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Abstract: 
There are many CPU scheduling algorithms in the literature like FIFO, Round 

Robin, Shortest Job First and so on. The Multilevel Queue Scheduling is superior to 
these due to its better management of a variety of processes. In this paper, a general 
class of multi-level queue scheduling schemes is designed and studied under a Markov 
Chain model. The scheduler is assumed to perform random movement on queues over 
predefined quantum of time. Three different scheduling schemes, as members of the 
class, are examined and compared under this model with the special consideration of a 
rest (waiting) state. It is found that the scheme III of the class is more appropriate than 
scheme I and scheme II in reference to the minimum rest state probability criteria. All 
the conclusions are well supported through a simulation study based on three different 
data sets. The Markov Chain model advocates for noble properties in scheduling 
scheme III of the class.   
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SUBJECT CLASSIFICATION  
 D.4  (Operating System) 
 SDD.4.1 (Scheduling) 
 SDD.4.8  (Modeling and Predictions, Performance, Operating System) 
 ***I.6.3 (Modeling and Simulation applications) 
 **C.4  (Performance of System)  
 
 
 
1.0    INTRODUCTION 
 
The operating system plays a major role in managing processes reaching to CPU, specially in 

the form of multiple queues. The arrival of a process is random along with its different categories 
and types in terms of size, memory requirement, time etc. All these require scheduling algorithms to 
work over real time environment with special reference to task, control and efficiency (see 
Stankovic (1984), Liu and Layland (1973), Garey and Johnson (1977) etc.). The randomization 
involved in scheduling procedure leads to perform a probabilistic study over the movement 
phenomenon. The jump of scheduler over multiple queues of processes is a line of thought and a 
source of motivation to think over for a stochastic study of system.  
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Demer et al. (1989) have presented an analysis of Fair Queuing algorithm whereas Cobb et al. 
(1998) picked up fair scheduling of flaros with the consideration of time shifting approach in the 
area of high-speed networks. Goyal et al. (1996) derieved the Hierarchical CPU scheduler in the 
environment where the multimedia operating system is used. In the similar line, Hieh and Lam 
(2003) discussed smart schedulers for multimedia users. A time driven scheduling model is 
proposed by Janson et al. (1985) attracted attention of researchers for the model formation over 
functioning and procedure on operating systems. Katcher  (1993) proposed an analysis of fixed 
priority schedulers and Horn (1974) generated some new scheduling algorithms useful for 
managing queues in operating system. David (1994) presented a successful contribution over the 
study of real time and conventional scheduling with a comparative analysis.    

Barthomew (1973), Medhi (1991) and Parzern (1962) given an elaborate study of a variety of 
stochastic processes and their applications in various fields. Medhi (1976) developed a Markov 
chain model for the study of uncertain rainfall phenominon. Naldi (2002) presented a Markov chain 
model for understanding the internet traffic sharing among various operators in a competitive 
market. Shukla et al. (2007) used a Markov chain model for the study of transition probabilities in 
space division switches in computer networks. This paper takes into account a class of multilevel 
queue scheduling schemes with the assumption of random jumps of scheduler and a rest state along 
with keen interest on comparative study of different schemes.   

 
1.1    A GENERAL CLASS OF MULTI-LEVEL QUEUE SCHEDULING 
 
Consider a scheduling with three queues , , each having large number of processes 

 respectively, waiting for processing. Let these queues  are states 
of a scheduling system and there is a specific fourth state 

1Q 2,Q 3Q

( ...3,2,1,, ''' =jPPP jjj ) )iQ ( 3,2,1=i
WQ =4  treated as a rest state. A quantum 

is a small pre-defined slot of time given for processing to the waiting processes in queues. Symbol 
denotes the  quantum allotted by scheduler to a process for execution n thn ( ).....4,3,2,1=n  

A proposed structure of the general class of multi-level scheduling is laid down below 
considering fig 1.1 and fig 1.2.  

