
GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 88

IDENTIFYING FAULT-PRONE MODULES IN SOFTWARE FOR DIAGNOSIS
AND TREATMENT USING EEPORTERS CLASSIFICATION TREE

Bassey. A. Ekanem1, Nseabasi Essien2

1Department of Computer Science, Delta State Polytechnic, Ozoro, Delta State, Nigeria,
Email: ba_ekanem@yahoo.com

2Department of Computer Science, College of education, Gusau, Zamfara State, Nigeria
Email: nseabasiess@yahoo.com

Abstract

One of the major challenges facing software developers and testers is how to
identify fault-prone modules in software for quick diagnosis and treatment without
compromising its quality. In a bit to deliver quality and error-free software products,
most testers usually spent hours on redundant and unnecessary testing due to their
inability to identify modules likely to harbor harmful errors for test. Considering the
amount of time, energy and resources usually lost to such, this research presents a tool
termed, EEPorterS Tree capable of identifying fault-prone modules for quick diagnosis
and treatment by testers. EEPorterS is christened from the surnames of the
contributors, namely Ekanem, Essien, Porter and Selby. The tool is constructed based
on factors likely to render a program module error-prone. Stepping modules through
the tree, their ranks, which is from Rank 1 (modules likely to harbor many harmful
errors) to Rank 5 (modules likely to harbor few errors) can be determined and tested in
that order. EEPorterS was implemented with 20 software projects, which reveals
233(that is 73%) test hours reduction, and 64% improvement in error detection over
random testing approach.

Keywords: EEPorterS Classification Tree, Fault-prone Module, Program Errors, Test
Sequence, Module Ranks, Testers.

1.Introduction
Software organizations usually put their software products through intensive testing and

debugging before deploying them for use. Testing and debugging are very important exercises
during integration process and requires serious attention to ensure that the software meets the
acceptance criteria specified in the software contract. Software reliability, availability and even
maintenance costs depend on the quality of testing and debugging performed. To show how
important this is, most software organizations spend between 50% to 80% of the total development
cost on testing and debugging [1].

For a software to be completely free from error, it requires exhaustive testing and debugging.
This has to do with testing and executing every instruction in the program at least once, testing
every branch point in each direction at least once and ensuring that all control paths are also tested.
Even with simple programs only a vanishing small part of all theoretically possible input cases can
be exercised in this manner during the testing. Thus, on the basis of those input cases considered,
some statements can be made as to the general behavior of all other input cases.

Since a purely statistical choice of test cases does not lead to conclusive information about the
program, the concern for making the right choice of the selection of test cases becomes evident and
if not properly done, the software is bound to fail the acceptance test [2]. Even where it narrowly
passes the acceptance test, it may build up very high and frightening maintenance cost since the
unidentified errors are bound to appear in very high frequency once the software becomes
operational.

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 89

To ensure that the software is properly tested and released on schedule, some organizations
normally insist on penalty-incentive contracts to penalize for milestones not achieved and
compensate for those accomplished during the project. Also, some clients based on their experience
on high maintenance costs during the first few months/years of acquiring a new software product
always insist on warranty contracts specifying time period in which the contractor fixes all found
errors without charge even when the software has passed acceptance test [3].

In view of the above, the major challenge before software developers is how error-prone
modules in a software can be quickly identified for quick diagnosis and treatment to minimizing
redundant and unnecessary tests to ensure timely release of the software even without
compromising its integrity and reliability. This is important because redundant and unnecessary
tests are “time killers” and should be avoided. However, not all defects result in failures; some stay
dormant in the code and may never be noticed [4]. To address this issue, factors that may render a
program fault-prone need to be identified and used to build a tool that can be used to quickly spot
modules likely to harbor errors for immediate attention to minimize Integration Testing. Therefore,
this paper seeks to address this challenge by considering existing tools, their strengths and
weaknesses, then using such to build an improve tool that can be used by software developers and
testers to identify fault-prone modules for quick diagnosis and treatment.

2. Methodology
The methodology for this research involved reviewing of existing fault detection and program

testing methods, collection of program error data, and analyses of the collected data for test results.

Data were collected from 20-software projects by different groups of students. The software were
tested in two ways: firstly, by using random testing approach, in which case, modules were selected
randomly, tested and debugged by the students and the integration test data recorded. Secondly, by
using EEPorterS tree approach – in this case, before testing began, the modules were first analyzed
using the EEPorterS Classification tree to determine their ranks with respect to error availability.

