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Abstract  
QuickIn Sort is a sorting algorithm that, makes O (n log n) (Big Oh notation) 
comparisons to sort n items. Typically, QuickIn Sort  is  significantly  faster  in  practice  
than  other O(n log n) algorithms , because  its  inner  loop  can be efficiently 
implemented  on most architectures .This sorting method requires data movement, but 
less than that of insertion sort. This data movement can be reduced by implementing the 
algorithm using linked list. Major advantage of this sorting method is its behaviour 
pattern is same for all cases, i.e. time complexity of this method is same for best, 
average and worst case. 

Introduction 
Sorting is any process of arranging items in some sequence and/or in different sets, and 

accordingly, it has two common, yet distinct meanings: 
1. ordering: arranging items of the same kind, class, nature, etc. in some ordered sequence,  
2. Categorizing: grouping and labeling items with similar properties together (by sorts).  

In computer science and mathematics, a Sorting Algorithm is an algorithm that puts 
elements of a list in a certain order. The most-used orders are numerical order and lexicographical 
order. Efficient sorting is important to optimizing the use of other algorithms (such as search and 
merge algorithms) that require sorted lists to work correctly. 

To analyze an algorithm is to determine the amount of resources (such as time and storage) 
necessary to execute it. Most algorithms are designed to work with inputs of arbitrary length. 
Usually the efficiency or complexity of an algorithm is stated as a function relating the input length 
to the number of steps (time complexity) or storage locations (space complexity). Algorithm 
analysis is an important part of a broader computational complexity theory, which provides 
theoretical estimates for the resources needed by any algorithm which solves a given computational 
problem. These estimates provide an insight into reasonable directions of search for efficient 
algorithms. In theoretical analysis of algorithms it is common to estimate their complexity in the 
asymptotic sense, i.e., to estimate the complexity function for arbitrarily large input. Big O notation, 
omega notation and theta notation are used to this end. 

Time complexity  
Time efficiency estimates depend on what we define to be a step. For the analysis to 

correspond usefully to the actual execution time, the time required to perform a step must be 
guaranteed to be bounded above by a constant. In mathematics, computer science, and related 
fields, Big Oh notation describes the limiting behavior of a function when the argument tends 
towards a particular value or infinity, usually in terms of simpler functions. Big O notation allows 
its users to simplify functions in order to concentrate on their growth rates: different functions with 
the same growth rate may be represented using the same O notation. 

Although developed as a part of pure mathematics, this notation is now frequently also used 
in computational complexity theory to describe an algorithm's usage of computational resources: 
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the worst case or average case running time or memory usage of an algorithm is often expressed as 
a function of the length of its input using big O notation. 

Space complexity  
The better the time complexity of an algorithm is, the faster the algorithm will carry out his 

work in practice. Apart from time complexity, its space complexity is also important: This is 
essentially the number of memory cells which an algorithm needs. A good algorithm keeps this 
number as small as possible, too. Definition (Space complexity) 

The space complexity of a program (for a given input) is the number of elementary objects 
that this program needs to store during its execution. This number is computed with respect to the 
size n of the input data.  

There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with 
few computing time and low memory consumption. One then has to make a compromise and to 
exchange computing time for memory consumption or vice versa, depending on which algorithm 
one chooses and how one parameterizes it.  

In addition to varying complexity, sorting algorithms also fall into two basic categories — 
comparison based and non-comparison based. A comparison-based algorithm orders a sorting array 
by weighing the value of one element against the value of other elements. Algorithms such as quick 
sort, merge sort, heap sort, bubble sort, and insertion sort are comparison based. Alternatively, a 
non-comparison based algorithm sorts an array without consideration of pair wise data elements. 
Radix sort is a non-comparison based algorithm that treats the sorting elements as numbers 
represented in a base-M number system, and then works with individual digits of M. 

Another factor, which influences the performance of sorting method, is the behavior pattern of 
the input. In computer science, best, worst and average cases of a given algorithm express what 
the resource usage is at least, at most and on average, respectively. Usually the resource being 
considered is running time, but it could also be memory or other resources. 

QuickIn Sort is a new sorting algorithm that, makes O (n log n) (Big Oh notation) 
comparisons to sort n items. Typically, QuickIn Sort is significantly faster in practice than other O 
(n log n) algorithms, because its inner loop can be efficiently implemented on most architecture. 
This sorting method requires data movement but less than that of insertion sort. This data 
movement can be reduced by implementing the algorithm using linked list. Major advantage of this 
sorting method is its behavior pattern is same for all cases, ie time complexity of this method is 
same for best, average and worst case. 

