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   Using well-known methods we generalize (hyper)virial theorems to the case of a singular 
potential. We discuss themost general second order differential equation, which involves all 
physically interesting cases, such as Schrödinger and Klein-Gordon equations with singular 
potentials. Some physical consequences are also discussed.  
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I. Introduction 

 
Virial theorem has a wide application in the classical as well as in the quantum mechanics. This 

theorem connects average values of kinetic and potential energies for the systems confined in limited 
areas. Moreover it allows making definite conclusions about some interesting problems without solving 
equations of motion.  

There are many generalizations of virial theorem, especially in relativistic quantum mechanics, 
for investigating bound states [1].  

Recently much attention was devoted to singular potentials, namely, to potentials, behaving 
like  ,  at r  in the Schrodinger equation, and as  for  in the 
Klein-Gordon and Dirac equations. 

( ) 0
2 VrVr −→ )0( 0 >V 0→

                                                

0VrV −= 0→r

So behaved potentials appear in large classes of physical problems. Particularly, in Calogero 
model [2], Coulomb or Hulthen potential  in Klein-Gordon and Dirac equations [3], Black Hole theory 
[4] and etc. Virial like theorems can make things clear while studying such problems.  
         Therefore, it is natural attempts to generalize virial theorem to the case of such (singular) 
potentials too.  

The most general methods for obtaining various virial like theorems were developed in [5] by C. 
Quigg for regular potentials in the Schrodinger equation. The general character of these methods allows 
us to carry over singular potentials as well. It appears that formally the theorem almost keeps the form 
familiar for regular potentials with obvious differences. But the main difference is additional solutions, 
whose existence is a specific property of singular potentials and is related to the necessity of self-
adjoint extension (SAE). 

This article is organized as follows: 
          First of all we remember the needed methods for deriving virial like theorems and apply them to 
general second order differential equation. 
 Consequences for regular potentials are reviewed and then the singular potentials are considered. 
It is shown, that there arise additional terms in the usual virial like theorems, which depend on the 
additional solution in the case of a singular potential. Some consequences of the new form of virial 
theorems are also considered. 

After that the corresponding corrections to the Feynman-Hellmann theorem are discussed. 
 

 
1 E-mail: teimuraz.nadareishvili@tsu.ge 
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II. Derivation of Hypervirial (generalized virial) Theorems 
 

Let us consider the second order differential equation of the most general form (exclusion of the 
first derivative terms is always possible by using a suitable transformation [6])  

                         0)()()( =+′′ rurLru ,                                (2.1) 
 
where L(r) is an arbitrary function of r. Central potential in three-dimensions will be important for us in 
what follow. Exactly to equation (2.1) reduces the radial Schrodinger equation with ∞<< r0 . Even the 
one-dimensional case may be investigated on the same foot, as well, where ∞<<∞− x . In the 
following some of physical requirements will be used to restrict this function, L(r).   

Now we proceed to the methods of C.Quigg [5]. Let us multiply (2.1) by and integrate in the 
interval ( .  (here is an arbitrary three-time differentiable function, which will be specified 
below). We derive  

uf ′
)∞,0 )(rf

                                                                                     (2.2) ∫∫
∞∞

′=′′′−
00

drufLudruuf

Let us mention that using the following relations  ( )21
2

u u u′ ′′ ′=  and 21 ( )
2

uu u′ ′= , one can perform 

partial integration in (2.2).  

                          ∫ ∫∫
∞ ∞

∞
∞

∞ ′−′−=′′+′−
0

2

0

2
0

22

0
0

2 ][][ druLfdrLuffLudrufuf                 (2.3) 

For bound states  at large distances and therefore one neglects contributions from the 
upper boundary in (2.3), if  and 

0, →′uu
f L are restricted as follows 

                                             (2.4) 0lim;0lim 22 →→′
∞→∞→

fLuuf
rr

  
(For scattering problems are not decreasing functions and the conditions (2.4) may not be satisfied, 
except the special choice of ).  

uu ′,
f

Therefore there remain expressions in (2.3) only at lower boundary 

                                     ∫
∞

′−′−−=′′+′
0

0
22

0
2 LfLffLudrufuf ,                      (2.5) 

where <    > denotes averaging by means of u  function. For example,  

                                                     ∫
∞

′=′
0

2drLufLf                                    (2.6) 

Perform partial integration in the second term of RHS of eq. (2.5), using evident relation 
uuuuuu ′′+′′=′′)( . It follows 

                            ∫∫∫
∞∞

∞
∞

′′′−′′′−′′=′′≡
00

0
2

0

druufdruufuufdrufI                         (2.7) 

