Some of theses polynomials 
generate good codes and others generate bad codes [4]. To be consistent with the matrix 
representation of a general block code as discussed in the pervious subsection, the generator matrix 
for cyclic code can be derived from the generator polynomial given in (8) as ( ,n k )

0

)

                                 (9) 

0 1 2

0 1 2

0 1 2

0 1 2

. . 0 0 0 0
0 . . 0 0
0 0 . . 0 0
. . . . . . . . . .
0 0 0 0 0 .

n k

n k

n k

n k

g g g g
g g g g

g g g g

g g g g

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G

with . A symmetric cyclic code can be obtained similarly by row operations. 0 1n kg g −= =
 

4. BCH CODES 
 

BCH codes are a large class of cyclic codes that include both binary and nonbinary codes. 
Binary with any positive integer  BCH codes can be constructed with the following 
parameters 

( ,n k 3m ≥

 

min

2 1

2 1

mn
n k mt
d t δ

= −
− ≤

≥ + =
                                                                (10) 

where  is the error correcting capability and t δ is called the code design distance. That is a BCH 
code with specified parameters given in (10), guarantees to correct t or less number of errors in the 
received block bits. The generator polynomial n ( )g x of the t -error correcting BCH code is the 

lowest degree polynomial over GF (2), which has the consecutive 2, ,..., t2α α α as its roots (i.e. 
). Let ( ) 0 , 1,2,.., 2ig iα = = t ( )i xφ be the minimal polynomial (the minimum degree polynomial 

that has iα and its conjugates as a roots) corresponding to iα , the generator polynomial must be the 
least common multiple (LCM) of ( ) , 1, 2,..., 2i x i tφ = . That is [4] 

 { }1 2 3 2( ) LCM ( ), ( ), ( ),..., ( )tg x x x x xφ φ φ φ=                                             (11) 
 

All the field elements of the form 2( ) , 1
lj i lα α= ≥  and is odd, are called conjugate of i iα and 

all of them over the defined field have the same minimal polynomial (i.e. ( ) ( )j ix xφ φ= ). Hence, 
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every even power of α in (11) has the same minimal polynomial as the preceding odd power of α . 
This reduces the number of terms in (11) to t  terms, so 

 { }1 3 2 1( ) LCM ( ), ( ),..., ( )tg x x x xφ φ φ −=                                                 (12) 
the BCH codes defined above are called primitive, narrow-sense BCH codes. 
Since any code word polynomial 1

0 0 1( ) ... n
nc x c c x c x −
−= + + +  is a multiple of the generator 

polynomial (i.e. ), has ( )g x ( ) ( ) ( )c x m x g x= ( )c x 2, ,..., t2α α α as a roots, then 
                                      (13) ( 1)

0 1 1( ) ... 0 , 1, 2,.., 2i i i n
nc c c c iα α α −
−= + + + = = t

or in matrix form  

 2
0 1 1

( 1)

1

( , ,..., )
.

i

i
n

i n

c c c
α
α

α

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0                                                               (14) 

by combining (14) with (5), the parity check matrix of the BCH codes in 'sα form can be written as 

                                                   (15) 

2 1

2 2 2 2

3 3 2 3 1

2 2 2 2

1 .
1 ( ) ( ) . ( )
1 ( ) ( ) . ( )
. . . . .
1 ( ) ( ) ( )

n

n

n

t t t n

H

α α α
α α α
α α α

α α α

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

⎥

which can be written in 0,1 form by represent  in its m tuples form. 'siα
 

Example 
Consider a primitive, narrow-sense BCH code with 42 1n = − =15 and . It follows from 

(12) that this code is generated by 
2t =

 { }1 3( ) LCM ( ), ( )g x x xφ φ=                                                         (16) 
where  

 
2 4 8 4

1
3 6 9 12 2 3 4

3

( ) ( )( )( )( ) 1
( ) ( )( )( )( ) 1
x x x x x x x
x x x x x x x x

φ α α α α

φ α α α α

= + + + + = + +

x= + + + + = + + + +
              (17) 

since there is no common factor between 1 3( ) and ( )x xφ φ  
                                               (18) 4 6 7

1 3( ) ( ) ( ) 1g x x x x x x xφ φ= = + + + + 8

.
⎥

this the resulting code is a primitive BCH code with . The parity check matrix 

for this code is  

(15,7) min 2 1 5d t≥ + =

2 3 14

3 6 9 42

1
1 .