After this, the modules were tested according to their ranks from rank 1 modules (i.e. those
likely to harbor many errors) to rank 5 modules (i.e. those likely to harbor few errors), and the
integration test data recorded, and analyzed for test results. The test results so obtained were
compared with those of random testing approach to determine the efficacy of EEPorterS approach.

3. Identifying Fault-Prone Code
There are several known methods for identifying errors in software programs. The most

common of these methods is testing; that is, executing the target program under different conditions
in order to confirm its correct behavior. Another group of methods, program verifiers, attempt to
prove mathematically that a program’s behavior is correct for all possible input conditions [5]. In
addition, there are static analysis tools that perform a set of limited checks without executing the
program. The tools listed above are capable of reporting some possible errors in a software.

However, it is normally not feasible to test all possible program executions and it is extremely
difficult to know what area of a program’s execution to explore [6].

However, some techniques for identifying fault-prone code are usually based on past history
of faults in similar applications. In this case, some researchers track the number of faults found in
each components during development and maintenance. They also collect measurements about
each component, such as module size, number of decisions, number of operators and operands, or
number of modifications. Then, they generate equations to suggest the attributes of the most fault-
prone components. The equation so generated are then used to suggest which of the program
components should be tested first, or which should be given extra scrutiny during reviews or
testing.

In most cases, basing the test process on past history does result in a large number of false
error reports and numerous redundant tests. Therefore, this research explores alternative means of

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 90

identifying fault-prone code based on the characteristics of the modules making up the software
rather than basing it purely on past history of similar applications.

4. Porter and Selby Classification Tree Method
Classification tree can be a useful tool in detecting error-prone modules in software. The idea

to use a classification tree to detect fault-prone components in a software came from Porter and
Selby [7]. Porter and Selby suggest the use of classification tree analysis as a statistical technique
that sorts through large arrays of measurement information, creating a decision tree to show which
measurements are the best predictors of a particular attribute. In their suggestion, once a
classification tree can be constructed based on factors likely to render a software error-prone, the
following measurement data about each software component can be collected during software
development for use in detecting fault-prone components during testing.

I) Program size in Lines Of Code (LOC)
II) Number of distinct paths through the code
III) Number of operators
IV) Depth of nesting
V) Degree of coupling and Cohesion (rated on a scale from 1 as lowest to 5 as highest)
VI) Time to code the component
VII) Number of faults found in the components already

After the measurement data have been collected, they can be analyzed using the classification
tree to identify fault-prone components in the software.

To illustrate Porters and Selby suggestion, the classification tree below was used:

 < 100 LOC

 100 to 300 LOC > 300 LOC

 <15 >= 15 Yes No

 <5 >=5

Figure 1: Classification Tree to Identify Fault-Prone Components (Source: [7])

The tree can be used by software developers to decide which components in the software are

likely to have large number of faults. According to the tree, if a component has between 100 and
300 lines of code and has at least 15 decisions, then it may be fault-prone. Or if the component has
over 300 lines of code, has no design review, and has been changed at least five times, then it may
be fault-prone. The classification tree can help the testers in efficient testing where testing

Size -

Decision
Review Number of

decisions

- + Code
Changes

 -

 + -

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 91

resources are limited. It can also be used to schedule inspections for such components, to help
identify problems in the component before testing actually begins [8].

Though the tree can be useful in identifying fault-prone components, it is defective in the
following areas:
I. It does not account for attributes like degree of coupling and cohesion, depth of nesting and

number of jumps in a component.
II. It implies that any code with design review is free from error.
III.A program component having up to 15 decisions pertains poor program practice, a lower value

say 5 is preferable to keep program logic as simple as possible to minimize errors.
IV.It does not cater for modern programming concepts associated with OOP and Visual
programming. Object-oriented testing focuses on designing appropriate sequences of operations to
exercise the states of a class [9].

5. Factors likely to make a Program Fault-Prone
For one to identify fault-prone module in software, he should be acquainted with factors likely

to make a program fault-prone. These include module size, number of operand and operators,
number of decisions and uncontrolled jumps, degree of coupling and cohesion, dept of nesting and
frequency of path traversal. These factors were used in the construction of the EEPorterS
Classification Tree.

a) Lines of Code (LOC)
Lines of code refer to the total number of program statements or lines in a program segment.

