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Abstract:   
Exploring the infrared asymptotic behavior of the gluon propagator, one gluon 
exchange potential between quark and antiquark is constructed. It is very close to the 
Cornell potential and admits Richardson parameterization in sufficiently good 
precision. 
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Potential models are widely used in studying quark-antiquark bound states. Potentials 

motivated by QCD are based on two kinds of asymptotics: ultraviolet at short distances, i.e. 
Coulomb-like term and infrared – which in accordance with lattice QCD, the string model, Dyson-
Schwinger equation etc., gives linear increase of confining potential at large distances. The simple 
extrapolation of these asymptotics is so-called Cornell potential [1] 
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where  .,S constα = or is considered as a running coupling constant 
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Here fN is a number of “effective” fermions and Λ  is QCD scale parameter. 
Richardson proposed the following potential [3] 

                     ( )
2

2
2

2
2

4 48 1
3 33 2 ln 1f

V q
N qq

π
= −

− ⎛ ⎞+⎜ ⎟Λ⎝ ⎠

r
rr

,                                                      (3) 

i.e. it is normalized to have correct ultraviolet behavior of  Sα  for resulting from 
perturbation theory, and is extrapolated to infrared region by specific choice of logarithmic 
function.  

2q >> Λ
r 2

Assuming the Richardson potential valid for infrared region as well, after expanding in 
powers of small  up to Coulomb term we have   2qr
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Therefore we can model the Cornell potential using this formula.  
Further we’ll consider pure gluodynamics  ( )0fN = . In that case we can obtain the values of 

parameters by comparing Fourier transform of (4) with (1) 
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During past years a lot of work has been dedicated to the investigation of infrared asymptotics of 
gluodynamics [4-6]. Though this region is non-perturbative, in some cases it is possible to extract 
not only leading ( , but next to leading Coulomb ) 22q

−r 2q−r  term, as well [7,8]. Therefore, it is 
relevant to ask whether these results are compatible with the potentials mentioned above.  

In the paper [8] the Dyson-Schwinger equation for gluon propagator contracted by gauge 
vector nμ  in the light-cone gauge  was studied in the most general case – when both tensor 
structures of the gluon propagator are taken into account. There was obtained a solution  

( 2 0n = )
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where  2 ,M b  and λ  are arbitrary constants and ε  is a parameter of the dimensional 
regularization ( . In obtaining this formula, the coefficient of the second (induced) structure 
was set proportional to

)0ε +→

ε . It is evident that in the limit 0ε →  the contribution of this term to the 
one-gluon exchange potential vanishes. However, it gives contribution in loop integrations and 
therefore the parameter still remains in the right-hand side of Dyson-Schwinger equation. In order 
to satisfy this equation in the limit , we must make use of an additional condition for , 
which for  group takes the form [8]  
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Let us define a one-gluon exchange potential by the static limit , in the propagator 
(which gives the leading contribution in the quasipotential formalism [9] and take the color factor 
into account. Consequently, we have  
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It gives the Cornell potential in coordinate space with the following values of parameters: 
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With the help of (7)   is expressed in terms of the parameter2g b λ , which is arbitrary as yet and by 
varying the later we can obtain any given value of   2 .g b

There exists a physically distinguished gauge among the numerous possibilities – so-called 
Arbusov gauge [10]. This gauge for 2 0n =  is defined by the following constraint: the leading 
singular part of gluon propagator in coordinate space must be transversal  
                                                                                                                (10) ( ) 0Singx xμ

μνΔ% =

Here ( )Sing xμνΔ%  is the Fourier transform of 4q− term of the propagator (6), which in the arbitrary -
dimensional space has the form [10]: 
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Then 
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It is clear that the choice 1λ =  guarantees the transversality of μνΔ . Choosing this gauge and taking 
into account (7), (9) one obtains  
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This value differs only by 3% from  R
Sα  (Eq. (5)).  If we consider the expression (8) as the first two 

terms of the expansion in Richardson parameterization, the corresponding potential in our case will 
become  
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where the QCD parameter  is determined by obvious formula: Λ
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The comparison of   and   shows that parameter k Rk Λ  evaluated from the infrared region of 
gluodynamics via Richardson parameterization is in satisfactory agreement with its perturbative 
(i.e. determined by ultraviolet asymptotics) value. Note that if we restrict ourselves only by the first 
(free) structure  (  in gluon propagator the result for )0λ = Sα  and   will change by factor 4 [7].  k
    To make the picture complete we must incorporate fermions (quarks) as well. Besides, it is 
extremely desirable to investigate this problem in other gauges. 
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