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Abstract

We obtain transformation equations for the Bell basis states under an arbitrary Lorentz boost
and compute the expectation values of the relativistic centre of mass spin operator under each
of these boosted states. We also obtain expectation values for spin projections along the axes.
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1. Introduction

Ever since the publication of the “EPR Paradox” as espoused by Einstein, Podolsky & Rosen in their
seminal article [1], “quantum entanglement” has been mystifying physicists across the world. Even to
this day, a complete explanation of this phenomenon defies human endeavors although its existence is,
now, universally acknowledged. In fact, the focus of research has perceptibly shifted to exploiting this
unique property of composite quantum systems for performing information processing tasks with
unprecedented efficiency — “quantum entanglement” is gradually being acknowledged as a resource for
“quantum computing and communication”. It, has, therefore, become all the more necessary to
examine the effect of “relativistic transformations” on mutually entangled subsystems. This essentially
is the objective of this work. We obtain transformation equations for the Bell basis states under an
arbitrary boost and compute the expectation values of the relativistic centre of mass spin operator under
each of these boosted states. Our work is based on Bohm’s version of the paradox [2,3] applying
discrete spin states.

Pioneering work in this direction was initiated by Czachor [4]. However, the paper confines itself to the
averaging of the relativistic spin operator [5] (that relates to the spatial components of the Pauli
Lubanski vector) over the spin singlet state in the laboratory frame. The work does not consider the
boosting of the Bell states and hence, does not embrace the case of relative motion of an arbitrary
observer frame. The paper does, however, establish that relativistic effects are seriously relevant to
quantum computing operations. This was followed by a spurt of papers [6-8]. Each of these works, in
essence, takes a certain specific case and examines its physical implications instead of solving the
problem in its generality. For instance, boosts are always taken perpendicular to the momenta, Alsing
[6] investigates the massless case in a specific gauge formulation wherein the photon polarization
vectors are coplanar with the electric and magnetic fields, Gingrich [8] assumes a Gaussian momentum
distribution, Pachos [7] looks at a relativistic formulation on the basis of a magnetic dipole-dipole
interaction etc. The important point is that none of these papers attempts an averaging of the centre of
mass relativistic spin operator with boosted Bell states which could lead to relativistic correction in the
Bell’s inequalities for observers in arbitrary motion. Following exactly the same methodology as
Alsing [6] i.e. using Wigner rotation & momentum eigenstates Terashima & Ueda [9-10] show that the
spin singlet state undergoes a change in anti-correlation due to Lorentz transformation. However, while
Alsing [6] represents the state in terms of 4 — component Dirac spinors, Terashima & Ueda [9-10] use
Hilbert space state vectors. While they do consider boosted states to accommodate observer frame, they
do not use the centre of mass relativistic spin operator. The spin observable considered in [11] is
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different from the centre of mass relativistic spin operator. Without explicitly introducing a functional
form of the spin operator, they define it as an operator having the property “based on the sameness of
the expectation values of one particle spin measurement evaluated in two relative reference frames, one
in the laboratory frame in which the particle has a velocity ~v and the observer is at rest, the other in
the moving frame Lorentz boosted with ~v, in which the particle is at rest and the observer is moving
with a velocity —~v.” However, the appropriateness of such an operator for a two/multi particle state is
still an open question.

2. The Relativistic Spin Operator [5]

The relativistic spin operator, S, has been an issue of considerable debate among physicists. The
fundamental properties that need to be satisfied by an acceptable spin operator, S, are [5]:-

(a) It must be expressible as some combination of the complete set of generators of the Poincare
groupie. P°.P,JK;

(b) It must behave as a 3-vector under spatial rotations i.e. [Si,J j]= ie™S* whence it must be
linear in  the  generators J.K so that we can  express it as
S=fJ+ f,K+ P+ f (PJ)P+f (PK)P+f (PxJ)+f (PxK)
where each f, = f, (Pz, PO);

(©) It should be independent of generators of translations i.e. [Si ,P* ] =0

(d) It should be equal to the difference of the total angular momentum and the orbital angular

momentumiec. S=J—-xxP;
(e) Being an angular momentum, it must satisfy the commutators [Si ,S! ] =jggk.