(1) A new process enters through any of the three queues  only, with initial            

probabilities . 

iQ

⎟
⎠

⎞
⎜
⎝

⎛
=∑
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(2) The movement of the scheduler is random over the three different states ,  and to 
the rest state . Scheduler continues within the  state 

1Q 2,Q 3Q
WQ =4

ths ( )4,3,2,1=sQs  for a large number of 
quantum until  is empty. iQ

(3) In beginning, the scheduler picks up any  with a pre-defined priority, then picks up first 
process of that queue and allot a quantum of time for processing. 

iQ

(4) The process remains with the processor until the quantum is over. If it completes within 
that, it gets out of . iQ

(5) While a process is incomplete, within a quantum, scheduler assigns next quantum to the 
next process of the same queue and so on. The earlier incomplete process moves to the next queue 

 and waits there for the next quantum to allot for its processing. ( )[ 311 ≤++ iQi ]
(6) The quantum allotment procedure, within , by scheduler, continues until  is empty. 

When all ,  are empty, the scheduler jumps to the rest state 
iQ iQ

1Q 2,Q 3Q WQ =4 . Therefore, W be an 
idle state but also accepts random transition of scheduler over itself from any empty .   iQ
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(7) The scheduler attempts processing in queue  on “first come first serve” basis. Any 
incomplete process or new process, if appears in , remains with  only until processed 
completely. 

3Q

3Q 3Q

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
2.0  MARKOV CHAIN MODEL 
 
Let ( ){ }1, ≥nX n  be a Markov chain where ( )nX  denotes the state of scheduler at the  

quantum of time. The state space for random variable X is 

thn
{ }4321 ,,, QQQQ  and scheduler ( )nX  

jumps over these states in different predefined quantum of time. The initial selection probabilities of 
states are: 

( )[ ]
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Q1

Q3

Q2
Q4=W

Fig 1.2

New process

New process

New process

(System Diagram)

  (General Multi-level Queue System Diagram)

new process enters

P1 P2 ......P3

P1 P2  P3

P1 P2 ......P3

' ' '

" " "

Xn

W pr1

pr2

pr3

Q1 with priority (pr1)

Q2 with priority (pr2)

Q3 with priority (pr3)

......
new process enters

new process enters
Scheduler 

Fig. 1.1
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Suppose  be transition probabilities of ( 4,3,2,1, =jisij ) ( )nX  over states. The unit-step 
transition probability matrix is: 

 
 
 
 
 

                                                                                                                                         (2.2) 
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The state probabilities, after the first quantum, can be obtained by a simple relationship: 
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Similarly, state probabilities after second quantum can be obtained by simple relationship: 
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Remark 2.1  The generalized expressions for n quantum are: 
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3.0   SOME SPECIAL MULTI-LEVEL SCHEDULING SCHEMES 
  
 By imposing restrictions and conditions over the ways and procedures, one can generate 

various scheduling schemes from the generalized class in section 1.1. Three schemes are discussed 
in sub-section 3.1 to 3.3. 

 
 
3.1    SCHEME-I  WHEN PROCESS ENTERS TO FIRST QUEUE ONLY 
  
Under process entry restriction, the scheme-I is described in fig 3.1   

fig 3.1

Q1

Q3

Q2
Q4=W

New process

(Transition Diagram of Scheme-I)  
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Unit step transition probability matrix for ( )nX  under scheme-I is 
 
            ( )[ ] 11

0 == QXP ; 
( )[ ] 02
0 == QXP ; 
( )[ ] 03
0 == QXP ; 

            ( )[ ] 04
0 == QXP ; 

 
 
 
 
 
Remark 3.1.1 Using , the state probabilities of scheme-I, after the first quantum are: ( 3.2 )

( )[ ] 111
1 sQXP ==  
( )[ ] 122
1 sQXP ==  
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1 sQXP ==  

 
Remark 3.1.2 Using , the state probabilities after the second quantum are: ( 4.2 )
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Remark 3.1.3 The generalized expressions of scheme-I for state probabilities are: 
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3.2 SCHEME-II  WHEN SOME TRANSITIONS ARE  RESTRICTED 
 
 In the class of section 1.1, following are restricted and shown in fig 3.2.1: 
 
(a) a new process enters to 1Q  only; 
(b) scheduler cannot jump to 3Q  from 1Q  without passing 2Q ; 

( )nX     

   

ssssQ
ssssQ
ssssQ
ssssQ
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(c) scheduler comes to 3Q  only if 1Q  and 2Q  are empty; it restricts the transition from 

3Q  to 2Q ; however, the transition from 3Q  to 1Q  is allowed only if a new process enters to 1Q ; 
(d) resting of scheduler on state W ends up only if a new process enters in 1Q , otherwise 

resting continues. 
 
