
GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 147

RESEARCH PURPOSE OPERATING SYSTEMS – A WIDE SURVEY

Pinaki Chakraborty

School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi – 110067, India.
E-mail: pinaki_chakraborty_163@yahoo.com

Abstract

Operating systems constitute a class of vital software. A plethora of operating
systems, of different types and developed by different manufacturers over the years, are
available now. This paper concentrates on research purpose operating systems because
many of them have high technological significance and they have been vividly
documented in the research literature. Thirty-four academic and research purpose
operating systems have been briefly reviewed in this paper. It was observed that the
microkernel based architecture is being used widely to design research purpose
operating systems. It was also noticed that object oriented operating systems are
emerging as a promising option. Hence, the paper concludes by suggesting a study of
the scope of microkernel based object oriented operating systems.

Keywords: Operating system, research purpose operating system, object oriented
operating system, microkernel

1. Introduction
An operating system is a software that manages all the resources of a computer, both hardware

and software, and provides an environment in which a user can execute programs in a convenient
and efficient manner [1]. However, the principles and concepts used in the operating systems were
not standardized in a day. In fact, operating systems have been evolving through the years [2].

There were no operating systems in the early computers. In those systems, every program
required full hardware specification to execute correctly and perform each trivial task, and its own
drivers for peripheral devices like card readers and line printers. The growing complexity of the
computer hardware and the application programs eventually made operating systems a necessity.
Initially, operating systems were not fully automatic as Hansen [3] defined an operating system as a
set of manual and automatic procedures that enable a group of people to share a computer
installation efficiently. It is fortunate enough for today’s computer users that modern operating
systems are fully automatic.

Historically, operating systems have been closely tied to the architecture of the computers on
which they run [2,4]. Consequently, developments in computer hardware immensely affected the
course of evolution of operating systems. In the rapid and somewhat chaotic growth of operating
systems, many important concepts have emerged, disappeared, and then reappeared often in
different forms [5]. Over the years, sustained research in operating systems gave rise to many novel
concepts and ideas. Operating systems exist even today because they offer a reasonable way to
solve the problem of creating a usable computing system [1]. Moreover, sophisticated operating
systems increase the efficiency and consequently decrease the cost of using a computer [5]. A large
number of operating systems of various types are available today for both research and commercial
purposes, and these operating systems vary greatly in their structures and functionalities [1].

It is difficult to present a complete as well as deep account of operating systems developed till
date. Early attempts to do so were made by Rosen [6] and Rosin [7]. But it will be too ambitious to
make such an attempt now. So, this paper tries to overview only a subset of the available operating
systems. Operating systems are being developed by a large number of academic and commercial
organizations for the last several decades. Many of these projects were short lived and in several
cases without much impact. Descriptive research literatures for many of these operating systems are

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 148

not available. Information about such operating systems is often found scattered over the Web. The
article on operating systems in the Wikipedia [8] and the pages hyperlinked to it, however, serves as
a rich source of information in this field. This paper is highly indebted to the Wikipedia for
miscellaneous information. Moreover, the technical details of the commercial operating systems are
seldom discussed openly. Many commercial operating systems do not have any technological
consequence and merely use concepts introduced in earlier research purpose operating systems.
Another awkward issue is the availability of numerous versions of the commercial operating
systems that in many cases do not have any significant enhancement. On the other hand, sometimes
two absolutely different types of operating systems are marketed as two versions under the same
name just for business reasons. As a result, commercial operating systems are of limited interest to
the researchers working on the design and implementation of operating systems. This paper,
therefore, concentrates on the research purpose operating systems with special emphasis to those
that had deep impact on the evolution process. The aim of this paper is to provide a brief timely
commentary on the important research purpose operating systems available today. Thorough
analyses of all these operating systems are surely out of the scope of the paper.