Application of (a) —(e) yield [5]:-

0
SzP—J—ﬁ(PxK)—

v P(PJ) (1)

The above expression for the relativistic spin operator is, in fact, the value of the “total angular
momentum” operator of the particle in its rest system. This is easily seen. The relativistic
transformation of an arbitrary 3-vector that has the value x in a system with momentum P to its rest

x.P + Mx°

frame is given by x'=x-P—— —
8 Y M(M+Pﬂ

whence, the expression for the spatial part of the Pauli

Lubanski operator W* =%9,°‘ﬁ"‘“\]mB P, (W =PJ-PxKW’= (P.J)) in its rest frame becomes

PJ
W'=PJ-PxK - Pﬁ. Defining the relativistic spin operator S by P’J'=MJ'=W'=MS,
+

we obtain the above expression for S.

In the canonical representation of the Poincare group characterized by the momentum operator being
diagonal i.e. P" =p" and the infinitesimal generators of rotations and boosts taking the form
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J=—-ipxV, +S and K=ip'V, +p;s0 [12], we have (PJ)=0  whence
(M+p°)
P’ 1 W . : 1 . . .
S= VJ _V(P X K) = IV In this representation, one can set S=s = 56 being the two dimensional

0
. . : s 1
representation D" of the little group 80(3) in the rest frame. Identifying PVJ and _M(PXK)

respectively as being the components of spin parallel and perpendicular to direction of momentum p,
and using the above explicit representation of J,K, we obtain

° 1
S=S +S, :p—z(p.s)pj{s——z(p.s)p} ()
M [p| |
(In the rest frame, obviously, S =s = ﬁ(p.s)p ).
p
3. The Lorentz Transformation of Single Particle States

The effect of Lorentz boosts on single particle states is well documented and can be expressed in terms
of the Wigner rotation R, (p,A) [13] as:

p.5)= ,/@Z DL (R, (A.p))|Ap.o) G

Explicit expression for the Wigner rotation has been obtained by various approaches. Following
Halpern [14], we can, making use of the SL(2,D) representation of the Lorentz group, obtain an

U(A)

explicit representation of R, (p,A) for spin 2 massive particles as:
12 0) . . (O
D (RW (p,A)) =Cos > +1 (c.n)sm > 4)

cosh (aj cosh (B) + (e.f) sinh (GJ sinh (Bj
0 2 2 2 2
where cos [Ej = > (5)
[1 +cosh (aj cosh (Bj + (e.f) sinh (aj sinh (Bﬂ
2 2 2 2 2

(exf)sinh @ lsinh B
. (0 2 2
nsin 5 )= 7 (6)
L cosh[ % |cosh i +(e.f)sinh & |sinh P
2 2 2 2 2
0 2\ V2 p’ p . . ) .
cosha=A,=v= (1 -V, ) , coshP = IVE f= H and e is the unit vector in the direction of the boost
p

A.
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4. The Lorentz Transformation of Bell States

The Bell state basis for a pair of spin 2 particles with respective momenta p,—p in the rest frame

consists of the basis vectors q>+>=L p,l ® —p,l + p,—l ® —p,—l ,
N 2 2 2
1 1 1 1 1 1 1 1 1 1
@) =—||p.2)®p.2 )~ |p.—= ) ® B ) | ¥ = [p2 ) ®|-p—= )+ P2 ) ®|-p,— and
@) vi[h)2> ‘ p2> ‘p 2> ‘ b 2>] ) Ji(h’2> ‘ b 2> b 2> ‘ b 2>]

2

_ 1 1 1 1 1 . .
‘\11 >=E( p,5>® —p,—5>—‘p,——>®‘—p,5>) The Lorentz transformation induced by A transforms

these basis states as follows:

(1) cD+> transforms as:
o 2o(r ) Wf;p)) 2R (A28) i -nc)
U(A)| &)=

5.2, :
Jﬁ D%(R(A)) (A(T,lp J O (Ru(A(0) | 4.0 &-Apo)

Now, making use of

cos 2 +in, sin (in,+n )sing
V2 AT (6 5 s (N 40, )sinS
D (R\N(PaA))=Cos 5 +i(o.n)sin 5=

(in, —nz)sin9 cosg—in3 sin
2 2 2

6 . .0 . . 0
cos—~in,sin- —(|n1+n2)s1n5

o ol )2 (2

we obtain

. . 0 6 . .0
—(in, —n,)sin—  cos—+in, sin—
2 2 2

e v o n
7 et b ol

YA|)
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]
ot o o]
. w(w;>®| Hodon]

ot ool

:—0{[1 m(1- oose)]\ >+|nlnzl oose\q> > ns me\ A>+|nzrg(1—oose)“PA+>} (7)

(i) \cp)t nsforms a

VZ \/W Dii2(Ru(A)) (A(_P%O))qm(@v(/\,(—np0)))|/\n<5>®|—Agc'>

W QYELZ(RN(Ap)),/(A(ﬂ"%O))Q@W(RN(A,(mp")))lAncé@l—Anc’)