The segment can be a procedure, a function, or subroutine. According to [10] small programs have
error rates of 1.3% to 1.8%, with large programs increasing from 2.7% to 3.2% per line when
measured against lines-of-code. A small program in this context is a program which lines-of-code
are less than or equal to a hundred. Such programs are on the average are likely to have an error or
none at all. The idea behind this is the longer the program the more logical it becomes hence more
complex thereby increasing the chances of error occurrences. Therefore, to reduce program errors,
LOC of programs modules should be kept within hundred and the logic simple enough for proper
understanding.

b) Degree of Coupling and Cohesion
Modern software are modular in nature. Modularity refers to the logical partitioning of

software into parts, components or simply modules. Modules are linked or connected to each other
to enable them communicate effectively towards realizing the overall objective of the system. The
degree of connections between modules otherwise called coupling through their module-level
variables must be limited while data transfer between such modules should be minimal. Where the
reverse is the case, components of such modules such as procedures, functions and subroutines are
likely to harbor a lot of program errors. The higher the degree of coupling and cohesion between
modules the higher the chances of being error-prone. In fact, degree of coupling and cohesion
should not be beyond two modules.

c) Dept of Nesting
Loops in programs can be nested when one loop lies completely within the range of another

loop. If this kind of structure is not properly handled, it can be a major source of many harmful
errors in a software since control within nested loops can be tricky [11]. Therefore, EEPorterS tree
considers nesting depth of 2 as suitable for accurate and reliable software. Higher depths may result
in poor logic and become the major source of errors.

d) Number of Distinct Paths Through the Code
A software component that traverses many paths in the system is likely to leave errors along

the path as it interacts with other components. Worse case abound where several uncontrolled

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 92

jumps exist in the path. Keeping number of distinct paths not higher than 2 can allow for proper
analyzes of components logic. Components going contrary to this, may harbor many errors thus
deserve serious attention. This is the basis for EEPorterS tree.

e) Time to Code the Component
Duration of a software development project can adversely affect software accuracy and

reliability if the time allocated to the project was not enough for thorough and careful coding.
Rushing over the entire exercise to meet up with deadline is likely to result in unhealthy coding
practice, which may not be without harmful errors [3].

6. EEPorterS Classification Tree
To enhance effective utilization of Porter and Selby idea, EEPorterS Classification tree is

proposed.

 >=100 LOC
 <100 LOC

 >=2
 <2

 <2 >=2

 <5 >=5

 <2 >=2

Figure 2: EEPorterS Classification Tree for Error-Prone Module Identification

EEPorterS is short for Ekanem, Essien, Porter and Selby. It is christened from the first letter
of the surnames of three contributors (i.e. Ekanem, Essien and Selby) together with the surname of
the original contributor, Porter. It is a classification tree by Ekanem and Essien based on Porter and
Selby idea on using classification tree to detect fault-prone modules.

The tree is based on program attributes likely to make a program module fault-prone. These
include module size, number of operand and operators, number of decisions and

Module
Size

Depth of
Nesting

Degree of
Coupling &
Cohesion

Number of
Decisions

Number of
Jumps

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 93

uncontrolled jumps, degree of coupling and cohesion, dept of nesting and frequency of path
traversal.

EEPorterS tree assumes that, there was enough time for the developers to code the software
(i.e. the software project was not done in a haste) and that the coding was done by experience
programmers/developers using familiar software development tools. In order to use the tree, for
each software component or module, the following parameters have to be obtained: module size,
degree of coupling, dept of nesting, number of decisions and number of jumps. Using these
parameters to traverse the tree, a module is likely to meet one of the five conditions, which in turn
determine its rank and test sequence.

7. Module Ranks and Components Attributes
The tree presents a software tester with five possibilities resulting from the attributes of

software components. The possibilities represent the different ranks of program modules with
respect to fault availability. Module ranks and components attributes are given below:

a) Rank 1 Module
Rank 1 module refers to a module that is likely to harbor the highest number of harmful errors

than modules of other ranks. Such a module should be diagnosed and treated for residual errors
before modules of other ranks. Any program module in software that satisfies the following
condition is termed Rank 1 module.

b) Rank 2 Module
Modules that satisfy the following conditions fall under Rank 2. They are expected to have

fewer errors than Rank 1 module.