 Researchers like Herder [9], Tanenbaum and Woodhull [2], and Silberschatz et al. [1] have
been using various criteria to classify the operating systems. In this paper, the research purpose
operating systems are classified into three categories using an ideological criterion. The three
categories are Unix-like operating systems, non-Unix-like operating systems and object oriented
operating systems. The first two categories are mutually exclusive (Figure 1). However, an object
oriented operating system can be either a Unix-like operating system or a non-Unix-like operating
system. The operating systems belonging to these three categories are discussed in the next three
sections.

Figure 1: Three categories of research purpose operating systems.

2. Unix-Like Operating Systems
An operating system is said to be a Unix-like operating system if it behaves similar to the

Unix operating system [8]. The Unix-like operating systems are typically implemented in high level
languages, predominantly C, which is an achievement in itself. These operating systems are widely
used for research and they have been able to standardize several new techniques including the
handling of devices as files. These operating systems have been ported to almost all types of
computer architectures. They are highly portable and generally multiuser in nature. The Unix-like
operating systems are extremely interoperable and the application programs developed for one of
them often work acceptably for the others. Apart from their importance in research, quite a few of
the Unix-like operating systems have seen substantial commercial success. A taxonomy of the
Unix-like operating systems has been developed by Eric S. Raymond who classified them into three
subcategories as listed below.

1. Genetic Unix Operating Systems. These are the operating systems that have some
historical connection with the original Unix operating system and share some part of the
source code of the original Unix operating system.

2. Branded Unix Operating Systems. These are the operating systems that have been
determined by the Open Group to meet the Single UNIX Specification.

Unix-like
operating
systems

Non-Unix-
like

operating
systems

Object
oriented

operating
systems

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 149

3. Functional Unix Operating Systems. These are the operating systems that behave
roughly like the Unix operating system.

 Numerous Unix-like operating systems have been developed for research and academic
purposes. Some of the important ones, starting with Unix itself, are studied next.

2.1. Unix
Unix [10–13] is a monolithic kernel based operating system. It was developed by team of

researchers including Dennis Ritchie and Ken Thompson at the Bell Labs. It was implemented in C
and was one of the first operating systems to be implemented in a high level language. Over the
years, Unix has become highly influential and perhaps the most widely studied research oriented
operating system. Additionally, it has also seen certain degree of commercial success. Now, Unix
based operating systems have been split into various branches and they are developed by various
commercial vendors and nonprofit organizations. Unix has been ported to almost all types of
platforms. It runs successfully on a wide range of computer systems including personal computers,
servers and supercomputers. From the very beginning, Unix was designed to be a highly portable,
multitasking and multiuser operating system. Unix introduced several new concepts like storing of
data using plain text, hierarchical file systems and treating devices as files. The Unix operating
system consists of a monolithic kernel and number of utility programs. One of the most important
utility programs is the command interpreter or the shell. Unix implements the command interpreter
as an ordinary user level program. Additional commands are provided as separate programs. New
commands can be added by writing such separate programs. Since the command interpreter is an
ordinary user level program, it can be replaced by some customized command interpreters. This
option gave rise to a large number of Unix shells. The Unix shells use the same language for
interactive commands and for scripting. Consequently, shell programming in Unix has become
vastly popular.

2.2. MINIX
MINIX is a widely studied pedagogical operating system. It is being developed by Andrew S.

Tanenbaum and his fellow researchers at the Vrije Universiteit in Amsterdam. MINIX is a free open
source software. The name, MINIX, derives from the words ‘minimal’ and ‘Unix’. MINIX is one of
the first microkernel architecture based Unix-like operating systems. It is also one of the first Unix-
like operating systems that do not share the source code of Unix. MINIX has also inspired the
creation of the Linux kernel. Several major and minor versions of MINIX are now available. The
latest version, MINIX 3 [2,14], is a pure microkernel based operating system. However, its
predecessors were hybrid microkernel based operating system [15]. MINIX has been implemented
predominantly in C with a little use of assembly language. MINIX has been ported and runs on
various platforms including Intel x86, Motorola 68000 and SPARC.