] LY m@—dm M 2>{.rme+m(1m jm—ﬁ@{—m—ﬁ
A insinb-nn Hoseim ZH Ap2>+[1—r1 n-+in)(1-cos 1‘\“%‘““2
Prrt-s00] e re)e )
ot [ g e s ped)ees)
2 me(Ap2> |—Ap—§> |Ap 2> |Ap2>j

ool
(Ap)°{

=5 -, (1-cos6) | ;") +[ 1-7 (1-cos6) | ;") ~inysin| W, )y, (1-cos6) ¥, )} (8)

Uao)=

®|~

fz

m(l—oose)[

(iii))  For “P+> , we have
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(%)OQYVZL(RN<AP>)\/—(A(?DO)) O{Rd APt ot
| +J@dﬁz(RN(AP))\/W%O))%L(RN(A’(—EPO)))|Ap’c’>®|_Ap’d>
[rk y—iny) 1 (xse:‘[m 2>C# 2>+[1 insin6—f(1—cos 1&;)#—/\9—3

&l

fz A 1+insin—ri( —oosejm M Ap2>{@ +in) (1) MM%@
e
1 (e ““”3““’“9)(“”"9 S|ty

2oy +[1—n§(1—cose)](AP’%>®‘_Ap’_%>+‘Ap’_%>®‘_Ap’%>j_

o] w2}l 1) w1 -an

([;p) {-inn, (1-cos6)| @, ") —nn, (1- oose\cp >+[1 (1—cos0) || ¥,")=in,sin0] ¥, )} (9)
(iv)  Transformatio f“P as follows
HE dv Ru(Ap) (A(T;p)) 02 (Ru(A (Pl Anc) & -Apo)
o, Zv o]
0 0,71/2 RN A,p)) Rt chl'fl/z I%/v A, —p,p |Ap,6 ®|_AP>G'

pO

[ s e
—(0039+IQ81119‘AB M An2>%ln —n)sin %ABM AB2>

1 (o
hd
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. 1 1 1 1
%“ﬂMGPPWﬁ%%PP%ﬂ

o 1 1 1 1
o 3o ef0)

V2 p 1 1 1 1

—in,sin6| | Ap,— ) ® -Ap,— )+ Ap,— ) ®-Ap,— ) |+

i (|Ap2> |Ap 2> » 2> |Ap2>]

ool |l -a L)L) o]

2 2 2 2

_(Ap)o n6| d,")—in sin6| ®, ) —in, sin6| ¥, oY, 10
= > {nzsm‘ A>—Inlsm‘ A>—Injsln‘ A>+oos‘ A>} (10)
5. The Expectation of the Relativistic Spin Observable in Arbitrarily Boosted Bell States

Given a unit vectorm , the projection of spin S in the direction of m 1is obtained as

0

m.S ={m.s+L(pV— j(m.p)(p.s)] (11)

p[

with a magnitude p° / 2M . We can accordingly, define normalized spin observable as
S+ . . 0+ . . 0

m:ms vo(mp)(ps):mc vgmp)(pc) wherev:—2£p——1
p°/2M p’/M Ip|" \ M

relation to the two particles constituting the paired state, the spin observable for the paired state is

obtained as S,, =S, ®S, . Using the abbreviations A =a, +v(ap)p,, B,=b +v(bp)p,, i=12,3, we

]. Identifying unit vectors a,b in

can express the action of this observable on the various basis states as:-

1 1 . 1 1
. |A8|nd)el-an )+ A 8 And)6l-An )+
sa®sbAp,§>®—Ap,§>=—“fz KR ? v N
(9] |+ 8 o - (4 im 8 o3 ] -

. 1 1 1
A(B, —'Bz)|APaE>®|—AP95>—'°353|AP,5> ®

S, ®S,

Ap,§>®\—Ap,—§>=(g”o)2 L)+ (A+iA) (B -iB)

1
Ap,—5>® (13)

1 . 1 1
|—Ap,5>—(A+|&)B;|Ap,—5>®|—Ap,—5>
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(A-1A)8 A ©]-An (A1) (B +i8)
s ®Sh‘Ap——> ‘—Ap > (:)") ‘Ap,§> ®‘—Ap,—%>—A§Ba‘Ap,—%>®‘—Apé>
—A(Bl+iBz)|Ap,—§>®|—Ap,—§>
(A -iA)(B -iB,) Ap,%>®‘—Ap,%>—(A ~iA))B,
Ap ——>®‘—Ap —%>= (';’:)2)2 ‘Ap,%>® —Ap,—%>—A3(B] -iB,) Ap,—%>®
‘—Ap,%>+ AB, Ap,—%>®‘—/\p,—%>