Conditions for Ranks 3, 4 and 5 are given below. The higher the module ranks the fewer the errors.
c) Rank 3 Module

d) Rank 4 Module

e) Rank 5 Module

Size >= 100
 LOC

Size >= 100
 LOC

Degree of
Coupling &
Cohesion >= 2

Dept of Nesting
>= 2

Number of
Decisions
 >= 5

Number of
Jumps >= 2

Size >= 100
 LOC

Degree of
Coupling &
Cohesion >= 2

Dept of Nesting
>= 2

Number of
Decisions
 >= 5

Size >= 100
 LOC

Degree of
Coupling &
Cohesion >= 2

Dept of Nesting
< 2

Size >= 100
 LOC

Degree of
Coupling &
Cohesion < 2

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 94

8. Application of EEPorterS Tree

To illustrate the workability of EEPorterS Tree, 20 projects were tested using two methods,
namely Random Testing and EEPorterS Testing. In the case of the later, EEPorterS Tree was used
to rank the modules in each of the 20 projects. Module Ranks and test sequence are shown in table
1 while test records for each of the 20 projects comprising of test hours and errors found based on
the two test methods are listed in table 2.

 Table 1: Module ranks and Test Sequence

Project Num. of
Modules

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

1 52

25, 26, 27, 35, 36, 37,
40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 51, 52

15, 16, 17, 18,
19, 20, 21, 22,
23, 24, 28, 29,

30, 38, 39

11, 12, 13, 14,
31, 32, 33, 34,

47, 50

4, 5, 6, 7,
9, 10

1, 2, 3,
8

2 65

20, 21, 22, 29, 30, 31,
32, 41, 42, 43, 44, 45,
46, 47, 50, 51, 52, 53,

60, 61, 62, 63, 64

13, 14 15, 16, 17,
18, 19, 23, 24,
25, 26, 27, 28,

38, 39, 48, 49, 65

 11, 12, 33, 34,
35, 36, 37, 54,
55, 56, 57, 58,

59

7, 8, 9, 10,
40, 46

1, 2, 3,
4, 5, 6

3 62

20, 21, 22, 32, 33, 40,
41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52,