2.3. Linux
Linux [16] was developed by Linus Torvalds as a noncommercial replacement for the MINIX

operating system at the University of Helsinki. Alike MINIX, Linux is a functional Unix-like
operating system. However, unlike MINIX, Linux used a monolithic kernel. The Linux operating
system gradually became a commercial system and today it is quite successful as a commercial
operating system. The Linux kernel was first released for the Intel x86 platform. The kernel was
augmented with system utilities and libraries from the GNU project to create a usable operating
system, which later led to the alternate term GNU/Linux. Linux is now available from different
Linux distributions and the packages contain the Linux kernel, or a modified version of it, along
with a variety of other software tools. Linux is well known for its performance in servers and is well
accepted in the industry. Linux has been ported to various platforms and today it is used as an
operating system for a wide variety of computer hardware including desktop computers,
supercomputers and embedded devices such as mobile phones and routers.

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 150

2.4. Solaris
Solaris is a Unix-like operating system [17,18]. It is being developed by the Sun

Microsystems. Solaris is highly successful in symmetric multiprocessor systems where it can
support a large number of processors. Many versions of Solaris are available. These versions
illustrate a range of concepts and ideas that has been used in the Solaris project over the years. All
versions of Solaris use monolithic kernels. Solaris is used in various types of computers ranging
from personal computers and workstations to distributed systems and supercomputers. Solaris has
been ported to a large number of platforms including Intel x86, SPARC and PowerPC.

2.5. XINU
XINU is a recursive abbreviation for XINU Is Not Unix. It is a Unix-like operating system

[19–21]. It is being developed by Douglas E. Comer at the Purdue University. XINU is used as a
pedagogical tool for operating system and networking courses in many universities around the
globe [8]. It has also been deployed in some commercial establishments. XINU has been ported to
several platforms including Intel x86, DEC LSI-11, Sun-2 and Sun-3 workstations, PowerPC G3
and MIPS.

2.6. Plan 9
Plan 9 is a distributed operating system [22,23]. It was developed as the research successor to

Unix by the Computing Sciences Research Center at the Bell Labs. As a distributed operating
system, Plan 9 has made major breakthroughs in implementing system wide transparency. Plan 9
provides users a terminal independent working environment. This achievement can be largely
attributed to the use of the 9P protocols to access both local and global resources. Plan 9 uses
Unicode as the native encoding throughout the system after Ken Thompson invented UTF-8.

2.7. Inferno
Inferno is an enhancement over the old Plan 9 operating system [24]. It was developed by the

Vita Nuova company. Inferno was developed primarily to support efficient creation and execution
of distributed applications. Inferno can be run as a guest operating system on various operating
systems including Windows and Linux. Alternatively, Inferno can be executed as the native
operating system on several platforms including Intel x86, SPARC and PowerPC. In each
configuration, Inferno presents the same standard interfaces to the application software layer. A
communication protocol called Styx is used to access both local and remote resources. Application
programs are written in the Limbo programming language and are executed by a bytecode
interpreter or just-in-time compiler called Dis. Inferno has many similarities with the Java Virtual
Machine [25].

2.8. Plan B
Plan B is a distributed operating system [26]. It is implemented as a set of user programs

running on the top of the Plan 9 system. Plan B is designed to work in dynamically reconfigurable
distributed computing systems. In Plan B, same protocols are used to access the local and remote
entities. This enhances transparency. As an attempt to create stateless server processes, application
programs avoid establishing connections with resources, by using calls that accept file names
instead of file descriptors.

2.9. IRIX
IRIX is a monolithic kernel based operating system [27]. It was developed by the Silicon

Graphics Inc. IRIX runs on 32-bit and 64-bit MIPS architecture based workstations and servers.
IRIX supports real time disk and graphics input/output. It was one of the first Unix-like operating

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 151

systems to feature a graphical user interface for the main desktop environment. IRIX has been
widely used in the computer animation industry and for scientific visualization [8].

