PERFORMANCE EVALUATION OF A GENERAL CLASS OF MULTILEVEL QUEUE SCHEDULING SCHEME

${ }^{1}$ Diwakar Shukla, ${ }^{2}$ Shweta Ojha, ${ }^{3}$ Saurabh Jain
${ }^{1}$ Department of Mathematics and Statistics, Sagar University, Sagar M.P. 470003, India. e-mail: diwakarshukla@rediffmail.com
${ }^{2}$ Department of Computer Science \& Applications, Sagar University, Sagar M.P. 470003, India. e-mail: meshwetaojha@gmail.com
${ }^{3}$ Department of Computer Science \& Applications, Sagar University, Sagar M.P. 470003, India. e-mail: iamsaurabh_4@yahoo.co.in

Abstract

: There are many CPU scheduling algorithms in the literature like FIFO, Round Robin, Shortest Job First and so on. The Multilevel Queue Scheduling is superior to these due to its better management of a variety of processes. In this paper, a general class of multi-level queue scheduling schemes is designed and studied under a Markov Chain model. The scheduler is assumed to perform random movement on queues over predefined quantum of time. Three different scheduling schemes, as members of the class, are examined and compared under this model with the special consideration of a rest (waiting) state. It is found that the scheme III of the class is more appropriate than scheme I and scheme II in reference to the minimum rest state probability criteria. All the conclusions are well supported through a simulation study based on three different data sets. The Markov Chain model advocates for noble properties in scheduling scheme III of the class.

Keywords: Process scheduling, Markov chain model, State of system, Rest State, Process queue, Multi-level queue scheduling, Transition probability matrix, Central Processing Unit (CPU).

SUBJECT CLASSIFICATION

D.4	(Operating System)
SDD.4.1	(Scheduling)
SDD.4.8	(Modeling and Predictions, Performance, Operating System)
${ }^{* * * \text { I.6.3 }}$	(Modeling and Simulation applications)
${ }^{* *}$ C. 4	(Performance of System)

1.0 INTRODUCTION

The operating system plays a major role in managing processes reaching to CPU, specially in the form of multiple queues. The arrival of a process is random along with its different categories and types in terms of size, memory requirement, time etc. All these require scheduling algorithms to work over real time environment with special reference to task, control and efficiency (see Stankovic (1984), Liu and Layland (1973), Garey and Johnson (1977) etc.). The randomization involved in scheduling procedure leads to perform a probabilistic study over the movement phenomenon. The jump of scheduler over multiple queues of processes is a line of thought and a source of motivation to think over for a stochastic study of system.

Demer et al. (1989) have presented an analysis of Fair Queuing algorithm whereas Cobb et al. (1998) picked up fair scheduling of flaros with the consideration of time shifting approach in the area of high-speed networks. Goyal et al. (1996) derieved the Hierarchical CPU scheduler in the environment where the multimedia operating system is used. In the similar line, Hieh and Lam (2003) discussed smart schedulers for multimedia users. A time driven scheduling model is proposed by Janson et al. (1985) attracted attention of researchers for the model formation over functioning and procedure on operating systems. Katcher (1993) proposed an analysis of fixed priority schedulers and Horn (1974) generated some new scheduling algorithms useful for managing queues in operating system. David (1994) presented a successful contribution over the study of real time and conventional scheduling with a comparative analysis.

Barthomew (1973), Medhi (1991) and Parzern (1962) given an elaborate study of a variety of stochastic processes and their applications in various fields. Medhi (1976) developed a Markov chain model for the study of uncertain rainfall phenominon. Naldi (2002) presented a Markov chain model for understanding the internet traffic sharing among various operators in a competitive market. Shukla et al. (2007) used a Markov chain model for the study of transition probabilities in space division switches in computer networks. This paper takes into account a class of multilevel queue scheduling schemes with the assumption of random jumps of scheduler and a rest state along with keen interest on comparative study of different schemes.

1.1 A GENERAL CLASS OF MULTI-LEVEL QUEUE SCHEDULING

Consider a scheduling with three queues Q_{1}, Q_{2}, Q_{3}, each having large number of processes $P_{j}, P_{j}^{\prime}, P_{j}^{\prime \prime}(j=1,2,3 \ldots)$ respectively, waiting for processing. Let these queues $Q_{i}(i=1,2,3)$ are states of a scheduling system and there is a specific fourth state $Q_{4}=W$ treated as a rest state. A quantum is a small pre-defined slot of time given for processing to the waiting processes in queues. Symbol n denotes the $n^{\text {th }}$ quantum allotted by scheduler to a process for execution ($n=1,2,3,4 \ldots$).

A proposed structure of the general class of multi-level scheduling is laid down below considering fig 1.1 and fig 1.2.
(1) A new process enters through any of the three queues Q_{i} only, with initial probabilities $p r_{1}, p r_{2}, p r_{3}\left(\sum_{i=1}^{3} p r_{i}=1\right)$.
(2) The movement of the scheduler is random over the three different states Q_{1}, Q_{2}, Q_{3} and to the rest state $Q_{4}=W$. Scheduler continues within the $s^{\text {th }}$ state $Q_{s}(s=1,2,3,4)$ for a large number of quantum until Q_{i} is empty.
(3) In beginning, the scheduler picks up any Q_{i} with a pre-defined priority, then picks up first process of that queue and allot a quantum of time for processing.
(4) The process remains with the processor until the quantum is over. If it completes within that, it gets out of Q_{i}.
(5) While a process is incomplete, within a quantum, scheduler assigns next quantum to the next process of the same queue and so on. The earlier incomplete process moves to the next queue $Q_{i+1}[(i+1) \leq 3]$ and waits there for the next quantum to allot for its processing.
(6) The quantum allotment procedure, within Q_{i}, by scheduler, continues until Q_{i} is empty. When all Q_{1}, Q_{2}, Q_{3} are empty, the scheduler jumps to the rest state $Q_{4}=W$. Therefore, W be an idle state but also accepts random transition of scheduler over itself from any empty Q_{i}.
(7) The scheduler attempts processing in queue Q_{3} on "first come first serve" basis. Any incomplete process or new process, if appears in Q_{3}, remains with Q_{3} only until processed completely.