For bound states the first term on RHS at the upper limit may be neglected, if  
                                          0lim →′′

∞→
uuf

r
                                           (2.8) 

Now let us integrate the last term on RHS of (2.7) 
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                            >′′′<−′′=′′′=′′′= ∞
∞∞

∫∫ fufdrufdruufI
2
1

2
1)(

2
1

0
22

00
1            (2.9) 

For bound states  must be restricted as follows f
                                                                 (2.10) 0lim 2 →′′

∞→
uf

r

Therefore, we have (taking into account the equation of motion (2.1)) 

                                                  >′′′<+′′+>′<+′′−= fufLfuufI
2
1

2
1

0
2

0              (2.11) 

Finally, from (2.5) and (2.11) we derive the following hypervirial theorem for bound states: 

                           >′′′<−>′<−>′<−=
⎭
⎬
⎫

⎩
⎨
⎧ ′′−′′+′′−′

=

fLfLfufuufuufuf
r 2

12
2
1

0

22       (2.12)  

For scattering states (2.4), (2.8) and (2.10) restrictions are not satisfied and instead of (2.12) we have  

   
>′′′<−>′<−>′<−=

=
⎭
⎬
⎫

⎩
⎨
⎧ ′′−′′+′′−′+

⎭
⎬
⎫

⎩
⎨
⎧ ′′−′′+′′−′−

=∞=

fLfLf

ufuufuufufufuufuufuf
rr

2
12

2
1

2
1

0

2222

             (2.13) 

After substitution here u  function at infinity corresponding hypervirial theorem can be derived 
for scattering problems as well.  

Now let us make some comments in connection which (2.12) about restrictions on : f
(a) Because <  > means averaging by u -functions, f  must be such, that corresponding integrals do 
exist.  
(b) When )lq 2−≥ , then (2.12) coincides with (2.27) of the paper [7], where only the 
Schrödinger equation is considered, i.e.  

(rf q=

                                                 ⎥⎦
⎤

⎢⎣
⎡ +

−−= 22
)1(2

mr
llVEmL                                                       (2.14) 

with regular V. 
Let us note that the choice  satisfies (2.4), (2.8) and (2.10) restrictions.  qrf =

(c) The expression (2.12) for arbitrary f is derived in [8], but in that paper, as well as in [7], only the 
Schrodinger equation was considered.   
 
 
III.   Some Applications of Hypervirial Theorem 
 

Choosing , one can obtain several interesting expressions from (2.12). Let us consider some of 
them. 

f

Consider a particular case for  in (2.1) )(rL

                       2

)1()(
r
ssrAL +

−= ,                               (3.1) 0≥s

i.e. we separate a centrifugal term. 
We use here a general notation  instead of (2.14) because a lot of physical equations reduce 

to the form, like (3.1), where potential participates in different manners.  
)(rA
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It is necessary to make distinction between two cases:  (regular) and 

 (singular). 

0)(lim 2

0
=

→
rAr

r

0)(lim 2

0
≠

→
rAr

r

  Consider each of them in detail: 
(i) regular case, when  

                                                                                            (3.2) 0)(lim 2

0
=

→
rAr

r

It is easy to guess, that only regular potentials  
                                                                                         (3.3) 0)(lim 2

0
=

→
rVr

r

obey (3.2) in the case of the Schrödinger equation (if we take 2,1,0; == lls ). 
While, for example, for one- and two-particle Klein-Gordon equations (3.2) is satisfied if 

                                                             0)(lim
0

=
→

rrV
r

                                (3.4) 

When (3.2) is satisfied it follows the following behavior of wave function at the origin  

                                                       (3.5) 
s

s
s

sr
rbrau −+

→
+≈ 1

0

The second term in (3.5) does not obey the condition of hermitianity for Hamiltonian [9,10] and radial 

momentum operator )1(
rr

ipr +
∂
∂

−= [11], which is imposed on the wave function at the origin  

                                               0)0()(lim)(lim
00

===
→→

ururrR
rr

          (3.6) 

 Therefore it is forbidden as a rule (see, any textbook in quantum mechanics). Then at small distances 
only the first term remains 

                                                                                             (3.7) 1+≈ s
ss rau

Substituting this into (2.12) one obtains 

                          

>′′′<−>−
′

<++

+>′<−>′<−=
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
′′+′+−+

=

f
r
f

r
fss

AfAffrrfsfsra
r

s
s

2
1)1(2

2
2

)1()1(

32

0

2
22

     (3.8) 