2.10. LynxOS
LynxOS is an abbreviation for Lynx Operating System. It is being developed by the

LynuxWorks company. LynxOS is a Unix-like real time operating system [28]. Historically, it was
developed to run on a Motorola 68010 processor. However, it has been thoroughly modified and
revised several times. Current versions can be ported on various platforms and feature POSIX
conformance as well as Linux compatibility. LynxOS is typically used in real time embedded
systems in various application domains including avionics, aerospace, military, industrial process
control and telecommunications. LynxOS is a hard real time system and its components display
absolute determinism. The LynxOS kernel uses a thread model that enables interrupt handler
routines to be exceptionally small. As a result, predictable response times can be ensured.

3. Non-Unix-Like Operating Systems
There are several research purpose operating systems that have been designed and

implemented from the ground up without using any major principle of the Unix operating system.
These operating systems form the widely varied class of non-Unix-like operating systems. Non-
Unix-like operating systems include several early operating systems like THE and MULTICS
which have immense influence on both Unix-like and non-Unix-like operating systems developed
since then. Since the non-Unix-like operating systems have been developed using various dissimilar
design methodologies, they illustrate a diverse collection of principles that can be used to develop
operating systems. The non-Unix-like operating systems are best known for their roles in
developing the structured design of operating systems and in the evolution of the concept of
microkernels. Some important non-Unix-like operating systems are studied in this section.

3.1. THE
The THE multiprogramming system was one of the early operating systems. It has influenced

almost all coming generations of operating system. It was developed by Edsger Wybe Dijkstra and
his fellow researchers at the Eindhoven University of Technology. The name is an abbreviation for
Technische Hogeschool Eindhoven, the then name of the university. The THE operating system
was developed for the Electrologica X8 platform and ALGOL was the only language supported by
it [29]. The operating system was implemented in assembly language. The Electrologica X8
computer used 27 bit words and had a core memory of 32K. The computer used a drum type
backing store. The inputs were provided through paper tape readers, and the outputs were obtained
through paper tape punches and printers. The THE operating system was the first layer structured
operating system. The operating system components were divided in six mutually exclusive and
exhaustive layers. Each layer was allowed to access only the services provided by its lower layers.
Layer 0 was the lowest layer. It was responsible CPU scheduling, interrupt handling and context
switching. As a result, it was solely creditworthy for the multiprogramming aspects of the operating
system. Layer 1 was responsible for allocating memory to the various processes. Layer 2 was
responsible for the interprocess communication as well as communication between the operating
system and the console. The Layer 2 also used semaphores for synchronization and the Banker’s
algorithm for deadlock avoidance. Layer 3 was responsible for handling all input/output devices and
buffers for these devices. Layer 4 consisted of user mode programs for compilation, execution and
printing of user programs. The user programs were scheduled on a priority basis. Layer 5 was
responsible for the overall control of the system and was sometimes called the system operator.
Soon after the success of the layered structure of THE, the MULTICS operating system was
developed with a ring segmented kernel. This concept of division of the kernel into layers was used
in many subsequent operating systems including Windows NT and Mac OS X. However, the
ensuing operating systems typically had fewer layers.

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 152

3.2. MULTICS
MULTICS is an abbreviation for Multiplexed Information and Computing Service. It was one

of the important early operating systems and it has significantly influenced numerous operating
systems developed in the subsequent decades. The development of MULTICS was started as a joint
venture by the Massachusetts Institute of Technology, General Electric and Bell Labs. However,
Bell Labs later dropped out of the project and Honeywell subsequently acquired General Electric’s
computer business. MULTICS was conceived to be a commercial product but it was never widely
accepted in the industry. Nonetheless, the many innovative and novel ideas of MULTICS had a
huge impact on the future operating systems. MULTICS was designed to provide high availability
to a large number of users [30–35]. It aimed at developing a computing utility similar to telephone
exchange or electricity grid. The software structure was kept highly modular. The system was
scalable and extra resources including computing power, main memory and disk storage were easily
augmentable. MULTICS was also notable for its early emphasis on computer security by design,
especially with the use of hardware supported ring oriented security. MULTICS had a hierarchical
file system and the filenames could be of almost arbitrary length and syntax. Symbolic links
between directories were also supported. Security at the file system level was implemented using
separate access control list for each file. This enabled flexible information sharing as well as
complete privacy as per requirements. Mechanisms for performance analysis and adaptive
performance optimization were also included. MULTICS was implemented in PL/I and it became
one of the first operating systems to be implemented in a high level language [36,37].