53, 59, 60, 61, 62

17, 18, 19, 23,
24, 25, 26, 27,
28, 29, 30, 31,

38, 39, 54, 55, 56

 5, 6, 12,13,
14, 15, 16, 34,
35, 36, 37, 57,

58

3, 4, 7, 8,
46

1, 2, 9,
10, 11

4 58

7, 8, 9, 10, 24, 25, 26,
27, 28, 29, 30, 36, 37,
40, 41, 42, 43, 52, 53,

54, 55, 56, 57, 58

11, 12, 13, 14,
15, 17, 18, 19,
21, 22, 23, 26,
28, 29, 38, 39

 31, 34, 44, 45,
47, 48, 49, 50,

51

16, 32, 33,
35, 46

1, 2, 3,
4, 5, 6,

20

5 63

25, 26, 27, 28, 29, 30,
31, 32, 33, 41, 42, 43,
44, 45, 46, 47, 60, 61,

62, 63

15, 17, 18, 19,
20, 21, 22, 23,

24, 36, 37, 38, 39

34, 48, 50, 51,
52, 53, 54, 55,
56, 57, 58, 59

3, 4, 8, 9,
10, 11, 12,
35, 40, 49

1, 2, 5,
6, 7,

13, 14,
16

6
52

15, 16, 17, 18, 19, 20,
27, 28, 29, 30, 36, 37,

40, 41, 50, 51, 52

23, 24, 25, 26,
38, 39, 42, 43,
44, 45, 46, 47

11, 12, 13, 14,
31, 34, 48, 49

7, 8, 9, 10,
32, 33, 35

1, 2, 3,
4, 5, 6,
21, 22

7 62

20, 21, 22, 27, 28, 29,
30, 40, 41, 48, 49, 50,
51, 52, 55, 56, 57, 58

12, 13, 14, 15,
26, 38, 39, 42,
43, 44, 45, 53,

54, 61, 62

16, 17, 18, 19,
31, 34, 35, 36,

37

9, 10, 11,
23, 24, 25,
32, 33, 35

1, 2, 3,
4, 5, 6,
7, 8, 46,
47, 59,

60

8 54

25, 26, 27, 28, 29, 30,
36, 37, 44, 45, 46, 47,

48, 49, 50, 54

6, 7, 8, 9, 10, 11,
12, 13, 14, 15,

16, 17

31, 32, 33, 34,
35, 38, 39, 40,

41

20, 21, 22,
23, 24, 51,

52, 53

1, 2, 3,
4, 5, 18,
19, 42,

43

9 42
9, 10, 11, 12, 13, 14,

15, 18, 25, 26, 27, 30,
36, 37, 40, 41, 42

17, 19, 20, 21,
22, 23, 24, 28,

29, 38, 39

 31, 33, 34, 35 3, 4, 16,
32,

1, 2, 5,
6, 7, 8,

10 52
15, 16, 17, 18, 19, 20,
26, 27, 28, 29, 30, 40,
41, 48, 49, 50, 51, 52,

12, 13, 14, 21,
22, 38, 39, 42,

43, 44, 45, 46, 47

31, 32, 33, 34,
35, 36, 37

7, 8, 9, 10,
11, 23, 24,

25

1, 2, 3,
4, 5, 6

11 61

20, 21, 22, 23, 24, 25,
32, 33, 34, 35, 39, 49,
50, 51, 52, 53, 57, 58,

59, 60, 61

16, 17, 18, 19,
41, 46, 42, 43,
44, 45, 46, 47,
48, 54, 55, 56

10, 11, 12, 13,
14, 15, 26, 27,
28, 29, 30, 31,

40

3, 4, 5, 6,
8, 9

1, 2, 7,
36, 37,

38

12 47

18, 19, 20, 25, 26, 27,
28, 29, 30, 36, 37, 45,

46, 47,

 8, 9, 10, 11, 12,
13, 14, 15, 16, 17

31, 32, 33, 34,
35, 38, 39, 40,

41

21, 22, 23,
24, 51, 52,

53

1, 2, 3,
4, 5, 6,
7, 42,
43, 44

13 62 15, 16, 17, 18, 19, 20,
23, 24, 25, 26, 27, 28,

42, 43, 44, 45,
46, 47, 48, 49,

7, 9, 10, 11,
12, 13, 14, 21,

 32, 33,
35, 38, 39,

1, 2, 3,
4, 5, 6,

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 95

29, 30, 36, 37, 59, 60,
61, 62

50, 51, 56, 57, 58 22, 31, 34, 52,
53, 54, 55

40, 41 8

14 51
26, 27, 28, 29, 30, 31,
32, 33, 39, 40, 41, 47,

48, 49, 50, 51

13, 14, 15, 16,
17, 18, 19, 20,
21, 22, 42, 43

23, 24, 25, 34,
35, 36, 37, 38,

44, 45, 46

5, 6, 7, 8,
9, 10, 11,

12

1, 2, 3,
4

15 36 15, 16, 20, 21, 22, 23,
24, 25, 26, 27, 28, 36,

7, 8, 9, 10, 11,
12, 13, 14,

 17, 18, 19, 31,
32, 33, 34, 35

29, 30 1, 2, 3,
4, 5, 6

16 67

20, 21, 22, 24, 32, 33,
34, 35, 39, 49, 50, 51,
52, 53, 55, 61, 64, 65,

66, 67

16, 17, 18, 36,
37, 38, 46, 42,
43, 44, 45, 46,

47, 48, 56

8, 9, 10, 12,
13, 14, 15, 25,
26, 27, 28, 29,
31, 54, 57, 58

3, 4, 5, 6,
11, 19, 23,

30

1, 2, 7,
40, 41,
59, 60,
62, 63

17
48

10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 24,

28, 29, 30, 36

21, 22, 37, 38,
39, 42, 43, 44,
45, 46, 47, 48

23, 25, 26, 27,
31, 34, 40, 41

5, 6, 7, 8,
9, 32, 33,

35

1, 2, 3,
4

18
56

30, 31, 32, 33, 34, 35,
39, 40, 41, 47, 48, 49,
50, 51, 52, 53, 54, 55,

56

16, 17, 18, 19,
20, 21, 22, 23,

24, 25, 42, 43, 44

10, 11, 12, 26,
27, 28, 29, 45,

46

5, 6, 7, 8,
9, 13, 14,

15

1, 2, 3,
4, 36,
37, 38

19 62

10, 11, 12, 13, 14, 15,
16, 17, 18, 25, 26, 27,
34, 35, 36, 37, 50, 51,

52, 53, 54

 19, 20, 21, 22,
23, 24, 28, 29,
30, 31, 38, 39,

40, 41, 42

16, 17, 46, 47,
48, 49, 55, 56,
57, 58, 59, 60

3, 4, 5, 7,
8, 9, 32,

33, 43, 44,
45

1, 2, 5,
6, 61,

62

20 65

25, 26, 27, 28, 36, 37,
43, 44, 45, 46, 47, 51,
52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62