Now consider special form for  [5]  f
                                                                                                 (3.9) qrf =

We have  

                        
><⎥⎦

⎤
⎢⎣
⎡ −−+−+−

−>′+<−=
⎭
⎬
⎫

⎩
⎨
⎧ −+−+

−

−
=

+

3

1
0

22

)2)(1(
2
1)1)(1(2

2)1(
2
1)1)(1(

q

qq
r

sq
s

rqqqqss

ArAqrraqqqs
         (3.10) 

In order the LHS of this expression not to be divergent at 0=r , we must require  
 

                                                     sq 2−≥                                          (3.11) 
 
Therefore, (3.10) becomes  
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>⎥⎦

⎤
⎢⎣
⎡ −−+−++′+<−=

=+

−−

−

31

2,
22

)2)(1(
2
1)1)(1(22

)12(

qqq

sqs

rqqqqssArAqr

as δ
           (3.12) 

It must be noted that (3.12) is a generalization of the relation (2.30) from the paper [5] where only the 
Schrodinger equation was considered. 

Let us now consider various interesting values of in (3.12):  q
a)     1=q
Then it follows from (3.12) that  

                                                       02 =′+ ArA                                  (3.13) 
In case of Schrodinger equation, when  

                                                        )(2 VEmA −=                                                           (3.14) 
we derive  

                                                          VrVE ′+=
2
1 ,                               (3.15) 

which is the usual virial theorem 

                                                          VrT ′>=<
2
1                                  (3.16)  

b)  lq 2−=
Taking into account separability of the total wave function  

                                       ( ) ( ) ( ) ( ) ( ϕθϕθϕθ )ψ ,,,, ,
em

en
emne Y

r
ru

YrRr ==                  (3.17) 

we derive 

                                       ( ) ( ) ( ) ( ) enll
e
en r

A
r

AllRl ,212
22

,
2 4!012 >

′
−<=+ +

                   (3.18) 

Here   is the lth order derivative of radial wave function at the origin. (3.18) generalizes eq. 
(1.4) of [7] for Schrodinger equation  

( ) ( )0,
e
enR

                              ( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡ −
+=+ +12

22
,

2 41!2012 l
l

l
e
en r

VEl
dr
dV

r
lmRl                  (3.19) 

 
c) q=0, i.e.   constf =
 
This case is well-known in the Schrodinger equation [5, 8]. Now it follows from (2.12): 

                                                  { } >′<−=′′−′ = Luuu r 0
2                               (3.20) 

or 

                          2 2
0 3

2 ( 1)( 1) ( )l
l r

l ll a r A r
r=

+′+ = − < > −             (3.21) 

If now we take , then 0=l
                                                                              (3.22)            >′<−=′= )()0()( 2

0
2
0 rAua

It generalizes eq. (39a) from [8] to the arbitrary . When we take expression (3.14), then it follows 
from (3.22) the well-known relation  

)(rA

                                                         
dr
dVm

π
ψ

2
)0( 2

0 =                               (3.23) 
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In the case of , the LHS of (3.21) is zero and therefore we obtain  0≠l

                                                    A
r

ll ′−=+ 3

1)1(2                                (3.24) 

which generalizes the eq. (39b) from [8] derived for the particular case of given by the (3.14). The 
relations (3.22) and (3.24) are formulated in terms of . Depending on equations of motion, the 
potential  appears in various forms and one must take care, which restrictions arise on 
potential . 

)(rA
)(rA

)(rV
)(rV

 d)              lq 2,1,0 −≠
In this case we have 

                       0)2)(1(
2
1)1)(1(22 31 >=⎥⎦

⎤
⎢⎣
⎡ −−+−++′+< −− qqq rqqqqllArAqr           (3.25) 

This expression allows us to connect average values of the various degrees of r .  
For example, in the Schrodinger equation case we have  

         ( ) ( ) 012
4

)1(22 311 =⎥⎦
⎤

⎢⎣
⎡ +−−

−
+′−− −−− qqqq rllqq

m
qVrVrqrEq      (3.26) 

 For the power-like potential,  it follows from (3.26), that  nrVV 0=

          ( ) ( ) 012
4

)1()2(2 31
0

1 =⎥⎦
⎤

⎢⎣
⎡ +−−

−
++− −−+− qnqq rllqq

m
qrnqVrEq        (3.27) 

If , the well-known Kramer’s formula [12] follows from (3.27) for the Coulomb potential 1−=n

     
r

V α
−= ,    (i.e. 1;0 +=−= sqV α ) 