(14)

(15)
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Furthermore, the expectation values of S, =S, ®S, in the various boosted Bell states are given by:

e

(1-N2) 2&5{

(ABZ—Aza)(Ns)(NB)

(1N§2iN1°2)[

(1-N5, +iNf2)[(

2&8{(1 RIS }+2(Aa AB)|(1-Ns | ~(Ne)' |-4(AB.+AB

AB, (1= N5, +iNj, ) — A (B —iB,) (N5 —iN5, )+

AB,(N; +iN5,) - A (B —iB,)(1-N5, -iNG)

A+IA)(B +iB,)(1-Ns, +iNG, ) +( A +iA ) B (N5

—A (B +iB,)(N; +iN5, | + AB, (1-Ng, —iNg)
)

(Ne)"|-2( B B () () ]+

—4A(I—Nz)[a<Nz)—Bz<Nz)]+4A(Nfz>
BN +B (NG 48, (1N [ A(NS)+ A (N5 ) |48, (N[ A (M) -A(N:)

(A—iA&)B5(N§+iN;)+(A—iA§)(3—iBz)(l—Ngz—iNfZJ
(i )[A(B,+iBZ)(1 N, +iNG )+ AB, (N5 —iNg,) + '+

(A—iA)(B +iB,)(N; +iN5, ) —(A —iA) B, (1-N5, ~iN ) |
(A +iA) B (1N +ING ) (A4 +A) (B —iB,) (NS —iNG )|

IN;)i

(16)
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(1N i ){QB}(INﬁiNg)A(B,iBz)(iNf+Nl°3)+ ]+
(i) BN NG+ A—iA) (B —iB.) (N —1-iNG)
| A(B+iB,)(1- NG —iNG )+ AB, (iNF +NG ) + ]
(A —TA)(B+iB) (N7 = N5 ) —(A —iA ) By (N, ~1-iN,
_(A—i@)Bi(l—Nfl—iNfz)—(A+iA§)(B,—iBZ)(iNf+N1°3)—}
_Aa(ile—Ng)+A(B,—iBZ)(Nfl—1—iNfz)

(ile _N1C3

~—

(@[3, |07) =0

0

(iNF -+ N,

~—

(NlclHiNlcz){(A—iAz)(BﬁiBz)(l—Nﬁ—iNfz)+(A+i'°>)B3(iNf+N1°3)—}
A (B +iB,)(IN7 =i ) +AB, (N ~1-iNG)

248 (1-N5 ) +(N ) |-2(AB -AB,)| (1-N: ) ~(N&) [+4(AB.+AB)
> J(NE) () 288 (NG (N7 2B+ AB| (NS (M) [+ (17)
4(AB,— AB (N5 )(N7) —4A (1-N5)[ B (N5)+By(N7) |-4A (N,

[Bo(N5) =By (N) [ 4By (1 NG ) A(NE ) A(N?) |48y (NG ) A (NE) + AN

—_
UO‘Z
-
8]

| M%iN;)[ABj(NgHN;)JrA(E’qiBZ)(IN;iNj)+ ]+
(A=IA)B(1-N; +iN: ) +(A—iA) (B -iB) (N5 -iN;)
(0 i A (B +iB) (N5 +iN5, ) - AB, (1-Ng —iN; ) + ]+
Mz (A-TA)(B +B,)(1-N5, +iNG ) (A —iA) B (N} ~iN5,)
(A +IA) B (NG +ING, ) +( A +A)(B —iBy) (1N, ~iNg ) -
| AB(1-N; +iN;)—A (B —iB, ) (N —iN;) ]+
(NHN;){—(A”%)(B\+iBz)(N1°3+iN°B)—(A+i6)E’s(1—'\|§3—il\l§)—}

~—

(¥i[sul¥)=

~——

(1 N303_ist

A (B +B,)(1-N5 +iN;) +AB (N} —iNg
218 (M) ( )} (A8 -AB (N:) (M) [r4(NG) () (48 +AB)
Ve |2AB[(1-NG) () Jr2(a8 + B[ (1-N () -4 A -AB)
(P 1) > <1 NG ()8 N 4 ] B 5
48, (1N ) A(N:) A (M) |48 (N AN +A (NG