10, 11, 12, 13,
14, 15, 16, 20,
21, 22, 23, 24,

41, 42, 48, 49, 50

 17, 18, 19, 31,
33, 34, 35, 63,

64, 65

16, 29, 30,
32, 38, 39,

40

1, 2, 3,
4, 5, 6,

7, 8,

Table 2: Test Records from the two methods

Random Testing Testing with
EEPorterS Tree

Project LOC

Test
Hours

(A)

Errors
Found

Test
Hours

(B)

Errors
Found

Difference in
Test Hours

(A-B)

1 12,700 316 72 89 115 227
2 10,150 295 64 101 87 194
3 8,720 354 23 87 71 267
4 12,220 276 95 78 107 198
5 10,220 325 54 85 91 240
6 12,120 368 67 89 103 279
7 10,840 352 43 103 101 249
8 10,620 293 52 76 95 217
9 12,200 311 89 111 105 200

10 12,500 382 84 88 115 294
11 11,020 374 91 91 97 283
12 8,200 268 47 105 79 163
13 12,785 271 83 74 118 197
14 12,130 282 115 68 118 214
15 11,620 321 72 73 107 248
16 10,120 335 28 102 89 233
17 11,630 284 18 78 87 206
18 10,710 361 53 65 95 296
19 12,120 288 112 83 112 205
20 10,810 325 93 69 95 256

Total 1275 4666
Average 64 233

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 96

9. Data Analysis and Results
Test records from the two methods were analyzed using LOC models to obtain total residual

errors in each project, error difference and percentage error difference. The results of the analysis
are presented in table 3.

Table 3: Random Testing Vs. EEPorterS Tree Testing
Random Testing Testing with EEPorterS

Tree
Project LOC Total

Resid-
ual

Errors
Test

Hours
Errors
Found

Errors
Rema-
ning

Test
Hours

Errors
Found

Errors
Rema-
ning

Error
Differ-
ence

%
Differ-
ence

1 12,700 127 316 72 55 89 115 12 43 78
2 10,150 101 295 64 37 101 87 14 23 62
3 8,720 87 354 23 64 87 71 16 48 75
4 12,220 122 276 95 27 78 107 15 12 44
5 10,220 102 325 54 48 85 91 11 37 77
6 12,120 121 368 67 54 89 103 18 36 67
7 10,840 108 352 43 65 103 101 7 58 89
8 10,620 106 293 52 54 76 95 11 43 80
9 12,200 120 311 89 31 111 105 15 16 52

10 12,500 125 382 84 41 88 115 10 31 76
11 11,020 110 374 91 19 91 97 13 6 32
12 8,200 82 268 47 35 105 79 3 32 91
13 12,785 128 271 83 45 74 118 10 35 78
14 12,130 121 282 115 6 68 118 3 3 50
15 11,620 116 321 72 44 73 107 9 35 80
16 10,120 101 335 28 73 102 89 12 61 84
17 11,630 116 284 18 98 78 87 29 69 70
18 10,710 107 361 53 54 65 95 12 42 78
19 12,120 121 288 112 9 83 112 9 0 0
20 10,810 108 325 93 15 69 95 13 2 13

10. Results Interpretation

a) Test Hours
The table clearly shows that with EEPorterS, fewer test hours were used to detect more errors

compared to random testing approach. From table 2, on the average for the 20 projects, EEPorterS
test hours were reduced by 233 hours (approximately 10 days), which is great improvement. This
implies that, with EEPorterS software test hours can be reduced even as more errors are detected
and corrected. The 233 hours could be directed to other projects rather than being wasted in
redundant testing of ongoing projects.

b) Found Error Difference
Table 3 shows that, in terms of the difference in errors found by the two methods with the 20

projects, testing with EEPorterS Tree records 64% improvement on the average over the Random
test method. For project 19, found error difference of 0 was recorded which implies that equal
number of errors were detected by the two methods. For the 20 projects, there was no case of more
errors detected by the random testing, hence EEPorterS is better.

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 97

11. Recommendations
Based on the outcome of this research, we wish to make the following recommendations:

1. In order to minimize redundant testing of a software, EEPorterS tree should be used to
quickly identify fault-prone modules/components for diagnosis and treatment.