           0)1(
4

1)12()1(2 2
2

1 =⎥
⎦

⎤
⎢
⎣

⎡
+−

−
++++ −− sss rlls

m
srsrsE α                     (3.28) 

For the particular case of , the relation for isotropic harmonic oscillator2=n 22

2
1 rV ω=  is derived [13] 

                       0)1(
4

1)2()1(2 2
2

22 =⎥
⎦

⎤
⎢
⎣

⎡
+−

−
++−+ −+ sss rlls

m
srsrsE ω                  (3.29) 

Also it is possible to derive recurrence like relations between different powers of r for various 
relativistic equations. Such relations have many applications in many physical problems [14].  
 
ii) Singular case.  Now 

                                                                              (3.30) )0(;)(lim 00
2

0
>−=

→
VVrAr

r

AIt is shown in [15-16],  for Schrodinger and two equal mass particles’ Klein-Gordon equations, that 
besides the standard levels there exist additional levels as well, whose wave function behaves at small 
distances as  

                                                
P

stst rau
+

≈ 2
1

 ;   
P

addadd rau
−

≈ 2
1

                       (3.31) 
where, for example, in the Schrodinger equation 

                                              02)2/1( 0
2 >−+= mVlP                                 (3.32) 

while in the Klein-Gordon equation for two equal mass particles 
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                                             04/)2/1( 2
0

2 >−+= VlP                                   (3.33) 
Likely it is possible to find P for given L for each relativistic equation. At the same time, as is indicated 
in [15-16], for the existence of additional levels following constraint must be satisfied 
                                                                                    (3.34) 2/10 <≤ P
which is expression of vanishing of the radial wave function ( )u r  at the origin,  . ( )0 0u =
Now if we take the wave function at small distances as general form [15] 

                                             
P

add

P

st rarau
−+

+= 2
1

2
1

                               (3.35) 
and use (3.9) for , then (2.13) gives f

[ ]
31

1,
22

21,
2

21,
2

)2)(1(
2

)1)(1(22

4)1()2/2/1)(1()2/2/1)(1(

−−

+−

⎥⎦
⎤

⎢⎣
⎡ −−+−++′+−=

=−−+−−−+−+−

qqq

qaddstPqaddpqst

rqqqqllArAqr

aaPqaqPqaqPq δδδ
                  

(3.36) 

Here we must require that .If Pq 21−≥ 00 =V , i.e. if we return to the regular case (3.2),because the 
RHS of (3.36) remains unchanged, but the LHS transforms into the LHS of (3.12) 

Let us consider various q-ss in (3.36) as above. 

   a)   2/10,0;1 <<≠= PPq
 Then from (3.36) it follows that                   

                                                 addst aaPArA 242 =′+                                (3.37) 
For the Schrodinger equation this means 

                                          addst aa
m
PVrVE

2

2
1

+′+=                               (3.38) 

Therefore, for singular potential the virial theorem differs from that of regular ones by the extra term  

                                                 addst aa
m
Pb

2

=                                        (3.39) 

This term vanishes when we take only standard or only additional solutions. 
Comment: A Separate consideration needs the case 0=P . As is indicated in [15], we have in this case 

                                                 rrarau addstr
ln2

1
2
1

0
+≈

→
                               (3.40)  

Clearly .Now instead of (3.36) it follows 0)0( =u

                             0)2)(1(
2
1)1)(1(22 31 =⎥⎦

⎤
⎢⎣
⎡ −−+−+−′+ −− qqq rqqqqllArAqr       (3.41) 

And virial theorem for the  Schrodinger theory takes the form  

                          VrVE ′+=
2
1                                     (3.42) 

which is analogous to the regular potential case, but difference appears in averaging by the function 
(3.40). 

For pure singular potential  

                                                      )0(; 02
0 >−= V

r
V

V                                    (3.43) 
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it follows from (3.37) that 

                                                          addst aa
m
PE

2
=                                    (3.44) 

This is a single level, which appears in quantum mechanical consideration, when we retain the 
additional solution as necessary ingredient for providing self-adjointness of Hamiltonian via self-
adjoint extension (SAE) [15].  