α α α α
α α α α

⎡ ⎤
= ⎢
⎣ ⎦

H                                                   (19) 

The general definition of binary BCH codes is as follow. Let β be an element of GF( ) and 
any nonnegative integer. Then a binary BCH code with design distance 

2m

b δ  has a generator 
polynomial with the following consecutive powers of ( )g x β as roots  
 1 2, ,...,b b b δβ β β+ + −  

let ( )i xψ and be the minimal polynomial and the order of  in b iβ + , respectively. Then 
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 { }1 2 2( ) LCM ( ), ( ),..., ( )bg x x x xψ ψ ψ +=                                              (20) 
with a code length 

 { }1 2 2LCM , ,..., bn n n n +=                                                         (21) 
The BCH code defined above is called a nonprimitive, wide-sense binary BCH code with a 

design distance δ . As a special cases when 1b =  the code becomes narrow-sense and if β is a 
primitive element, the code is primitive code. 

 
3.1 Decoding of binary BCH codes 
 
Decoding process of the BCH codes is the most challenging task. Mainly, we have two 

decoding algorithms for BCH codes, namely: Peterson-Gorentien-Zierler algorithm and Berlekamp-
Massey algorithm. Assume that the received code word ( )0 1 1, ,..., nr r r −  is differs from the sent code 

word ( ) in 0 1 1, ,..., nc c c −
1 2, ,..., ii ix x x ν positions, then the error code word will have a nonzero elements 

at these positions and the error polynomial can be written as  
 1 2( ) ... ii ie x x x x ν= + + +                                                               (22) 

Both of these algorithms need the computation of the syndromes of the received code polynomial 
. Define the syndrome ( )r x jS to be 

                                                      (23) ( ) ( ), 1,2,..., 2j j
jS r e jα α= = = t

2t

or 

 

1 1 2
2 2 2

2 1 2

2 2
2 1 2

...

...
. . . . .

...t t
t

S X X X

S X X X

S X X X

ν

ν

ν

= + + +

= + + +

= + + +

                                                         (24) 

where li
lX α= is the error locations. Defining what is called error locator polynomial as 

 1
1 1 1 2( ) ... 1 (1 )(1 )...(1 )x x x x xX xX xXν ν

ν ν ν
−

−Λ = Λ + Λ + + Λ + = − − −                      (25) 

that has zeros at 1
lx X −= . It can be shown that (24) and (25) can be coupled together in matrix form 

and written as 

                                                (26) 

1 2 1

2 3 1 21

1 2 1 21

.

.
. . . . ..

.

t tt

t tt

t t t t

S S S S
S S S S

S S S S

A

+

+ +−

+ −

Λ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Λ⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Λ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦144424443

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Peterson’s algorithm is based on solving (26) for 'siΛ . If A is found to be singular that means 
we have less than errors in the received code word. In this case we have to reconstruct a new 
syndrome matrix by deleting the two right most columns and the two bottom rows from 

t
A and 

solve a gain for excluding and so on. After 'siΛ tΛ 'siΛ are found the error correct polynomial 
defined in (25) is constructed. Finally, the roots of ( )xΛ are to be found using Chien’s search 
algorithm and the error locations set to be the reciprocal of these roots.  

 



GESJ: Computer Science and Telecommunications 2010|No.3(26) 
ISSN 1512-1232 

 

    69

3.1.1 Berlekamp’s decoding algorithm 
 
Berlekamp’s algorithm is much more difficult to understand than Peterson’s approach, but 

results in more efficient implementation. Berlekamp’s algorithm for binary BCH codes decoding is 
a recursive algorithm that is summarized in the following steps [3] 

1. Define the syndrome polynomial ( ) 2 2 1
1 2 2 1... ....t

tS x S x S x S x +
+= + + + +  

2. Set the initial conditions: ( ) ( ) ( ) ( )0 00, 1,and 1k x T x= Λ = = . 

3. Let ( )2kΔ be the coefficient of 2 1kx + in the product ( ) ( ) ( )2 1k x S xΛ +⎡ ⎤⎣ ⎦ . 

4. Compute ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2.k k k kx x x T x+ ⎡ ⎤Λ = Λ + Δ ⎣ ⎦ . 

5. Compute ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )
( )

( ) ( ) ( )