Comparison of algorithms 
 

S.No 
 

Name 
 

Average
 

Worst
 

Memory
 

 
Method 
 

1 Bubble 
Sort O(n2) O(n2) O(1) Exchange 

2 Selection 
Sort O(n2) O(n2) O(1) Selection 

3 Insertion 
Sort O(n2) O(n2) O(1) Insertion 

4 Shell 
Sort       --- O(n 

log n) O(1) Insertion 
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5 
Binary 
Tree 
Sort 

O(n log 
n) 

O(n 
log n) O(n) Insertion 

6 Merge 
Sort 

O(n log 
n) 

O(n 
log n) O(n) Merging 

7 Heap 
Sort 

O(n log 
n) 

O(n 
log n) O(1) Selection 

8 Quick 
Sort 

O(n log 
n) O(n2) O(log n) Partitioning 

 

Methodology 
Since the dawn of computing, the sorting problem has attracted a great deal of research, 

perhaps due to the complexity of solving it efficiently despite its simple, familiar statement. For 
example, bubble sort was analyzed as early as 1956. Although many consider it a solved problem, 
useful new sorting algorithms are still being invented (for example, library sort was first published 
in 2004). Sorting algorithms are prevalent in introductory computer science classes, where the 
abundance of algorithms for the problem provides a gentle introduction to a variety of core 
algorithm concepts, such as big O notation, divide and conquer algorithms, data structures, 
randomized algorithms, best, worst and average case analysis, time-space tradeoffs, and lower 
bounds. 

A problem may have numerous algorithmic solutions. In order to choose the best algorithm 
for a particular task, you need to be able to judge how long a particular solution will take to run. 
Alternatively, more accurately, you need to be able to judge how long two solutions will take to run, 
and choose the better of the two. You do not need to know how many minutes and seconds they 
will take, but you do need some way to compare algorithms against one another. 

Asymptotic complexity is a way of expressing the main component of the cost of an 
algorithm, using idealized units of computational work. Consider, for example, the algorithm for 
sorting a deck of cards, which proceeds by repeatedly searching through the deck for the lowest 
card. The asymptotic complexity of this algorithm is the square of the number of cards in the deck. 
This quadratic behavior is the main term in the complexity formula, it says, e.g., if you double the 
size of the deck, then the work is roughly quadrupled. 

The exact formula for the cost is more complex, and contains more details than are needed to 
understand the essential complexity of the algorithm. With our deck of cards, in the worst case, the 
deck would start out reverse-sorted, so our scans would have to go all the way to the end. The first 
scan would involve scanning 52 cards, the next would take 51, etc. So the cost formula is 52 + 51 + 
... + 1. Generally, letting N be the number of cards, the formula is 1 + 2 + ... + N, which equals ((N 
+ 1) * (N) / 2) = (N2 + N) / 2 = (1 / 2) N2 + N / 2. However, the N^2 term dominates the 
expression, and this is what is key for comparing algorithm costs. (This is in fact an expensive 
algorithm; the best sorting algorithms run in sub-quadratic time.) 

Asymptotically speaking, in the limit as N tends towards infinity, 1 + 2 + ... + N gets closer 
and closer to the pure quadratic function (1/2) N^2. In addition, what difference does the constant 
factor of 1/2 make, at this level of abstraction? Therefore, the behavior is said to be O(n2). 

In typical usage, the formal definition of Big O notation is not used directly; rather, the Big O 
notation for a function f(x) is derived by the following simplification rules: 

If f(x) is a sum of several terms, the one with the largest growth rate is kept, and all others 
omitted.  
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If f(x) is a product of several factors, any constants (terms in the product, that do not depend 
on x) are omitted.  

For example, let f(x) = 6x4 − 2x3 + 5, and suppose we wish to simplify this function, using O 
notation, to describe its growth rate as x approaches infinity. This function is the sum of three 
terms: 6x4, −2x3, and 5. Of these three terms, the one with the highest growth rate is the one with 
the largest exponent as a function of x, namely 6x4. Now one may apply the second rule: 6x4 is a 
product of 6 and x4 in which the first factor does not depend on x. Omitting this factor results in the 
simplified form x4. Thus, we say that f(x) is a big-oh of (x4) or mathematically we can write 
f(x) = O(x4). 

Results and Discussions 
QuickIn sort is a sorting algorithm that, makes O (n log n) (Big Oh notation) comparisons to 

sort n items. Typically, QuickIn sort  is  significantly  faster  in  practice  than  other O ( n log n ) 
algorithms , because  its  inner  loop  can be efficiently implemented on most architectures and its 
behavior pattern is same for all cases 

How it sorts 
From the given set of unsorted numbers, take the first number name it as key K1 Read all the 

remaining numbers one by one. Compare the number with K1. If the number is greater than or 
equal to K1 then place the number right of K1 else place the number left of K1.Conitnue the same 
process for all the remaining numbers in the list. Finally, we will get two sub lists. One list with 
numbers less than K1 and the other with numbers greater than or equal to K1. Repeat the same 
process for each sub list. Continue this process until the sub list contains zero elements or one 
element. 

Algorithm 
QuickIn (N: Array of Numbers, K1, A: integers,) 

Step1. Read the first number from N,  

           Let K1  

Step2.  Read the next number, let A 

   Step3 Compare A with K1 

   Step4   If A is greater than or equal to K1 

               Then 

 Place a right of K1 

    Else  

Place a left of K1 

      

    Step5 If the list contains any more            

             Elements go to step 2 

    Step 6  Now we have 2 Sub list. 

 First list with all values less than  K1. 
 Second list with values greater than or equal to K1.    