 

Q1

Q3

Q2
Q4=W

New Process

 
   

Fig. 3.2.1 (Transition Diagram of Scheme-II) 
 
 
 
Remark 3.2.1 The scheme-II is same as the multi-level feedback scheduling discussed in 

literature [See Stallings (2005), Silberschatz and Galvin (1999), Tannenbaum (2000)]. 
  
 
Remark 3.2.2 The initial probabilities and transition probability matrix under scheme-II are:                      
          
 

( )[ ] 11
0 == QXP ; 
( )[ ] 02
0 == QXP ; 
( )[ ] 03
0 == QXP ; 

     ( )[ ] 04
0 == QXP ; 

 
  
 
 
 
Remark 3.2.3 Using , state probabilities after the first quantum for scheme-II are: ( 3.2 )

( )[ ] 111
1 sQXP ==  
( )[ ] 122
1 sQXP ==  
( )[ ] 03
1 == QXP  
( )[ ] 144
1 sQXP ==                                                                                               

 
Define indicator function ( ) .4,3,2,1,, =jil ij  such that  
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  when ( )( ) 0=ijl ( ) ( ) ( )3,4,2,4,2,3,3,1 ======== jijijiji  
  otherwise. ( ) 1=ijl
Then, using  state probabilities of scheme-II after second quantum: ( 4.2 )
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Remark 3.2.4  For quantum, the generalized expressions are: n
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3.3 SCHEME-III WHEN SOME TRANSITIONS ARE RESTRICTED WITH 
SECURITY MEASURES 

 
 Transition from  to W  is possible in scheme II when  empty, but in scheme-III, a set 

of new imposed conditions are: 
1Q 1Q

(a)  transition from  to W is restricted;  1Q
(b) transitions must occur in sequence, that is, from 1Q  to 2Q , 2Q  to 3Q , and  then 3Q  to 

W as shown in fig 3.3.1.  
This provides a security measure for the scheduler because it cannot be on  resting state unless 

all the queues are empty.  

Q1

Q3

Q2
Q4=W

New Process

 
Fig. 3.3.1 (Transition Diagram of Scheme-III) 
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For scheme-III, initial probabilities and the transition probability matrix are:  
 
 
 
     ( )[ ] 11

0 == QXP  
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0 == QXP  
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4.0 CASE OF EQUAL VALUE TRANSITION PROBABILITIES 
 
Consider below in [A] equal transition probability matrix for a constant number ‘a’, 10 ≤≤ a  

and . The  step transition for scheme-I is expressed in [B]  13 <a thn
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While scheme-II, which is multi-level feedback queue scheduling, is taken into account, the 

equal transition matrix is: 
  
             

   
                                         
 
       
 
 
 
                 

 
Table 4.1 (Seven Quantum Transition Probabilities Under scheme-II) 

                                      STATES 
Quantum 
number 

( )[ ]1QXP n =   ( )[ ]2QXP n =  ( )[ ]3QXP n =  ( )[ ]4QXP n =  

1=n  a  a  0 a21−  
2=n  a  22a  2a  231 aa −−  
3=n  a  32 2aa +  33a  32 51 aaa −−−  
4=n  a  432 2aaa ++  43 5aa +  

4

32

7
21

a
aaa

−

−−−  

5=n  a  
5

432

2a
aaa

+

++  
543 72 aaa ++

 54

32

93
21

aa
aaa

−−

−−−  

6=n  a  
65

432

2aa
aaa

++

++
 

6

543

9
32

a
aaa

+

++

 
654

32

1143
21

aaa
aaa
−−−

−−−  

 
( )n        X  

( )1−nX  

aaQ
aaaQ
aaaaQ
aaaQ

QQQQ

3100
210
31
210

4

3

2

1

4321

−
−
−
−

 