This level disappears immediately as we neglect pure standard or pure additional solutions.  
It is evident that the equality (3.37) is a rather general relation leading to many physical consequences.  
Consider, for example, Klein-Gordon equation for two particles with equal masses : m

                                   ;0)1(
424 2

2
22

=
+

−⎥
⎦

⎤
⎢
⎣

⎡
−+−+′′ u

r
llumMMVVu                              (3.45) 

M  is the mass of the composite state. Comparison to (2.1) and (3.1) gives  

                                               2
22

424
mMMVVA −+−=  

Using this in (3.36), we obtain 

                                     ( ) addst aaPmMMVVrMVV 22
22

42
222

=−+−
′

+−            (3.46) 

Let us now consider the following problem: Can two massive particles produce massless bound 
state in the case of the Coulomb potential (attraction or repulsion)? Existence of bound states for both 
cases is a consequence of the relativistic structure of Klein-Gordon equation, where for 0=M  there 
remains only in (3.45).This problem was considered in [17]. 2V

Taking  in (3.46), we derive 0=M

                        addst aaPmVVrV 22
2

42
22

=−
′

+                       (3.47)    

For the Coulomb potential one has 
                                                           (3.48)          addst aaPm 22 2=−

and we see that there is a positive answer to this problem only if 0≠sta  and  (if 0≠adda )0<addst aa . 
This result may be verified also by direct solution of the Klein-Gordon equation. Indeed, substituting 

 in (3.45), one finds    0=M

                                                       ;0)1(
4 2

2
2

=
+

−⎥
⎦

⎤
⎢
⎣

⎡
−+′′ u

r
llumVu                               (3.49)                

If we take here 
r

V α
m=   this equation becomes 

                          04/1
2

2
2 =⎥

⎦

⎤
⎢
⎣

⎡ −
−−+′′ u

r
Pmu                           (3.50)  

where P  is given by (3.33). Note that this equation coincides to the Schrodinger equation with the 
accuracy of notations. Therefore we can use the results of our paper [15] and write down the general 
solution derived there                                                           

              ( ) { })()( mrBImrAImrru PP −+=                                        (3.51)   
where  and  are the modified Bessel functions. We have the following behaviour at infinity PI PI−
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                            { } mr

r
eBAru +≈

∞→ π2
1)(                                                   (3.52) 

Requiring that  vanishes at infinity as it is the case for bound state solution we have to take )(ru
                                                                      AB −=                                  (3.53) 

Remembering the well-known relation  

                         [ ])()(
sin2

)( zIzI
P

zK PPP −= −π
π                       (3.54)        

our wave function takes the form 

                           )(sin2 mrKPmrAu P⋅−= π
π

                         (3.55) 

which is exponentially damping at infinity and in the interval 2/10 <≤ P  satisfies the fundamental 
requirement (3.6). It is evident, that our solution is derived by the requirements 
                                                           (3.56)     0;0 ≠≠ BA
which means, that   state can be derived only by SAE procedure. We see that explicit solution of 
Klein-Gordon equation confirms the conclusion, derived by Virial theorem.  

0=M

One important remark is in order: W. Krolikowski [17] derived the same solution for state only. It 
is true, because is the only Bessel function, which behaves in a needed fashion at infinity 
(vanishes!). It appears that a massless bound state for Coulomb potential may be constructed from 2 
massive particle in nonzero orbital momentum states as well, 

0=l
)(zKP

0≠l [15].But SAE procedure is 
necessary. 
 Owing to the fact, that repulsive case also forms a massless bound state, we conclude, that the 
following alternatives take place: 

         Those values of SAE parameter 
st

add

a
a

=τ , for which this strange fact occurs, must be         

deflected in order to  suppress such unphysical results. 
(i) We must recognize, that the SAE procedure produces an effective attraction , which may be seen 
from the equation (3.50), where the factor ( )4/12 −P  is negative in the area (3.34) and gives a quantum 
anticentrifugal potential, which is attractive [15]. 
(ii) It is not excepted that such unphysical fact is a pathology of the Klein-Gordon equation. For 
example if we reverse the problem and ask ourselves whether two massless particles can compose a 
massive bound state in Coulomb field, we can easily see that (3.46) gives a positive answer in the case 
of Coulomb repulsion, but not for attraction .                                                             
 b)  Cases   and  may be discussed in full analogy. One derives some recurrence 
like relations between average values of various powers of 

Pq 21m= lq 2,1,0 −≠
r .  

     
IV. Conclusions 
 
 In this article we consider problems, related to the singular potentials in the light of hypervirial  
theorem. Main results can be summarized as follows: 
1.We have derived a hypervirial theorem for the general second order differential equation.  
2. For regular potentials we generalized known results concerning the Schrodinger equation   
( virial theorem, wave function and its derivatives at origin, recurrence relations between average 
values of different powers of r ) 
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3.We obtain virial theorem for singular potential, by means of which some physical results are derived 
(existence of one level for pure 2−r  potential, possibility of having massless bound state for repulsive 
and attractive Coulomb potential  in the two-body Klein – Gordon equation).  
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