    Step7. If each list contains more than one  

             Element go to step1 
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Example 1 
Let unsorted numbers be 

  
10,13,4,29,4,6,8,1,2,20,16,24,12,5,1 
 
Step 1. 
Read the first number, i.e 10 
So here, key K1 is 10 
Read the remaining number one by one 
 
Read the next number, i.e. 13 
Compare 13 and 10. Since 13 is greater than 10 place 13 right of K1. We get 
10, 13 
Read the next number, i.e. 4 
Since 4 is smaller than 10 places, 4 left of 10. 
We get 
4, 10, 13 
Read next number, ie 29, we get 
4,10,13,29 
Read next number, ie 4, we get 
4, 4,10,13,29 
Read next number, ie 6, we get 
6,4,4,10,13,29 
Read the next number , ie 8, we get 
8,6,4,4,10,13,29 
Read the next number, ie 1 , we get 
1, 8,4,4,10,13,29 
Read the next number, ie 2, we get 
2,1, 8,4,4,10,13,29 
Read the next number, ie 20, we get 
2,1, 8,4,4,10,13,29,20 
Read the next number, ie 16, we get 
2,1, 8,4,4,10,13,29,20,16 
Read the next number, ie 24, we get 
2,1, 8,4,4,10,13,29,20,16,24 
Read the next number, ie 12 we get 
2,1, 8,4,4,10,13,29,20,16,24,12 
Read the next number , ie 5, we get 
5, 2,1, 8,4,4,10,13,29,20,16,24,12 
Read the next number, ie 1 we get 
1, 5, 2,1, 8,4,4,10,13,29,20,16,24,12 
 
Now we get two lists one with values less than 10 and the other with values greater than or equal to 
10 
That is 

List 1 
1, 5, 2,1, 8,4,4 

List 2 
13,29,20,16,24,12 
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Repeat the same process for each list. 

 
List 1 
1, 5, 2,1, 8,4,4  
Here key K1 is 1. Read all the number one by one compare with K1. 
We get 
 
1, 5, 2,1, 8,4,4  
Here we get two more sublists list 11 and list12 
Here list11 contains zero elements so no need to process list11.Continue the same process with 
list12. 
i.e  
5, 2,1, 8,4,4 
Process list12 
We get  
4,4,1,2,5,8 
List121 is 4,4,1,2 and list 122 is 8 
Repeat the same process for both we get 
 
2,1,4,4  
List 1211 is 2,1 and list 1212 is 4 
Process list 1211 
We get 1,2 
 
Now the list is sorted and is 
1,1,2,4,4,5,8  
Continue the same process for list 2 , we get  
12,13,16,20,24,29. 
 
Therefore, the complete sorted list is 
1,1,2,4,4,5,8 ,10, 12,13,16,20,24,29. 

Example 2 
Consider the unsorted numbers 8,6,4,2 
Here the key K1 is 8 
After the first comparison process w get 
2,4,6,8  
This is in sorted order but we have to continue the same process for each list but number of 
comparison here after will be less. 

Example 3 
Consider the unsorted numbers 
2,4,6,8 
Here the key K 1 is 2 
 
After the first comparison process we get 
2,4,6,8 
 

In both examples s 2 and  3 we get immediate results if the list is already in sorted form in 
either ascending or descending. 
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Suggestions 
This sorting method is a combination of quick sort and insertion sort. Even though data 

movement in this sorting method is less compares to insertion sort, still it requires data movement 
when the element is less than K1.This data movement can be reduced by implementing the 
algorithm using linked list.  

 

References 
1. Sartaj Sahni, “Data Structures Algorithms and Applications in C++”, 2nd Ed. University 

Press,2005 
2. Aaron M Tanenbaum, Moshe J Augenstein, “Data Structures using C”,Prentice Hall 

International Inc.,Emglewood Cliffs,NJ,1986 
3. Robert L Cruse, “ Data Structure and Program Design”, Prentice Hall India 3rd ed.,1999 
4. Sartaj Sahni,”Data Structures, Algorithms and applications in C++”,University Press , 

2nd Ed.,2005 
5. Yedidyah Langsam,Moshe J Augenstein, Aaron M Tanenbaum “ Data Structures using 

C and C++”, Prentice Hall India, 2nd Ed. 2005 
6. Mark Allen Weiss “Data Structures and Algorithm analysis in C++ “, Pearson 

Education, 3rd Ed., 2007 
7. Ying Shi and Eushiuan Tran, 18-742 Advanced Computer Architecture, Carnegie 

Mellon University, Pittsburgh, Pennsylvania 
8. www.en.wikipedia.org 
9. http://www.leda-tutorial.org/en/official/ch02s02s03.html Space Complexity 
10. Demuth, H. Electronic Data Sorting. PhD thesis, Stanford University, 1956 

 
 

 
____________________________ 

Article received: 2010-01-06  
 
 

mailto:yshi@andrew.cmu.edu
mailto:etran@andrew.cmu.edu
http://www.en.wikipedia.org/
http://www.leda-tutorial.org/en/official/ch02s02s03.html