GESJ: Computer Science and Telecommunications 2010|No.3(26) 
ISSN 1512-1232 

 

    109
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Under scheme-III, the transition matrix is:                                      
 
 
 
    
 
 
  

          
 
 
 
 

Table 4.2 (Seven Quantum Transition Probabilities Under Scheme-III) 
                                      STATES 
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5.0  NUMERICAL ANALYSIS  
 
The basic and scientific plan for data analysis related to state transition probabilities for three 

scheduling schemes I, II, III of the proposed class are in fig 5.1. 
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GENERAL CLASS 

 
 

Scheme-I Scheme-II Scheme-III 

Equal 
Case 

Unequal 
Case 

Equal 
Case 
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Case 

Equal 
Case 

Unequal 
Case 

Data Set 
I, II, III 

Data Set 
I, II, III 

Data Set 
I, II, III 

Data Set 
I, II, III 

Data Set 
I, II, III 

Data Set 
I, II, III 

Fig: 5.1 
 
 
 
5.1   USING DATA SET I 
 
Under scheme-I: Consider data set of “equal and unequal transition elements” matrices as 

per (2.2) and (4.1) with initial probabilities: 
          = 0.5, = 0.3,  = 0.2  1pr 2pr 3pr
           Unequal                                                                        Equal 
 
 
 
        
 
 

 
 
 
 
 
Table 5.0.1 ( )[ ][ ]i

n QXP =  (The transition probabilities for equal and unequal cases) 
 

                       Unequal                          Equal Quantums 
1Q  2Q  3Q  4Q  1Q  2Q  3Q  4Q  

1=n  0.245 0.335 0.155 0.215 0.3 0.3 0.3 0.1 
2=n  0.19775 0.22875 0.24 0.259 0.3 0.3 0.3 0.1 
3=n  0.193687 0.234363 0.216988 0.260688 0.3 0.3 0.3 0.1 
4=n  0.186308 0.223308 0.218554 0.260688 0.3 0.3 0.3 0.1 
5=n  0.182492 .02192780 0.2128410 0.25315 0.3 0.3 0.3 0.1 
6=n  0.178468 0.214323 0.208724 0.247962 0.3 0.3 0.3 0.1 
7=n  0.174726 0.209890 0.204273 0.242771 0.3 0.3 0.3 0.1 
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Under Scheme-II: Consider the following probability matrices with initial transition 

probabilities  = 1, = 0,  = 0; 1pr 2pr 3pr
 
 
            Unequal                                                                       Equal 
 
 
 
        
 
 
 
 
 
 
 
 
 
  
        Table 5.0.2 ( )[ ][ ]i

n QXP = (Transition probabilities for equal and unequal cases) 
 

                       Unequal                          Equal Quantums 
1Q  2Q  3Q  4Q  1Q 2Q  3Q  4Q   

1=n  0.2 0.45 0 0.35 0.3 0.3 0 0.4 
2=n  0.169 0.2385 0.1845 0.408 0.3 0.18 0.09 0.43 
3=n  0.153995 0.154755 0.16974 0.52151 0.3 0.144 0.081 0.475 
4=n  0.152308 0.120367 0.129648 0.597677 0.3 0.1332 0.0675 0.4993 
5=n  0.15354 0.10826 0.099913 0.638287 0.3 0.12996 0.06021 0.50983 
6=n  0.154847 0.104819 0.083353 0.656982 0.3 0.128998 0.057051 0.513961
7=n  0.155671 0.104271 0.075483 0.664575 0.3 0.128696 0.055812 0.515492
 
 
 
 
Under Scheme-III:  Take the following probability matrices 
           Unequal                                                                   Equal 
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Table 5.0.3 ( )[ ][ ]i

n QXP =  (Transition probabilities for equal and unequal cases) 
 