2. Further research in this area is recommended for interested researchers with greater
emphasis on how to automate EEPorterS.

3. Software Testing and debugging should be given serious attention by upcoming software
organizations and programmers to produce quality software products.

4. Governments should encourage the development of quality and reliable software that will
meet international standards through proper funding of research works in software error
detection and diagnosis and favorable policies/incentives to promising software
organizations.

12.Conclusion

Testing and debugging are very important exercises during integration process and require
serious attention to ensure that the software meets the acceptance criteria specified in the software
contract even as the software is released at the optimum release time. Because, software reliability,
availability and even maintenance costs depend on the quality of testing and debugging performed,
specialized tools are required to identify modules that are likely to harbor much harmful errors.
However, since software errors are no physical objects that can be easily identified in programs,
programmers most times spend much time finding bugs in modules where they do not exist.
Having a tool like EEPorterS tree will enable testers to quickly identify modules likely to harbor
much harmful errors for diagnosis and treatment rather than searching for errors aimlessly.

Once the tester is able to rank (i.e. Rank 1 to Rank 5) the modules in the software using
EEPorterS tree, testing can begin with Rank 1 modules followed by Rank 2 in that order. The
number of found errors and test hours will reduce considerable as the test progresses from Rank 1
modules to Rank 2 modules and so forth. Therefore, the research indicates that the higher the rank
the lower the errors likely to reside in the module. With EEPorterS, since testing and debugging are
likely to start with error-prone modules, errors are likely to be detected and corrected at a faster rate
thereby making it possible for all modules to be properly tested and the software released within the
stipulated time.

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 98

13. References

 [1] Avison, D. E. and Firtzland, G. Information System Development,
 Methodologies, Techniques, and Tools. Blackwell Scientific Publications, London, 1998, pp.
 237-315.
[2] Fairley, E. Software Engineering Concept. McGraw-Hill Book Company, Singapore, 1985,
 pp. 310-339.
[3] Shooman, M. L. Software Engineering, McGraw-Hill Book Co,Singapore, 1983, pp. 469_490.
[4] Graham, D., Veenedaal, E. V., Evans, I. And Black R. Foundations of Software Testing,

ISTQB Certification, Thomas Learning, High Holborn House, 50-51 Bedford Row, London,
2007, pp. 3 and 156

[5] Flanagan, C. and Qadeer, S. Predicate Abstraction for Software Verification, Proceedings of
 the 29th ACM SIGPLA-SIGACT Symposium on Principles of Programming Languages, Vol.
 37, 2002.
[6] Brand, D. A Software Falsifier, International Symposium on Software Reliability Engineering,
 2002, pp. 174-185.
[7] Pfleeger, S. L. Software Engineering, Theory and Practice, Second Edition, -Hill Companies,

New York, 1997, pp. 372-378.
[8] Pressman, R. S. Software Engineering, A Practitioner’s Approach, Sixth Edition, McGraw-Hill

Companies, New York, 2005, pp. 442-443, 447-453
[9] Wattam, S.I. Software Engineering, a Dynamic Approach, Sigma Press, Wilmslow, England,

1991, pp. 52,135-138.
[10] Alain, V. Reliability, Availability, Maintainability and Safety Assessment. John Wiley and

Sons, New York, 1992, pp. 461-497.
[11] Buchner, F. The Classification Tree Method. Hitex development Tools, Karlsruhe Companies,

Germany, 2002.

Article received: 2010-01-27

	1Department of Computer Science, Delta State Polytechnic, Ozoro, Delta State, Nigeria,
	Email: ba_ekanem@yahoo.com
	Abstract
	1.Introduction
	2. Methodology
	3. Identifying Fault-Prone Code

	4. Porter and Selby Classification Tree Method
	c) Dept of Nesting
	6. EEPorterS Classification Tree
	7. Module Ranks and Components Attributes
	a) Rank 1 Module
	Rank 1 module refers to a module that is likely to harbor the highest number of harmful errors than modules of other ranks. Such a module should be diagnosed and treated for residual errors before modules of other ranks. Any program module in software that satisfies the following condition is termed Rank 1 module.
	b) Rank 2 Module
	Conditions for Ranks 3, 4 and 5 are given below. The higher the module ranks the fewer the errors.
	c) Rank 3 Module
	d) Rank 4 Module
	e) Rank 5 Module