(18)
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(NSHNS)[A&(NNN?)%(E%iBz)(COSeiNi) ]+
T (AR )B cost 4N+ (A -iA) (B -8, N
(oose+iN;)_A(3+iBZ)(N§_iNf)‘ABf(°°S9“Nf)‘ }
(1[5, ) - M2 (A—IA)(B +iB,)(cos0+iN;)—(A—iA ) B (N; +iN})
Py (Oose_iNs)_(AHA)Bj(NjiNf)+(A+iA§)(I3iBZ)(ooseiN§)+}
| AB,(cos0-+iNg) - A (B —iB) (N +iN;)
(NsiNs){(AH/&)(Eﬁ+iBZ)(N§—iNf)—(A+iA)g(me—iN;)+]
" VI A(B +iB,)(cosO+ING )+ A,B, (NS +iN;)

28] (Ne) N [+2(A8 -AB)[(Ne] () fa(e) )

M |(AB.+AB)-2AB cos’04(N: ) |-2(AB +AB) cos’0-(N |

() | 4(AB, ~AB) (N oos0+44 cost B (48N -4 ()
[BN)-B (M) |-4Bcos] A (M) + A (N) +4B, (N[ A (N )-A ()

(19)

where N =n;sinf, Ni =nn;sin®, NS =n,(1-cos6) and N =nn, (1-cos0).

6. Expectation Values of Spin Projections along the axes

Using the above expressions, we can, now, compute the expectation values of the projection of the spin
operator S, =S, ®S, along the various set of axes. However, the calculations are elaborate and

tedious. We can simplify them to some extent without loss of generality by setting the coordinate axes
such that the pair momenta is oriented along the X' direction i.e. p =(p,0,0) so that n=(0,n,,n,) and

0
A(B), =a(b), (1+vp2815i) =a(b) [14'(%_1}% } Combinations of unit vectors along the three axes

and the corresponding expectation values in the various Bell states are tabulated below:

State (Djx
a— (1, 0,0) (0,1,0) (0,0,1)
b
(L0001 H1-ng. ) - 40N ) 4 (1-Ng) ()
(N:) +(Ns)
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OO | b))

(0.0.1) 4%(1—N§2)(N§) 4M—022(1—N§2)(N§3) , M {(1"\'52)2*('\'102)2}
(¥ () [-(n) (s
State D,
ao> (1,0,0) (0,1,0) (0,0,1)
b
(1,0.0) -2 0 0
(0,1,0) 0 , M 0
(p")
(0,0,1) 0 0 M
(r")
State SN
a> (1,0,0) (0,1,0) (0,0.1)
b
1,0,0 oNe YV M ¢ \( n(s M s\ e
( ) 2{(1 l\las) 2] 4p (1 Nas)(N3) 4?(N3)(N23)
(Ns) +(N3)
(0,1,0) _4%(1_N;3)(N;) LM (1-Ng) - 4 M: (1= N5 )(Nss)
oY sy -sy || )
(0,0,1) 4%(1—N§2)(N§) 4 M022(1—N§3)(N2°3) M (NS) —(N:) |
(p") (p")| ~(1-ne)
State Y,
ao> (1,0,0) (0,1,0) (0,0,1)
bl
(1,0,0) 2{(_221;_(“'35)2} _4%“\@)0059 4%(N§)Cose
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OL0) | 4™ (sheoso |, m [N =(N2) ] | oM sy
P (p°)2 —cos’ 0 (po)

(0,0,1) —4M0(N§)cos6 —4—M22(N§)(N§) ) M (Nj)z_(N;)z
P (po) (p0)2 —cos’ 0

The important point to be noted here is that, unlike in the nonrelativistic case, the relativistic case
becomes momentum dependent. Furthermore, the composition of the projection axes that lead to
maximal violation of Bell’s inequalities in the relativistic case is still an open question.

We employ momentum eigenstates in the above formulation as is the case in [6-8]. Mathematically,
momentum eigenstates are not square-integrable functions and thus are outside the L? Hilbert space.
Physically, they represent an idealization of the absolutely sharp momentum. Any real state is
represented by a wave packet, which is most conveniently decomposed as a (continuous) superposition
of the momentum eigenstates. Those superpositions are square-integrable, i.e. normalizable. The
convention of using momentum eigenstates is an approximation. It is "strictly true" only as a limiting
case. Nevertheless, it is a very good approximation in many cases, e.g. in the scattering
experiments of a high-energy physics.

In the momentum eigenstates representation, Lorentz boost on a pair state operates through local
unitary operators independently on the constituent particle states thereby preserving entanglement and
not mixing spin-momentum entanglement so that the spin reduced density matrix is covariant. But
when the momenta of the particles is not sharply defined then spin-momentum entanglement as well as
spin-spin entanglement becomes frame dependent [15].
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