2 2 22

2 2
2

2 2
2

if 0 or deg

if 0 and deg

k k k

k
k

k k
k

x T x x k
T x x x

x k

+

⎧ ⎡ ⎤Δ = Λ >⎣ ⎦⎪⎪= ⎨ Λ ⎡ ⎤⎪ Δ ≠ Λ⎣ ⎦⎪⎩ Δ
≤

 

6. Set 1.k k= + if k t< then go to step 3. 
7. Determine the roots of ( ) ( ) ( )2kx xΛ = Λ . If the roots are distinct, then correct the 

corresponding locations in the received code word and STOP. 
8. Declare a decoding failure and STOP. 

 
 
 

5. RESULTS 
 

The aim of this project is to simulate the performance of BPSK in an AWGN environment 
with hard decision detection using binary BCH code with error-correcting capability (63,36) 5t = . 
The MATLAB code that carried out this simulation is given in the appendix.  

The key thing here; as I believe; is to build up the alpha table for the code which contains the 
-tuple representation of the elements in GF (m 62 64= ) { }2 620,1, , ,...,α α α . The power of α  for 

each entry in the table is evaluated using index.m function. Note that the indices are 
{ }1,0,1,2,...,62− with –1 refers to the 0 element in the field. This is done so that adding two 
elements in the field is performed by adding the two m -tuple of the elements using the alpha table. 
The index for the resulting tuple will be the resulting element. While the multiplication operation is 
performed by adding the two indices of the two elements. 

The average BEP for the simulated system is shown in Fig.2. For comparison purpose, the 

BEP for uncoded BPSK is also shown using the analytical formula (1
2b bP erfc )γ= , where 

0

b
b

E
N

γ = is the average SNR/bit. 
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Fig.2: Average BEP for BPSK systems. 

  
 

As we see, for low SNR, the uncoded system performance is better than the coded one. That 
is because at low SNR let us say 2 dB, the BEP for the encoded case is about 0.04. For coded 
system the SNR will be reduced by / 0.57k n = so that it will be about     –0.43 dB and hence the 
BEP is around 0.1, which means that out of 63 code word bits 6 bits will be in error after the hard 
decision detection. So, the decoding algorithm will fail in detecting these errors, which leads to 
worse performance.   
 
 

6. CONCLUSIONS 
 

The BEP for coded BPSK system in symmetric AWGN channel based on a hard decision 
decoding was simulated. The coding scheme that used is binary BCH code with error-correcting 
capability. The system’s performance improvement using channel coding at reasonable SNR is 
considerable in most cases. Since this improvement is due to the redundancy that is inserted by the 
coding technique, the price to be paid for this improvement is the higher transmission data rate and 
hence higher transmission bandwidth is required. Generally, analytical evaluation of the coded 
system performance is very tough, so simulation should be carried to do that.  
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APPENDIX: MATLAB Codes 
A. Main code 
 

clear all,clc,format long 
n=63;m=6;k=36;t=5; 
%G: Generator matrix in symmetric form 
%alpha: m-tuples representation of the field elements 
%mes:  Message data stream 
%c: Code word corresponding to mes 
%cpbsk: Baseband BPSK version of c 
%SNR: Signal-to-noise ratio for the uncoded system 
%uvar: Gaussian noise variance for the uncoded system 
%cvar: Gaussian noise variance for the coded system 
%cn: Noisy version of cpbsk 
%r: Transmitted code word 
%e: Error code vector 
%d: Demodulated received code word 
%dmes: Demodulated message data 