Fig. 1.1 (General Multi-level Queue System Diagram)

Fig 1.2(System Diagram)

2.0 MARKOV CHAIN MODEL

Let $\left\{X^{(n)}, n \geq 1\right\}$ be a Markov chain where $X^{(n)}$ denotes the state of scheduler at the $n^{\text {th }}$ quantum of time. The state space for random variable X is $\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ and scheduler $X^{(n)}$ jumps over these states in different predefined quantum of time. The initial selection probabilities of states are:

$$
\begin{align*}
& \mathrm{P}\left[\mathrm{X}^{(0)}=\mathrm{Q}_{1}\right]=\mathrm{pr}_{1} \\
& \mathrm{P}\left[\mathrm{X}^{(0)}=\mathrm{Q}_{2}\right]=\mathrm{pr}_{2} \\
& \mathrm{P}\left[\mathrm{X}^{(0)}=\mathrm{Q}_{3}\right]=\mathrm{pr}_{3} \tag{2.1}\\
& \mathrm{P}\left[\mathrm{X}^{(0)}=\mathrm{Q}_{4}\right]=0
\end{align*}
$$

with $p r_{1}+p r_{2}+p r_{3}=\sum_{i=1}^{3} p r_{i}=1$

Suppose $s_{i j}(i, j=1,2,3,4)$ be transition probabilities of $X^{(n)}$ over states. The unit-step transition probability matrix is:
$\longleftarrow X^{(n)} \longrightarrow$

	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$\overline{\mathrm{Q}_{1}}$	S_{11}	S_{12}	S_{13}	S_{14}
$X^{(n-1)} \mathrm{Q}_{2}$	S_{21}	S_{22}	S_{23}	S_{24}
Q_{3}	S_{31}	S_{32}	S_{33}	S_{34}
Q_{4}	S_{41}	S_{42}	S_{43}	S_{44}

subject to condition $s_{14}=\left(1-\sum_{i=1}^{3} s_{1 i}\right), s_{24}=\left(1-\sum_{i=1}^{3} s_{2 i}\right), s_{34}=\left(1-\sum_{i=1}^{3} s_{3 i}\right)$,

$$
s_{44}=\left(1-\sum_{i=1}^{3} s_{4 i}\right) \text { and } 0 \leq s_{i j} \leq 1
$$

The state probabilities, after the first quantum, can be obtained by a simple relationship:

$$
\left.\begin{array}{c}
P\left[X^{(1)}=Q_{1}\right]=p\left[X^{(0)}=Q_{1}\right] \cdot p\left[X^{(1)}=Q_{1} / X^{(0)}=Q_{1}\right]+ \\
p\left[X^{(0)}=Q_{2}\right] p\left[X^{(1)}=Q_{1} / X^{(0)}=Q_{2}\right]+ \\
p\left[X^{(0)}=Q_{3}\right] p\left[X^{(1)}=Q_{1} / X^{(0)}=Q_{3}\right] \\
=\sum_{i=1}^{3} p r_{i} S_{i 1} \\
P\left[X^{(1)}=Q_{2}\right]=\sum_{i=1}^{3} p r_{i} S_{i 2} \\
P\left[X^{(1)}=Q_{3}\right]=\sum_{i=1}^{3} p r_{i} S_{i 3} \tag{2.3}\\
P\left[X^{(1)}=Q_{4}\right]=\sum_{i=1}^{3} p r_{i} S_{i 4}
\end{array}\right]
$$

Similarly, state probabilities after second quantum can be obtained by simple relationship:

$$
\begin{aligned}
& P\left[X^{(2)}=Q_{1}\right]=p\left[X^{(1)}\right.\left.=Q_{1}\right] p\left[X^{(2)}=Q_{1} / X^{(1)}=Q_{1}\right]+ \\
& p\left[X^{(1)}\right.\left.=Q_{2}\right] p\left[X^{(2)}=Q_{1} / X^{(1)}=Q_{2}\right]+ \\
& p\left[X^{(1)}=Q_{3}\right] p\left[X^{(2)}=Q_{1} / X^{(1)}=Q_{3}\right]+ \\
& p\left[X^{(1)}=Q_{4}\right] p\left[X^{(2)}=Q_{1} / X^{(1)}=Q_{4}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{i=1}^{4}\left(\sum_{j=1}^{3} p r_{j} s_{j i}\right) s_{i 1} \\
& P\left[X^{(2)}=Q_{2}\right]=\sum_{i=1}^{4}\left(\sum_{j=1}^{3} p r_{j} s_{j i}\right) s_{i 2} \tag{2.4}\\
& P\left[X^{(2)}=Q_{3}\right]=\sum_{i=1}^{4}\left(\sum_{j=1}^{3} p r_{j} s_{j i}\right) s_{i 3} \\
& P\left[X^{(2)}=Q_{4}\right]=\sum_{i=1}^{4}\left(\sum_{j=1}^{3} p r_{j} s_{j i}\right) s_{i 4}
\end{align*}
$$

Remark 2.1 The generalized expressions for n quantum are:

$$
\left.\begin{array}{l}
P\left[X^{(n)}=Q_{1}\right]=\sum_{m=1}^{4} \ldots . . \sum_{l=1}^{4} \sum_{k=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{3} p_{r j} S_{j i} s_{i k} s_{k l} \ldots . . s_{m 1} \\
P\left[X^{(n)}=Q_{2}\right]=\sum_{m=1}^{4} \ldots . \cdot \sum_{l=1}^{4} \sum_{k=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{3} p_{r i} s_{j i} s_{i k} s_{k l} \cdots . . s_{m 2} \tag{2.5}\\
P\left[X^{(n)}=Q_{3}\right]=\sum_{m=1}^{4} \ldots . . \sum_{l=1}^{4} \sum_{k=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{3} p_{r j} s_{j i} s_{i k} s_{k l} \cdots . . s_{m 3} \\
P\left[X^{(n)}=Q_{4}\right]=\sum_{m=1}^{4} \ldots . . \sum_{l=1}^{4} \sum_{k=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{3} p_{r j} S_{j i} s_{i k} s_{k l} \ldots . . s_{m 4}
\end{array}\right]
$$

3.0 SOME SPECIAL MULTI-LEVEL SCHEDULING SCHEMES

By imposing restrictions and conditions over the ways and procedures, one can generate various scheduling schemes from the generalized class in section 1.1. Three schemes are discussed in sub-section 3.1 to 3.3.