                       Unequal                          Equal Quantums 
1Q  2Q  3Q  4Q  1Q  2Q  3Q  4Q   

1=n  0.2 0.8 0 0 0.3 0.7 0 0 
2=n  0.36 0.44 0.2 0 0.3 0.42 0.28 0 
3=n  0.274 0.442 0.246 0.038 0.3 0.336 0.252 0.112 
4=n  0.28068 0.3739 0.27778 0.067640 0.3 0.3108 0.21 0.1792 
5=n  0.272245 0.355409 0.282365 0.08998 0.3 0.30324 0.18732 0.20944 
6=n  0.273811 0.342189 0.280861 0.103139 0.3 0.300972 0.0177492 0.221536
7=n  0.274562 0.338815 0.276533 0.110090 0.3 0.300292 0.173636 0.226072

 
 
 
5.2  USING DATA SET II 
 
Under Scheme-I: Consider the probability matrix with initial probabilities. 
    = 0.5, = 0.3,  = 0.2 1pr 2pr 3pr
 
          Unequal                                                                          Equal 
 
 
 
        
 
 
 
 
 
 
    
 Table 5.1.1 ( )[ ][ ]i

n QXP =  (Transition probabilities for equal and unequal cases) 
 

                       Unequal                          Equal Quantums 
1Q  2Q  3Q  4Q  1Q  2Q  3Q  4Q  

1=n   0.202 0.247 0.132 0.419 0.2 0.2 0.2 0.4 
2=n  0.16537 0.28101 0.22382 0.3298 0.2 0.2 0.2 0.4 
3=n  0.167666 0.295422 0.198906 0.338006 0.2 0.2 0.2 0.4 
4=n  0.165493 0.293291 0.200103 0.341113 0.2 0.2 0.2 0.4 
5=n  0.165414 0.293639 0.200889 0.340058 0.2 0.2 0.2 0.4 
6=n  0.165457 0.293731 0.200612 0.340199 0.2 0.2 0.2 0.4 
7=n  0.165437 0.293703 0.200642 0.340217 0.2 0.2 0.2 0.4 
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Under Scheme-II:  Consider the following data of matrices 
 
                Unequal                                                              Equal 
   
 
 
        
 
 
 
 
 
 
 
        Table 5.1.2 ( )[ ][ ]i

n QXP =  (Transition probabilities for equal and unequal cases) 
 

                       Unequal                          Equal Quantums 
1Q  2Q  3Q  4Q  1Q 2Q  3Q  4Q   

1=n  0.25 0.15 0 0.6 0.2 0.2 0 0.6 
2=n  0.163 0.0855 0.0105 0.741 0.2 0.08 0.04 0.68 
3=n  0.156205 0.05181 0.00735 0.784635 0.2 0.056 0.024 0.72 
4=n  0.156216 0.04001 0.004582 0.799192 0.2 0.0152 0.016 0.7328 
5=n  0.15635 0.036236 0.003396 0.804018 0.2 0.05024 0.01344 0.73632 
6=n  0.156383 0.035048 0.002978 0.805591 0.2 0.050048 0.012736 0.737216
7=n  0.1563890 0.034673 0.00284 0.806098 0.2 0.05001 0.012557 0.737434
  
                  
 
 
 
 
Under Scheme-III: The data is given below: 
           Unequal                                                              Equal 
 
onsider the following probability matrix. 
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  Table 5.1.3 ( )[ ][ ]i

n QXP =  (Transition probabilities for equal and unequal cases) 
 

                       Unequal                          Equal Quantums 
1Q  2Q  3Q  4Q  1Q 2Q  3Q  4Q   

1=n  0.25 0.75 0 0 0.2 0.8 0 0 
2=n  0.145 0.4275 0.4275 0 0.2 0.32 0.48 0 
3=n  0.177325 0.24555 0.29925 0.277875 0.2 0.224 0.288 0.288 
4=n  0.176079 0.21157 0.178866 0.433485 0.2 0.2048 0.192 0.4032 
5=n  0.167331 0.199762 0.143847 0.48906 0.2 0.20096 0.16128 0.43776 
6=n  0.163921 0.189222 0.132564 0.514092 0.2 0.200192 0.152832 0.446976
7=n  0.162954 0.183556 0.1252024 0.528286 0.2 0.200038 0.150682 0.44928 

 
 
 
5.3 USING DATA SET III 
 
Under Scheme-I: pr1  = 0.5, pr = 0.3, pr 3  = 0.2 2

 
          Unequal                                                                       Equal 
 