3.3. V
V is a microkernel based operating system [38]. It was developed by the Distributed Systems

Group at the Stanford University. The project was led by David R. Cheriton. The V operating
system is sometimes considered as a successor of the Thoth and the Verax operating systems [8].
The V operating system is best known for its interprocess communication mechanism. It supports
multithreading and interthread communication by synchronous message passing using fixed length
messages. The same mechanism is also used to implement remote procedure calls.

3.4. Mach
Mach is an operating system microkernel [39]. It was developed at the Carnegie Mellon

University. Richard F. Rashid and Avie Tevanian were two important developers in this project.
Mach was developed to support advanced research in operating systems including the study of the
role of operating systems in parallel and distributed systems. Mach is one of the earliest
microkernels and it was the logical successor of the Accent kernel [40]. It was designed as a
replacement of the Unix kernel. The Mach project tried to formalize the concept of
interrelationships between tasks, threads, ports and messages.

3.5. L4
L4 is a family of microkernel based operating systems [41,42]. L4 was gradually enhanced to

achieve better platform independence, security and robustness. There have been various re-
implementations of the original design of L4. L4Ka::Hazelnut and L4Ka::Pistachio were developed
at the University of Karlsruhe, L4/MIPS and L4/Alpha were developed at the University of New
South Wales and Fiasco was developed at the Technische Universitat Dresden. Consequently, the
name L4 has been generalized and it now applies to the entire family of microkernel based
operating systems that include the L4 microkernel interface and its variants. The L4 microkernel
was kept minimal in size and functionality. It provides only some basic mechanisms like a thread
model and synchronous thread communication, scheduling, and an address space abstraction.

3.6. EROS

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 153

EROS is an abbreviation for Extremely Reliable Operating System which is a pure capability
based operating system [43–45]. It was developed jointly by the EROS Group, the Johns Hopkins
University and the University of Pennsylvania. EROS is purely a research operating system and it
was never used for any commercial purpose. EROS supports both data persistency and process
persistency. Both data and processes are saved on the secondary storage when the system is
switched off and are available whenever the system is restarted. The EROS operating system
provides support for component based software development. In component based software
development, a system is developed as a collection of autonomous components. The components
are usually small and individually testable. This facilitates identification of flaws and bugs. The
isolation of the components from each other limits the scope of the damage that may occur in the
case of failure of a particular component. Consequently, a robust and secure system is obtained.

3.7. CapROS
CapROS is an abbreviation for Capability Based Reliable Operating System which is a

microkernel based operating system [46]. It is an open source software. CapROS is being developed
by the Strawberry Development Group and Charles Landau is the key developer. The CapROS
operating system evolved from the EROS operating system. However, there was major a shift in the
ideology. Unlike EROS, which was purely a research purpose operating system, CapROS was
developed as a commercial operating system. CapROS is a pure capability based system and
supports the principle of least authority. Like EROS, it supports both data and process persistencies.
CapROS provides security and fault tolerance of very high quality. CapROS currently runs on
processors developed by Intel and ARM.

3.8. Coyotos
Coyotos is a microkernel based operating system. It evolved from the EROS operating

system. Coyotos is capability based and security focused in nature [47]. It is being developed at the
Johns Hopkins University’s Systems Research Laboratory. Jonathan Shapiro is the primary
contributor in the development of the Coyotos operating system. Coyotos is being developed to be
the first formally verified operating system. Accordingly, a new programming language, called
BitC, and its complier, called BitCC, are also being developed simultaneously. The Coyotos
operating system is being designed to be a pure capability based operating system and to support
asynchronous communication.