3.1 SCHEME-I WHENPROCESSENTERSTOFIRST QUEUE ONLY

Under process entry restriction, the scheme-I is described in fig 3.1

fig 3.1(Transition Diagram of Scheme-I)

Unit step transition probability matrix for $X^{(n)}$ under schomo-I is

$$
\begin{array}{cccccccc}
P\left[X^{(0)}=Q_{1}\right]=1 ; & & & & & \\
P\left[X^{(0)}=Q_{2}\right]=0 ; & & & \mathrm{Q}_{1} & \mathrm{Q}_{2} & \mathrm{Q}_{3} & \mathrm{Q}_{4} \\
P\left[X^{(0)}=Q_{3}\right]=0 ; & & \mathrm{Q}_{1} & \mathrm{~s}_{11} & \mathrm{~s}_{12} & \mathrm{~s}_{13} & \mathrm{~s}_{14} \\
P\left[X^{(0)}=Q_{4}\right]=0 ; & & X^{(n-1)} \mathrm{Q}_{2} & \mathrm{~s}_{21} & \mathrm{~s}_{22} & \mathrm{~s}_{23} & \mathrm{~s}_{24} \\
& & \mathrm{Q}_{3} & \mathrm{~s}_{31} & \mathrm{~s}_{32} & \mathrm{~s}_{33} & \mathrm{~s}_{34} \\
& \mathrm{Q}_{4} & \mathrm{~s}_{41} & \mathrm{~s}_{42} & \mathrm{~s}_{43} & \mathrm{~s}_{44}
\end{array}
$$

Remark 3.1.1 Using (2.3), the state probabilities of scheme-I, after the first quantum are:

$$
\begin{aligned}
& P\left[X^{(1)}=Q_{1}\right]=s_{11} \\
& P\left[X^{(1)}=Q_{2}\right]=s_{12} \\
& P\left[X^{(1)}=Q_{3}\right]=s_{13} \\
& P\left[X^{(1)}=Q_{4}\right]=s_{14}
\end{aligned}
$$

Remark 3.1.2 Using (2.4), the state probabilities after the second quantum are:

$$
\begin{aligned}
& P\left[X^{(2)}=Q_{1}\right]=\sum_{j=1}^{4} s_{1 j} s_{j 1} \\
& P\left[X^{(2)}=Q_{2}\right]=\sum_{j=1}^{4} s_{1 j} s_{j 2} \\
& P\left[X^{(2)}=Q_{3}\right]=\sum_{j=1}^{4} s_{1 j} s_{j 3} \\
& P\left[X^{(2)}=Q_{4}\right]=\sum_{j=1}^{4} s_{1 j} s_{j 4}
\end{aligned}
$$

Remark 3.1.3 The generalized expressions of scheme-I for state probabilities are:

$$
\begin{aligned}
& P\left[X^{(n)}=Q_{1}\right]=\sum_{m=1} \ldots . . \sum_{l=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{4} s_{1 j} s_{j i} s_{i l} \ldots . . s_{m 1} \\
& P\left[X^{(n)}=Q_{2}\right]=\sum_{m=1} \ldots . . \sum_{l=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{4} s_{1 j} s_{j i} s_{i l} \ldots . s_{m 2} \\
& P\left[X^{(n)}=Q_{3}\right]=\sum_{m=1} \ldots . . \sum_{l=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{4} s_{1 j} s_{j i} s_{i l} \ldots . s_{m 3} \\
& P\left[X^{(n)}=Q_{4}\right]=\sum_{m=1} \ldots . . \sum_{l=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{4} s_{1 j} s_{j i} s_{i l} \ldots . s_{m 4}
\end{aligned}
$$

3.2 SCHEME-II WHEN SOME TRANSITIONS ARE RESTRICTED

In the class of section 1.1, following are restricted and shown in fig 3.2.1:
(a) a new process enters to Q_{1} only;
(b) scheduler cannot jump to Q_{3} from Q_{1} without passing Q_{2};
(c) scheduler comes to Q_{3} only if Q_{1} and Q_{2} are empty; it restricts the transition from Q_{3} to Q_{2}; however, the transition from Q_{3} to Q_{1} is allowed only if a new process enters to Q_{1};
(d) resting of scheduler on state W ends up only if a new process enters in Q_{1}, otherwise resting continues.

Fig. 3.2.1 (Transition Diagram of Scheme-II)

Remark 3.2.1 The scheme-II is same as the multi-level feedback scheduling discussed in literature [See Stallings (2005), Silberschatz and Galvin (1999), Tannenbaum (2000)].

Remark 3.2.2 The initial probabilities and transition probability matrix under scheme-II are:

$$
\begin{aligned}
& P\left[X^{(0)}=Q_{1}\right]=1 ; \\
& P\left[X^{(0)}=Q_{2}\right]=0 ; \\
& P\left[X^{(0)}=Q_{3}\right]=0 \text {; } \\
& P\left[X^{(0)}=Q_{4}\right]=0 ;
\end{aligned}
$$

Remark 3.2.3 Using (2.3), state probabilities after the first quantum for scheme-II are:

$$
\begin{aligned}
& P\left[X^{(1)}=Q_{1}\right]=s_{11} \\
& P\left[X^{(1)}=Q_{2}\right]=s_{12} \\
& P\left[X^{(1)}=Q_{3}\right]=0 \\
& P\left[X^{(1)}=Q_{4}\right]=s_{14}
\end{aligned}
$$