 
 
        
 
 
 
 
 
 
   
  Table 5.2.1  ( )[ ][ ]i

n QXP =  (Transition probabilities for equal and unequal cases) 
 

                       Unequal                          Equal Quantums 
1Q  2Q  3Q  4Q  1Q  2Q  3Q  4Q  

1=n  0.235 0.297 0.205 0.263 0.25 0.25 0.25 0.25 
2=n  0.26033 0.27187 0.21772 0.25008 0.25 0.25 0.25 0.25 
3=n  0.258495 0.270714 0.217555 0.253236 0.25 0.25 0.25 0.25 
4=n  0.258981 0.269971 0.21784 0.253209 0.25 0.25 0.25 0.25 
5=n  0.258986 0.269863 0.217865 0.253286 0.25 0.25 0.25 0.25 
6=n  0.258999 0.269832 0.217875 0.253293 0.25 0.25 0.25 0.25 
7=n  0.259 0.269826 0.217877 0.253296 0.25 0.25 0.25 0.25 
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Under Scheme-II: The data is below: 
   
 
        
 
 
 
 
 
 
 
 
 

Table 5.2.2 ( )[ ][ ]i
n QXP =  (Transition probabilities for equal and unequal cases) 

 
                       Unequal                          Equal Quantums 

1Q  2Q  3Q  4Q  1Q  2Q  3Q  4Q   

1=n  0.32 0.12 0 0.56 0.25 0.25 0 0.5 
2=n  0.3628 0.09 0.0204 0.5268 0.25 0.125 0.0625 0.5625 
3=n  0.357476  0.082236 0.017748 0.54254 0.25 0.09375 0.046875 0.609375
4=n  0.360594 0.078259 0.01611 0.245038 0.25 0.085938 0.035156 0.628906
5=n  0.361707 0.076922 0.015237 0.546134 0.25 0.083984 0.030273 0.635742
6=n  0.36219 0.076481 0.014905 0.546423 0.25 0.083496 0.028564 0.637939
7=n  0.362354 0.07635 0.01479 0.546506 0.25 0.083374 0.028015 0.638611
 
Under Scheme-III: The data is as under: 
 
  Unequal                                                                      Equal 
   
 
 
        
 
 
 
 
 
 
 

Table 5.2.3 ( )[ ][ ]i
n QXP =  (Transition probabilities for equal and unequal cases) 

                       Unequal                          Equal Quantums 
1Q  2Q  3Q  4Q  1Q  2Q  3Q  4Q   

1=n  0.32 0.68 0 0 0.25 0.75 0 0 
2=n  0.2452 0.51 0.2448 0 0.25 0.375 0.375 0 
3=n  0.200252 0.386036 0.212976 0.200736 0.25 0.28125 0.28125 0.1875 
4=n  0.242236 0.302167 0.16453 0.291067 0.25 0.257812 0.210938 0.28125 
5=n  0.273091 0.294652 0.128524 0.303734 0.25 0.251957 0.181641 0.316406
6=n  0.284545 0.312402 0.121498 0.281555 0.25 0.250488 0.171387 0.328125

       Equal 
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7=n  0.282202 0.327824 0.127044 0.26293 0.25 0.250122 0.168091 0.331787
 
6.0   GRAPHICAL STUDY AND DISCUSSION 
 
The analytical discussion is performed with three scientific approaches: 
(a) Comparison of unequal and equal probability of transitions within a scheme; 
(b) Comparison of scheduling schemes under equal transition probability; 
(c) Comparison of scheduling schemes under unequal transition probability. 
For Scheme-I: When the system is completely unrestricted and the process is allowed to                   

enter into from any of the queue with unequal initial probabilities, the variation ( )[ ]i
n QXP =  over 

three different data sets is shown in fig. 6.1 to fig. 6.6.  
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The pattern of transition over states  and of the scheduler reflects a stability over 

a number of quantum for  (when unequal transitions). The remarkable point is that the 
probability of state  (rest state) is higher in all data sets than for other states. This shows a loss of 
efficiency of scheme-I under model criteria. The higher chance that scheduler spends more and 
more over the rest state than on working states  and . Therefore, completely unrestricted 
scheduling scheme-I leads to a loss of CPU time. While considering the same with equal transition 
matrix, the state probabilities are found independent of the quantum variation, but it also supports 
the above fact.    