3.9. Amoeba
Amoeba is a widely studied distributed operating system [48]. Amoeba is a microkernel based

operating system which is often referred for its meticulous design. It was developed by Andrew S.
Tanenbaum and his fellow researchers at the Vrije Universiteit in Amsterdam. From the very
beginning, the Amoeba project emphasized on teaching and research. Accordingly, the Amoeba
operating system is available as an open source software. As a distributed operating system,
Amoeba is best known for its attempt to obtain transparency in a distributed computing system [49–
51]. Amoeba tries to present a single system image of the distributed computer system to the users
and tries its best to hide the intricacies of the distributed computing system. Although the Amoeba
operating system was designed and implemented as an academic venture, today it is being used in
industry and government establishments as well. Amoeba has been ported on several platforms
including SPARC, Intel 386, Intel 486, Motorola 68030, Sun 3/50 and Sun 3/60.

3.10. House
House is an abbreviation for Haskell User’s Operating System and Environment [52]. It is a

purely research purpose operating system written in Haskell. It was developed to explore the scope
of implementing system software in a functional programming language. And it proved quite
successful in demonstrating the capability of high level programming languages in the field of

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 154

system programming. The House operating system has a graphical user interface. Its network
protocol stack provides basic support for Ethernet and various common protocols including TCP,
UDP, IP, ICMP and TFTP.

3.11. ILIOS
ILIOS is an abbreviation for Interlink Internet Operating System [53]. It was developed by

Rink Springer. ILIOS was developed primarily for routers and it focuses on various networking
issues. However, it does no support multitasking and is largely interrupt driven. Nonetheless, its
simple structure makes ILIOS a good pedagogical operating system.

3.12. Integrity
Integrity is a microkernel based real time operating system [54]. It is being developed by the

Green Hills Software company. Integrity uses the velOSity microkernel. Integrity is developed for
use in 32-bit and 64-bit embedded systems. It is highly reliable and fault tolerant. Integrity uses
hardware level memory protection. It separates memory space for the operating system and
application programs. As a result, application programs cannot interfere with the working of the
operating system and with each other. Although Integrity is a non-Unix-like operating system, it is
POSIX compliant. Integrity runs on several platforms including Intel x86, Blackfin, ColdFire,
MIPS and PowerPC.

3.13. Nemesis
Nemesis is an operating system optimized for multimedia support [55]. It was developed

jointly by the University of Cambridge, the University of Glasgow, the Swedish Institute of
Computer Science and the Citrix Systems. It was observed in earlier operating systems that
multimedia based application programs spend most of their time executing in the privileged kernel
mode. This may lead to several pitfalls including possible breach in the security of the operating
system. Nemesis was designed to overcome these problems. Consequently, Nemesis has an
exceptionally small and lightweight kernel to support a minimal set of fundamental operating
system functions. Rest of the operating system practicalities and the multimedia support are
implemented as the user mode processes. Nemesis has been ported to several platforms including
Intel x86, Alpha AXP and ARM.

3.14. Singularity
Singularity is a microkernel based operating system [56]. It is being developed by the

Microsoft Corporation. Singularity is an attempt to develop a highly reliable operating system fully
implemented using managed code [57]. The Singularity microkernel uses the new concept of
software isolated processes. Singularity has been implemented using several languages. Most of the
kernel and the device drivers are written in C#. The hardware abstraction layer is written in C++.
The interrupt dispatch code is written in assembly language and C. Singularity uses some concepts
used by the Inferno operating system.

4. Object Oriented Operating Systems
An operating system is said to be an object oriented operating system if and only if it

internally uses an object model. Following an object model, an operating system can be designed
and implemented as a set of types, each of which can be thought of as a kind of resource [58]. Some
of these resources, like input/output devices, may have direct physical realizations. Alternatively,
some resources may be abstract and without any realization at the computer hardware level.
Semaphores, mailboxes and files are some common examples of abstract resources. Each resource,
whether hardware realizable or not, is modeled as an object in an ideal object oriented operating

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 155

system. Quite a few object oriented operating systems have been developed for the purpose of
research and some of them are discussed here.