Define indicator function $l_{(i j)}, i, j=1,2,3,4$. such that

$$
\begin{aligned}
& l_{(i j)}=0 \text { when }(i=1, j=3),(i=3, j=2),(i=4, j=2),(i=4, j=3) \\
& l_{(i j)}=1 \text { otherwise. }
\end{aligned}
$$

Then, using (2.4) state probabilities of scheme-II after second quantum:

$$
\begin{aligned}
& P\left[X^{(2)}=Q_{1}\right]=\sum_{j=1}^{4}\left(l_{1 j} s_{1 j}\right)\left(l_{j 1} s_{j 1}\right) \\
& P\left[X^{(2)}=Q_{2}\right]=\sum_{j=1}^{4}\left(l_{1 j} s_{1 j}\right)\left(l_{j 2} s_{j 2}\right) \\
& P\left[X^{(2)}=Q_{3}\right]=\sum_{j=1}^{4}\left(l_{1 j} s_{1 j}\right)\left(l_{j 3} s_{j 3}\right) \\
& P\left[X^{(2)}=Q_{4}\right]=\sum_{j=1}^{4}\left(l_{1 j} s_{14}\right)\left(l_{j 1} s_{j 4}\right)
\end{aligned}
$$

Remark 3.2.4 For n quantum, the generalized expressions are:

$$
\begin{aligned}
& P\left[X^{(n)}=Q_{1}\right]=\sum_{m=1} \ldots . . \sum_{k=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{4}\left(l_{1 j} s_{1 j}\right)\left(l_{j i} s_{j i}\right)\left(l_{i k} s_{i k}\right) \ldots . .\left(l_{m 1} s_{m 1}\right) \\
& P\left[X^{(n)}=Q_{2}\right]=\sum_{m=1} \ldots . . \sum_{k=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{4}\left(l_{1 j} s_{1 j}\right)\left(l_{i i} s_{j i}\right)\left(l_{i k} s_{i k}\right) \ldots . .\left(l_{m 2} s_{m 2}\right) \\
& P\left[X^{(n)}=Q_{3}\right]=\sum_{m=1} \ldots . . \sum_{k=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{4}\left(l_{1 j} s_{1 j}\right)\left(l_{j i} s_{j i}\right)\left(l_{i k} s_{i k}\right) \ldots . .\left(l_{m 3} s_{m 3}\right) \\
& P\left[X^{(n)}=Q_{4}\right]=\sum_{m=1} \ldots . . \sum_{k=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{4}\left(l_{1 j} s_{1 j}\right)\left(l_{j i} s_{j i}\right)\left(l_{i k} s_{i k}\right) \ldots . .\left(l_{m 4} s_{m 4}\right)
\end{aligned}
$$

3.3 SCHEME-III WHEN SOME TRANSITIONS ARE RESTRICTED WITH SECURITY MEASURES

Transition from Q_{1} to W is possible in scheme II when Q_{1} empty, but in scheme-III, a set of new imposed conditions are:
(a) transition from Q_{1} to W is restricted;
(b) transitions must occur in sequence, that is, from Q_{1} to Q_{2}, Q_{2} to Q_{3}, and then Q_{3} to W as shown in fig 3.3.1.

This provides a security measure for the scheduler because it cannot be on resting state unless all the queues are empty.

Fig. 3.3.1 (Transition Diagram of Scheme-III)

For scheme-III, initial probabilities and the transition probability matrix are:

$$
\begin{gathered}
P\left[X^{(0)}=Q_{1}\right]=1 \\
P\left[X^{(0)}=Q_{2}\right]=0 \\
P\left[X^{(0)}=Q_{3}\right]=0 \\
P\left[X^{(0)}=Q_{4}\right]=0
\end{gathered}
$$

\[

\]

Remark 3.3.1 Using (2.3), (2.4) and (2.5) the state probabilities after the first, second and third quantum are:

$$
\begin{array}{ll}
P\left[X^{(1)}=Q_{1}\right]=s_{11} ; & P\left[X^{(2)}=Q_{1}\right]=s_{11} s_{11}+s_{12} s_{21} \\
P\left[X^{(1)}=Q_{2}\right]=s_{12} ; & P\left[X^{(2)}=Q_{2}\right]=s_{11} s_{12}+s_{12} s_{22} \\
P\left[X^{(1)}=Q_{3}\right]=0 ; & P\left[X^{(2)}=Q_{3}\right]=s_{12} s_{23} \\
P\left[X^{(1)}=Q_{4}\right]=0 ; & P\left[X^{(2)}=Q_{4}\right]=0 \\
& \\
P\left[X^{(3)}=Q_{1}\right]=\left(s_{11} s_{11}+s_{12} s_{21}\right) s_{11}+\left(s_{11} s_{12}+s_{12} s_{22}\right) s_{21}+\left(s_{12} s_{23}\right) s_{31} \\
P\left[X^{(3)}=Q_{2}\right]=\left(s_{11} s_{11}+s_{12} s_{21}\right) s_{12}+\left(s_{11} s_{12}+s_{12} s_{22}\right) s_{22} \\
P\left[X^{(3)}=Q_{3}\right]=\left(s_{11} s_{12}+s_{12} s_{22}\right) s_{23}+\left(s_{12} s_{23}\right) s_{33} \\
P\left[X^{(3)}=Q_{4}\right]=\left(s_{12} s_{23}\right) s_{34}
\end{array}
$$

Remark 3.3.2 Using similar pattern, for n quantum the generalized expression is:

$$
\begin{aligned}
& P\left[X^{(n)}=Q_{1}\right]=\sum_{i=1}^{n} P\left[X^{(n-1)}=Q_{i}\right] S_{i 1} \\
& P\left[X^{(n)}=Q_{2}\right]=\sum_{i=1}^{n} P\left[X^{(n-1)}=Q_{i}\right] S_{i 2} \\
& P\left[X^{(n)}=Q_{3}\right]=\sum_{i=1}^{n} P\left[X^{(n-1)}=Q_{i}\right] s_{i 3} \\
& P\left[X^{(n)}=Q_{4}\right]=\sum_{i=1}^{n} P\left[X^{(n-1)}=Q_{i}\right] S_{i 4}
\end{aligned}
$$