 
%Generator matrix 
G=zeros(k,n); 
for i=1:k 
   G(i,i:n-k+i)=bchpoly(n,k); 
end 
B=G(:,n-k+1:n); 
G=mod(mod(inv(B),2)*G,2); 
%Alpha-Index look-up tables 
alpha=zeros(n+1,m); 
alpha(2:m+1,:)=eye(m); 
for i=m+2:n+1 
   alpha(i,:)=mod(alpha(i-m,:)+alpha(i-m+1,:),2); 
end 
%Data encoding,decoding and Pe calculations 
ind=1;L=3e4; 
for SNR=0:8 
   Pe(ind)=0; 
   for l=1:L 
      r=zeros(1,n);d=zeros(1,n);cbpsk=zeros(1,n);e=zeros(1,n); 
      mes=round(rand(1,k)); 
      c=mod(mes*G,2); 
      for j=1:n 
         if c(j)==0 
            cbpsk(j)=-1; 
        else 
            cbpsk(j)=1; 
         end 
      end 
      uvar=10^(-SNR/10)/2; 
      cvar=uvar*n/k; 
      Gn=sqrt(cvar)*randn(1,n); 
      cn=cbpsk+Gn; 
      for j=1:n 
         if cn(j)<0 
            r(j)=0; 
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         else 
            r(j)=1; 
         end 
      end 
      %Syndromes calculation   
      S=zeros(2*t,m);s=zeros(1,2*t); 
      for i=1:2*t 
         for j=1:n 
            if r(j)==0 
               S(i,:)=S(i,:); 
            else 
               S(i,:)=mod(S(i,:)+alpha(rem(i*j-i,n)+2,:),2); 
            end 
         end 
         s(i)=index(S(i,:))-1; 
      end 
      %Data decoding using Berlekamp's algorithm 
      lmd=zeros(1,t);T=zeros(1,t); 
      lmd(1)=s(1); 
      if s(1)==-1 
          T(1)=-1;T(2)=0; 
      else 
          T(1)=mod(n-s(1),n); 
      end 
      for v=1:t-1 
          deltar=alpha(rem(s(2*v+1),n)+2,:);   
          for j=1:v 
              if lmd(j)==-1 | s(2*v+1-j)==-1 
                  deltar=deltar; 
              else 
                  deltar=mod(deltar+alpha(rem(lmd(j)+s(2*v+1-j),n)+2,:),2); 
              end 
          end 
          delta=index(deltar)-1; 
          V=lmd; 
          if delta==-1 |T(v)==-1 
              lmd(v+1)=-1; 
          else 
              lmd(v+1)=rem(delta+T(v),n); 
          end 
          for i=2:v 
              if delta==-1 |T(i-1)==-1 
                  lmdr=alpha(rem(lmd(i),n)+2,:); 
               else 
                  lmdr=mod(alpha(rem(lmd(i),n)+2,:)+alpha(rem(T(i-1)+delta,n)+2,:),2); 
               end 
               lmd(i)=index(lmdr)-1; 
           end 
           if delta~=-1 
               T(1)=mod(n-delta,n); 
               for i=2:v+1 
                   T(i)=mod(V(i-1)-delta,n); 
               end 
           else 
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               T(v+2)=T(v); 
               for j=1:v+1 
                   T(j)=0; 
               end 
           end 
       end 
       %Error locations using Chien's algorithm  
       for i=0:n-1 
           xx=zeros(1,m); 
           for j=1:t 
               if lmd(j)==-1 
                   xx=xx; 
               else      
                   xx=mod(xx+alpha(rem(lmd(j)+j*i,n)+2,:),2); 
               end    
           end 
           if index(xx)==1 
               e(mod(n-i,n)+1)=1; 
           end 
       end 
       d=mod(r+e,2); 
       dmes=d(:,n-k+1:n); 
       for i=1:k 
           if dmes(i)~=mes(i) 
               Pe(ind)=Pe(ind)+1; 
           end 
       end 
   end 
   Pe(ind)=Pe(ind)/(k*L); 
   ind=ind+1; 
end 
SNR=0:8; 
semilogy(SNR,0.5*erfc(sqrt(10.^(SNR/10))),'--'); 
hold  
semilogy(SNR,Pe) 

 
B. index.m 

function y=index(x) 
n=63;m=6; 
alpha=zeros(n+1,m); 
alpha(2:m+1,:)=eye(m); 
for i=m+2:n+1 
   alpha(i,:)=mod(alpha(i-m,:)+alpha(i-m+1,:),2); 
end 
for i=1:n+1 
   if x==alpha(i,:) 
      y=i-1; 
   end 
end        
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