321 ,, QQQ 4Q
2≥n

4Q

21 ,QQ 3Q

 
For Scheme-II: The scheme is similar to usual multi-level queue scheduling where the 

system starts from , moves towards  and , but can shift over to  from any of the 
. The fig. 6.7 to fig. 6.12 has the variability pattern of chances for 
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Graphs reveal a higher probability at the rest state  than the other , , . This again 

leads to a loss of efficiency under model due more resting chance of the scheduler. The state 
probability is independent of the quantum variation for  But, the rest state bears an increasing 
variation of probability over large . The special remark for this process-scheduling scheme-II is 
that probability for the state  is very low. Therefore, there are lesser chance for jobs contained in 

 to be processed than  and . 
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.2>n
n
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For Scheme-III:  When hard restriction is imposed in terms of a security measure, the                   

graphical pattern is shown in fig. 6.13 to fig. 6.18. 
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The probability of scheduler, for the rest state is lower than other state probabilities. 

This has a sign of increase in efficiency of the scheduling scheme-III under model 
consideration. The probability of state  is higher in the scheme than the previous schemes. 
Most of the transition probabilities are almost equal and well within the range of 0.15 to 0.45. 
Slight variation is observed for quantum 

3Q

2,1=n  and 3 but for , a stable probability 
pattern is found. The scheme-III provides more and more chance or importance to job 
processing than “resting-the-scheduler”, in comparison to scheme-II. Therefore, efficiency of 
this scheduling procedure is higher and recommendable. 

4≥n

In scheme-II, the scheduler has less chance of having transition over state  and  
than .      

2Q 3Q

4Q
 
 
6.1   EFFECT OF EQUAL AND UNEQUALTRANSITION PROBABILITY 

MATRICES BETWEEN SCHEMES 
 A between comparison of schemes generates following remarks: 
For Scheme-I: The equal transition probabilities leads to independency of quantum with the 

transition probability. Also the information overlaps in equal probability case. In the unequal 
probability matrix, elements present a better picture of transition within states. 

The state  has lesser probability than  and  which is objectionable and indicate for 
inefficient result. 

1Q 2Q 3Q

For Scheme-II: This has a little unstable pattern of variation of state probabilities for unequal 
transition elements. The state  has constantly higher probability (when unequal elements) in 4Q
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Fig. 6.16 (Scheme-III) 
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comparison to ,  and . However, the state  bears the lowest state probability. The 
similar pattern is found with equal probability matrices. 

1Q 2Q 3Q 3Q

 
For Scheme-III: It is observed that the pattern variation of state probabilities over quantum is 

almost same between equal and unequal transition elements of matrices. Further, the pattern is having not 
much variation over changing data. This is an interesting feature which leads to the stability of the whole 
system and the probability of rest state  is also not much in comparison to ,  and . 4Q 1Q 2Q 3Q

7.0 CONCLUDING REMARKS 
 In the first type of scheduling scheme, the probability towards the rest state is very high 

which indicates for a loss of system efficiency. The graphical pattern does not depend much on 
quantum variation for  There is a deep effect of equal and unequal probability elements set-up 
on this scheme. Moreover the state  has lesser probability than  and  which is not a good 
sign in favour. 

.2≥n
1Q 2Q 3Q

The second scheduling scheme bears even higher probabilities for the rest state than the 
previous one. The third state  has a very low chance of being processed. This is a serious drawback 
observed in model-based study with reference to the usual multi-level queue scheduling. 

3Q

The third scheme provides a stable pattern of probability variation over quantum almost in all 
the three data sets. For  the variation becomes independent of changes in terms of quantum. In 
this, most of the state probabilities lies between 0.15 to 0.45 for all sets of data.  

4≥n

 As an overall view, the three suggested schemes of the general class are multilevel queue 
scheduling for an operating system but the third one is useful, efficient and recommendable over the 
earlier two in light of the considered Markov chain probability model.   
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