4.0 CASE OF EQUAL VALUE TRANSITION PROBABILITIES

Consider below in [A] equal transition probability matrix for a constant number ' a ', $0 \leq a \leq 1$ and $3 a<1$. The $n^{\text {th }}$ step transition for scheme-I is expressed in [B]
[A]

	Q_{1}	Q_{2}	Q_{3}	Q_{4}
Q_{1}	a	a	a	$1-3 a$
Q_{2}	a	a	a	$1-3 a$

Q_{3}	a	a	a	$1-3 a$
Q_{4}	a	a	a	$1-3 a$

$X^{(n-1)}$
$P\left[X^{(n)}=Q_{1}\right]=a$
$P\left[X^{(n)}=Q_{2}\right]=a$
$P\left[X^{(n)}=Q_{3}\right]=a$
$P\left[X^{(n)}=Q_{4}\right]=1-3 a$
[B]

While scheme-II, which is multi-level feedback queue scheduling, is taken into account, the equal transition matrix is:

Table 4.1 (Seven Quantum Transition Probabilities Under scheme-II)

| | STATES | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Quantum
 number | $P\left[X^{(n)}=Q_{1}\right]$ | $P\left[X^{(n)}=Q_{2}\right]$ | $P\left[X^{(n)}=Q_{3}\right]$ | $P\left[X^{(n)}=Q_{4}\right]$ |
| $n=1$ | a | a | 0 | $1-2 a$ |
| $n=2$ | a | $2 a^{2}$ | a^{2} | $1-a-3 a^{2}$ |
| $n=3$ | a | $a^{2}+2 a^{3}$ | $3 a^{3}$ | $1-a-a^{2}-5 a^{3}$ |
| $n=4$ | a | $a^{2}+a^{3}+2 a^{4}$ | $a^{3}+5 a^{4}$ | $1-a-a^{2}-2 a^{3}$
 $-7 a^{4}$ |
| $n=5$ | a | $a^{2}+a^{3}+a^{4}$
 $+2 a^{5}$ | $a^{3}+2 a^{4}+7 a^{5}$ | $1-a-a^{2}-2 a^{3}$
 $-3 a^{4}-9 a^{5}$ |
| $n=6$ | a | $a^{2}+a^{3}+a^{4}$
 $+a^{5}+2 a^{6}$ | $a^{3}+2 a^{4}+3 a^{5}$
 $+9 a^{6}$ | $1-a-a^{2}-2 a^{3}$
 $-3 a^{4}-4 a^{5}-11 a^{6}$ |

$n=7$	a	$a^{2}+a^{3}+a^{4}$ $+a^{5}+a^{6}+2 a^{7}$	$a^{3}+2 a^{4}+3 a^{5}$ $+4 a^{6}+11 a^{7}$	$1-a-a^{2}-2 a^{3}$ $-3 a^{4}-4 a^{5}-5 a^{6}-13$

Under scheme-III, the transition matrix is:

4	Q_{1}	Q_{2}	$X_{Q_{3}}^{(n)}-$	$\overrightarrow{Q_{4}}$
$\overline{Q_{1}}$	a	$1-a$	0	0
$X^{(n-1) Q_{2}}$	a	a	1-2a	0
Q_{3}	a	0	a	1-2a
$\downarrow Q_{4}$	a	0	0	1-a

Table 4.2 (Seven Quantum Transition Probabilities Under Scheme-III)

	STATES			
	$P\left[X^{(n)}=\right.$	$P\left[X^{(n)}=Q\right.$	$P \backslash X^{(n)}=Q$	$P\left[X^{(n)}=\mathrm{Q}_{4}\right]$
$n=$,	a	a	0	0
$n=$	a	$2 a-2 a^{2}$	$1-3 a-2 a^{2}$	0
$n=$,	a	$a+a^{2}-2 a$	$3 a-9 a^{2}+$	$1-5 a+8 a^{2}-4$
$n=$.	a	$a+a^{3}-2 a$	$\begin{aligned} & a+2 a^{2}-1 \\ & +10 a^{4} \end{aligned}$	$\begin{aligned} & 1-3 a-2 a^{2} \\ & +12 a^{3}-8 a^{4} \end{aligned}$
$n=$,	a	$a+a^{4}-2 a$	$\begin{aligned} & a-a^{2}+3 a \\ & 17 a^{4}+14 a \end{aligned}$	$\begin{aligned} & 1-3 a+a^{2}-3 a \\ & +16 a^{4}-12 a^{5} \end{aligned}$
$n=1$	a	$\begin{aligned} & a-24 a^{4}+ \\ & 25 a^{5}-2 a^{6} \end{aligned}$	$\begin{aligned} & a-a^{2}-a^{3} \\ & 4 a^{4}+21 a^{5} \end{aligned}$	$\begin{aligned} & 1-3 a+a^{2}+a^{3} \\ & -4 a^{4}-14 a^{5}+ \end{aligned}$
$n=$	$a-24 a^{5}+$	$\begin{aligned} & a-24 a^{5}+ \\ & 25 a^{6}-2 a^{7} \end{aligned}$	$\begin{gathered} a-a^{2}-a^{3} \\ -25 a^{4}+7 \\ -31 a^{6}+22 \end{gathered}$	$\begin{aligned} & 1-3 a+a^{2} \\ & +a^{3}+a^{4}+ \\ & 3 a^{5}+6 a^{6}+52 \end{aligned}$

5.0 NUMERICAL ANALYSIS

The basic and scientific plan for data analysis related to state transition probabilities for three scheduling schemes I, II, III of the proposed class are in fig 5.1.

Fig: 5.1

5.1 USING DATA SET I

Under scheme-I: Consider data set of "equal and unequal transition elements" matrices as per (2.2) and (4.1) with initial probabilities:

$$
p r_{1}=0.5, p r_{2}=0.3, p r_{3}=0.2
$$

Unequal

Equal

Table 5.0.1 $\left[P\left[X^{(n)}=Q_{i}\right]\right.$ (The transition probabilities for equal and unequal cases)

Quantums	Unequal				Equal			
	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$n=1$	0.245	0.335	0.155	0.215	0.3	0.3	0.3	0.1
$n=2$	0.19775	0.22875	0.24	0.259	0.3	0.3	0.3	0.1
$n=3$	0.193687	0.234363	0.216988	0.260688	0.3	0.3	0.3	0.1
$n=4$	0.186308	0.223308	0.218554	0.260688	0.3	0.3	0.3	0.1
$n=5$	0.182492	.02192780	0.2128410	0.25315	0.3	0.3	0.3	0.1
$n=6$	0.178468	0.214323	0.208724	0.247962	0.3	0.3	0.3	0.1
$n=7$	0.174726	0.209890	0.204273	0.242771	0.3	0.3	0.3	0.1

Under Scheme-II: Consider the following probability matrices with initial transition probabilities $p r_{1}=1, p r_{2}=0, p r_{3}=0$;

Equal

Table 5.0.2 $\left[P\left[X^{(n)}=Q_{i}\right]\right.$ (Transition probabilities for equal and unequal cases)

Quantums	Unequal				Equal			
	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$n=1$	0.2	0.45	0	0.35	0.3	0.3	0	0.4
$n=2$	0.169	0.2385	0.1845	0.408	0.3	0.18	0.09	0.43
$n=3$	0.153995	0.154755	0.16974	0.52151	0.3	0.144	0.081	0.475
$n=4$	0.152308	0.120367	0.129648	0.597677	0.3	0.1332	0.0675	0.4993
$n=5$	0.15354	0.10826	0.099913	0.638287	0.3	0.12996	0.06021	0.50983
$n=6$	0.154847	0.104819	0.083353	0.656982	0.3	0.128998	0.057051	0.513961
$n=7$	0.155671	0.104271	0.075483	0.664575	0.3	0.128696	0.055812	0.515492

Under Scheme-III: Take the following probability matrices

Unequal

Equal

Table 5.0.3 $\left[P\left[X^{(n)}=Q_{i}\right]\right.$ (Transition probabilities for equal and unequal cases)

Quantums	Unequal				Equal			
	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$n=1$	0.2	0.8	0	0	0.3	0.7	0	0
$n=2$	0.36	0.44	0.2	0	0.3	0.42	0.28	0
$n=3$	0.274	0.442	0.246	0.038	0.3	0.336	0.252	0.112
$n=4$	0.28068	0.3739	0.27778	0.067640	0.3	0.3108	0.21	0.1792
$n=5$	0.272245	0.355409	0.282365	0.08998	0.3	0.30324	0.18732	0.20944
$n=6$	0.273811	0.342189	0.280861	0.103139	0.3	0.300972	0.0177492	0.221536
$n=7$	0.274562	0.338815	0.276533	0.110090	0.3	0.300292	0.173636	0.226072

5.2 USING DATA SET II

Under Scheme-I: Consider the probability matrix with initial probabilities.

$$
p r_{1}=0.5, p r_{2}=0.3, p r_{3}=0.2
$$

Unequal

Equal

Table 5.1.1 $|P| X^{(n)}=Q_{i} \|$ (Transition probabilities for equal and unequal cases)

Quantums	Unequal				Equal			
	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$n=1$	0.202	0.247	0.132	0.419	0.2	0.2	0.2	0.4
$n=2$	0.16537	0.28101	0.22382	0.3298	0.2	0.2	0.2	0.4
$n=3$	0.167666	0.295422	0.198906	0.338006	0.2	0.2	0.2	0.4
$n=4$	0.165493	0.293291	0.200103	0.341113	0.2	0.2	0.2	0.4
$n=5$	0.165414	0.293639	0.200889	0.340058	0.2	0.2	0.2	0.4
$n=6$	0.165457	0.293731	0.200612	0.340199	0.2	0.2	0.2	0.4
$n=7$	0.165437	0.293703	0.200642	0.340217	0.2	0.2	0.2	0.4

Under Scheme-II: Consider the following data of matrices

Unequal

Equal

Table 5.1.2 $\left[P\left[X^{(n)}=Q_{i}\right]\right.$ (Transition probabilities for equal and unequal cases)

Quantums	Unequal				Equal			
	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$n=1$	0.25	0.15	0	0.6	0.2	0.2	0	0.6
$n=2$	0.163	0.0855	0.0105	0.741	0.2	0.08	0.04	0.68
$n=3$	0.156205	0.05181	0.00735	0.784635	0.2	0.056	0.024	0.72
$n=4$	0.156216	0.04001	0.004582	0.799192	0.2	0.0152	0.016	0.7328
$n=5$	0.15635	0.036236	0.003396	0.804018	0.2	0.05024	0.01344	0.73632
$n=6$	0.156383	0.035048	0.002978	0.805591	0.2	0.050048	0.012736	0.737216
$n=7$	0.1563890	0.034673	0.00284	0.806098	0.2	0.05001	0.012557	0.737434

Under Scheme-III: The data is given below:

Unequal

Equal

Table 5.1.3 $\left[P\left[X^{(n)}=Q_{i}\right]\right.$ (Transition probabilities for equal and unequal cases)

Quantums	Unequal				Equal			
	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$n=1$	0.25	0.75	0	0	0.2	0.8	0	0
$n=2$	0.145	0.4275	0.4275	0	0.2	0.32	0.48	0
$n=3$	0.177325	0.24555	0.29925	0.277875	0.2	0.224	0.288	0.288
$n=4$	0.176079	0.21157	0.178866	0.433485	0.2	0.2048	0.192	0.4032
$n=5$	0.167331	0.199762	0.143847	0.48906	0.2	0.20096	0.16128	0.43776
$n=6$	0.163921	0.189222	0.132564	0.514092	0.2	0.200192	0.152832	0.446976
$n=7$	0.162954	0.183556	0.1252024	0.528286	0.2	0.200038	0.150682	0.44928

5.3 USING DATA SET III

Under Scheme-I: $\quad \mathrm{pr}_{1}=0.5, \mathrm{pr}_{2}=0.3, \mathrm{pr}_{3}=0.2$

Unequal

Equal

Table 5.2.1 $\left[P\left[X^{(n)}=Q_{i}\right]\right.$ (Transition probabilities for equal and unequal cases)

Quantums	Unequal				Equal			
	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$n=1$	0.235	0.297	0.205	0.263	0.25	0.25	0.25	0.25
$n=2$	0.26033	0.27187	0.21772	0.25008	0.25	0.25	0.25	0.25
$n=3$	0.258495	0.270714	0.217555	0.253236	0.25	0.25	0.25	0.25
$n=4$	0.258981	0.269971	0.21784	0.253209	0.25	0.25	0.25	0.25
$n=5$	0.258986	0.269863	0.217865	0.253286	0.25	0.25	0.25	0.25
$n=6$	0.258999	0.269832	0.217875	0.253293	0.25	0.25	0.25	0.25
$n=7$	0.259	0.269826	0.217877	0.253296	0.25	0.25	0.25	0.25

Under Scheme-II: The data is below:

Table 5.2.2 $\left[P\left[X^{(n)}=Q_{i}\right]\right.$ (Transition probabilities for equal and unequal cases)

Quantums	Unequal				Equal			
	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$n=1$	0.32	0.12	0	0.56	0.25	0.25	0	0.5
$n=2$	0.3628	0.09	0.0204	0.5268	0.25	0.125	0.0625	0.5625
$n=3$	0.357476	0.082236	0.017748	0.54254	0.25	0.09375	0.046875	0.609375
$n=4$	0.360594	0.078259	0.01611	0.245038	0.25	0.085938	0.035156	0.628906
$n=5$	0.361707	0.076922	0.015237	0.546134	0.25	0.083984	0.030273	0.635742
$n=6$	0.36219	0.076481	0.014905	0.546423	0.25	0.083496	0.028564	0.637939
$n=7$	0.362354	0.07635	0.01479	0.546506	0.25	0.083374	0.028015	0.638611

Under Scheme-III: The data is as under:

Unequal

Equal

Table 5.2.3 $\left[P\left[X^{(n)}=Q_{i}\right]\right.$ (Transition probabilities for equal and unequal cases)

Quantums	Unequal				Equal			
	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{1}	Q_{2}	Q_{3}	Q_{4}
$n=1$	0.32	0.68	0	0	0.25	0.75	0	0
$n=2$	0.2452	0.51	0.2448	0	0.25	0.375	0.375	0
$n=3$	0.200252	0.386036	0.212976	0.200736	0.25	0.28125	0.28125	0.1875
$n=4$	0.242236	0.302167	0.16453	0.291067	0.25	0.257812	0.210938	0.28125
$n=5$	0.273091	0.294652	0.128524	0.303734	0.25	0.251957	0.181641	0.316406
$n=6$	0.284545	0.312402	0.121498	0.281555	0.25	0.250488	0.171387	0.328125

$n=7$	0.282202	0.327824	0.127044	0.26293	0.25	0.250122	0.168091	0.331787

6.0 GRAPHICAL STUDY AND DISCUSSION

The analytical discussion is performed with three scientific approaches:
(a) Comparison of unequal and equal probability of transitions within a scheme;
(b) Comparison of scheduling schemes under equal transition probability;
(c) Comparison of scheduling schemes under unequal transition probability.

For Scheme-I: When the system is completely unrestricted and the process is allowed to enter into from any of the queue with unequal initial probabilities, the variation $P\left[X^{(n)}=Q_{i}\right]$ over three different data sets is shown in fig. 6.1 to fig. 6.6.

Fig. 6.3 (Scheme-I)

Data Set III (equal)

Fig. 6.6 (Scheme -I)

The pattern of transition over states Q_{1}, Q_{2}, Q_{3} and Q_{4} of the scheduler reflects a stability over a number of quantum for $n \geq 2$ (when unequal transitions). The remarkable point is that the probability of state Q_{4} (rest state) is higher in all data sets than for other states. This shows a loss of efficiency of scheme-I under model criteria. The higher chance that scheduler spends more and more over the rest state than on working states Q_{1}, Q_{2} and Q_{3}. Therefore, completely unrestricted scheduling scheme-I leads to a loss of CPU time. While considering the same with equal transition matrix, the state probabilities are found independent of the quantum variation, but it also supports the above fact.

For Scheme-II: The scheme is similar to usual multi-level queue scheduling where the system starts from Q_{1}, moves towards Q_{2} and Q_{3}, but can shift over to Q_{4} from any of the $Q_{i}(i=1,2,3$,$) . The fig. 6.7$ to fig. 6.12 has the variability pattern of chances for $P\left[X^{(n)}=Q_{i}\right]$ over different quantum.

Fig. 6.7 (Scheme-II)

Data Set II (unequal)

Fig. 6.8 (Scheme-II)

Data Set III (unequal)

Fig.6.9 (Scheme-II)

Fig. 6.10 (Scheme-II)

Fig. 6.12 (Scheme-II)

Graphs reveal a higher probability at the rest state Q_{4} than the other Q_{1}, Q_{2}, Q_{3}. This again leads to a loss of efficiency under model due more resting chance of the scheduler. The state probability is independent of the quantum variation for $n>2$. But, the rest state bears an increasing variation of probability over large n. The special remark for this process-scheduling scheme-II is that probability for the state Q_{3} is very low. Therefore, there are lesser chance for jobs contained in Q_{3} to be processed than Q_{1} and Q_{2}.

For Scheme-III: When hard restriction is imposed in terms of a security measure, the graphical pattern is shown in fig. 6.13 to fig. 6.18.

Data Set I (unequal)

Fig.6.13 (Scheme-III)

Data Set II (unequal)

Fig. 6.14 (Scheme-III)

Data Set III (unequal)

Fig. 6.15 (Scheme-III)

Fig. 6.18 (Scheme-III)

The probability of scheduler, for the rest state is lower than other state probabilities. This has a sign of increase in efficiency of the scheduling scheme-III under model consideration. The probability of state Q_{3} is higher in the scheme than the previous schemes. Most of the transition probabilities are almost equal and well within the range of 0.15 to 0.45 . Slight variation is observed for quantum $n=1,2$ and 3 but for $n \geq 4$, a stable probability pattern is found. The scheme-III provides more and more chance or importance to job processing than "resting-the-scheduler", in comparison to scheme-II. Therefore, efficiency of this scheduling procedure is higher and recommendable.

In scheme-II, the scheduler has less chance of having transition over state Q_{2} and Q_{3} than Q_{4}.

6.1 EFFECT OF EQUAL AND UNEQUALTRANSITION PROBABILITY MATRICES BETWEEN SCHEMES

A between comparison of schemes generates following remarks:
For Scheme-I: The equal transition probabilities leads to independency of quantum with the transition probability. Also the information overlaps in equal probability case. In the unequal probability matrix, elements present a better picture of transition within states.

The state Q_{1} has lesser probability than Q_{2} and Q_{3} which is objectionable and indicate for inefficient result.

For Scheme-II: This has a little unstable pattern of variation of state probabilities for unequal transition elements. The state Q_{4} has constantly higher probability (when unequal elements) in
comparison to Q_{1}, Q_{2} and Q_{3}. However, the state Q_{3} bears the lowest state probability. The similar pattern is found with equal probability matrices.

For Scheme-III: It is observed that the pattern variation of state probabilities over quantum is almost same between equal and unequal transition elements of matrices. Further, the pattern is having not much variation over changing data. This is an interesting feature which leads to the stability of the whole system and the probability of rest state Q_{4} is also not much in comparison to Q_{1}, Q_{2} and Q_{3}.

7.0 CONCLUDING REMARKS

In the first type of scheduling scheme, the probability towards the rest state is very high which indicates for a loss of system efficiency. The graphical pattern does not depend much on quantum variation for $n \geq 2$. There is a deep effect of equal and unequal probability elements set-up on this scheme. Moreover the state Q_{1} has lesser probability than Q_{2} and Q_{3} which is not a good sign in favour.

The second scheduling scheme bears even higher probabilities for the rest state than the previous one. The third state Q_{3} has a very low chance of being processed. This is a serious drawback observed in model-based study with reference to the usual multi-level queue scheduling.

The third scheme provides a stable pattern of probability variation over quantum almost in all the three data sets. For $n \geq 4$ the variation becomes independent of changes in terms of quantum. In this, most of the state probabilities lies between 0.15 to 0.45 for all sets of data.

As an overall view, the three suggested schemes of the general class are multilevel queue scheduling for an operating system but the third one is useful, efficient and recommendable over the earlier two in light of the considered Markov chain probability model.

REFERENCES

1. Bartholomew,D.J.(1973): Stochastic Models for Social Process, Second Edition, John Wiley, New York.
2. Cobb, J. Gouda, M. and EL-Nahas, A. (June, 1998): Time-Shift Fair Scheduling of Flaros in High-Speed Networks, IEEE/ACM Transactions of Networking, pp. 274-285.
3. Demer, A., Keshar, S. and Shenker, S (1989): Analysis and Simulation of a Fair Queuing Algorithm, Proceedings of SIGCOMM, pp.1-12.
4. Garey, M.R. and Johnson, D.S. (1977): Two-processor scheduling with Start-times and deadlines, SIAM Jour. of computers, vol. 6, No. 3, pp. 30-38.
5. David B. Goub, (1994): Operating System Support for Coexistence of Real-Time and Conventional Scheduling, Carneqie Mellon University, PiHsburg W. PA.
6. Goyal, P. Guo., X. and Vin, H.M.(Oct., 1996): A Hieranchical CPU Schedular for Multimedia Operating Systems, In Proceedings of the Second Symposium on Operating Systems Design and Imjplementation (OSDI’ 90), Secattle, WA, pp. 107-122.
7. Hieh, J. and Lam, M.S. (May 2003): A SMART Scheduler for Multimedia Application, ACM Transactions on Computer System (TOCS), vol. 21(2), pp. 117-163.
8. Horn, W. (1974): Some Simple Scheduling Algorithms, Naval Research Logistics Quaterly, vol. 21, pp. 177-188.
9. Janson, D. Locke, C.D. and Tokuda, H. (December, 1985): A Time Driver Scheduling Model for Real-Time Operation Systems, IEEE Real-Time Symposium, pp. 85-97.
10. Katcher (Oct., 1993): Engineering and Analysis of Fixed Priority Schedulers, IEEE Transactions of Software Engineering, pp. 67-81.
11. Liu, C.L. and Layland, J.W. (Jan 1973): Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment, JACM, vol. 20(1), pp. 46-61.
12. Medhi, J. (1976): A Markov chain model for occurrence of dry and wet days, Ind. J. Met. Hydro. Geophys., vol. 27, pp. 431-435.
13. Medhi, J. (1991): Stochastic processes, Ed. 4, Wiley Limited (Fourth Reprint), New Delhi.
14. Naldi, M. (2002): Internet access traffic sharing in a multi-user environment, Computer Networks, Vol. 38, pp. 809-824.
15. Parzen, E. (1962): Stochastic Process, Holden -day, Inc. San Francisco, California.
16. Silberschatz, A., Galvin, P. (1999): Operating system concept, Ed.5, John Wiley and Sons (Asia), Inc.
17. Shukla, D. Gadewar, S. Pathak, R.K. (2007): A Stochastic model for space-division switches in computer networks, Applied mathematics and Computation (Elsevier Journal), Vol. 184, Issue 2, pp. 235-269.
18. Stalling, W. (2004):Operating systems, Ed.5, Pearson Eduaction,Singopore,Indian Edition,New Delhi.
19. Stankovic, J.A. (June 1984): Simulation of three Adaptive, Decentralized controlled, Task scheduling algorithms, Computer Networks, vol. 8, No. 3, pp. 199-217.
20. Tanenbaum, A. (2000) : Operating system, Ed. 8, Prentice Hall of India, New Delhi.