4.1. NeXTSTEP
NeXTSTEP is a hybrid kernel based object oriented operating system [59]. It was developed

by NeXT. NeXTSTEP is a Unix-like operating system. It uses the Mach microkernel and some
source code of BSD Unix. Though the runtime environment and the upper layers are object oriented
in nature, the Mach microkernel is not object oriented. Hence, NeXTSTEP cannot be considered an
object oriented operating system in the strictest terms. Although NeXT’s endeavor was innovative
and novel in many ways, NeXTSTEP was never commercially successful and it gained only small
acceptance in the industry. However, NeXTSTEP later became the basis for Mac OS X.
NeXTSTEP has been ported to various platforms including Intel x86, Motorola 68000, Sun SPARC
and HP PA-RISC.

4.2. Athene
Athene is a suitable example of object based operating system [60]. It was developed by the

Rocklyte Systems. The user environment of the Athene operating system consists purely of objects
which are configured and linked dynamically. An object scripting language called Dynamic Markup
Language is available to develop object based application programs that can be executed by the
Athene operating system. Athene also provides support for sharing of objects. Objects instantiated
in a shared memory can be shared by two or more processes with the help of proper mutual
exclusion mechanisms. The objects in an Athene environment can be ported to Windows and Linux
environments for the development of object oriented programs. This improves interoperability
between the computer systems.

4.3. Choices
Choices is an object oriented operating system [61]. It was developed at the University of

Illinois at Urbana-Champaign. It was implemented primarily in C++. The Choices operating system
models most of the important elements and constructs of the operating system, including the CPU
and the processes, as objects [62]. The kernel can be partitioned into a set of portable machine
independent classes and a comparatively smaller set of non-portable machine dependent classes.
This is made possible as a result of widespread use of inheritance. The Choices operating system is
internally structured as a hierarchy of objects of various classes. The operating system can be
adapted and customized by modifying one or more of these objects. A special browser is available
to view the objects being created and used by the operating system in the kernel mode and in the
user mode. Choices run on various types of computers including personal computers,
supercomputers as well as handheld and mobile devices. Moreover, Choices has been ported to run
on several platforms including SPARC, Intel x86 and ARM processors.

4.4. BeOS
BeOS is a hybrid microkernel based operating system [63]. It was development by the Be Inc.

BeOS was initially designed and implemented to run on the BeBox platform. However, it was later
ported to a plethora of platforms. BeOS was designed and implemented to take maximum
advantage of all the novel features of the contemporary computer hardware. Consequently, BeOS
benefited from several features of the multiprocessor systems including modular input/output,
multithreading and preemptive CPU scheduling. Special emphasis was given to support digital
media. The user interface of the BeOS operating system consists of a command line interface that
uses the bash shell and a graphical user interface. The GUI of the BeOS is one of the most well
designed and well implemented graphical user interface ever developed. The application
programmers’ interface of the BeOS was written in C++ [64]. Although it is a non-Unix-like
operating system, BeOS is POSIX compatible [65].

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 156

4.5. Syllable
Syllable is an object oriented operating system [66]. It is being developed by a team including

Kristian van der Vliet, Kaj de Vos, Rick Caudill, Arno Klenke and Henrik Isaksson. The objective
of Syllable is to create an easy to use desktop operating system for home and office users. It is an
open source project. Syllable is Unix-like in nature and uses a monolithic kernel. It is mostly
POSIX compliant. Syllable is implemented predominantly in C++ and is often compared to the
BeOS operating system. Syllable is developed to run on the Intel x86 platform.

4.6. Taj
Taj is an object oriented operating system [67]. It was developed by Viral Patel. Taj is a

multitasking and multiuser operating system. It was implemented primarily in C++ with some parts
in assembly language. The Taj operating system is implemented as a collection of classes and
consequently the source code is highly modular. All the data are highly secured by making them
private and removing any chances of unauthorized access. The Taj operating system also facilitates
the use of object oriented features like inheritance, and static and dynamic polymorphism. The
kernel of the Taj operating system is monolithic in nature. Almost all important components of the
operating system including the device drivers are contained inside the kernel to enhance speed.

4.7. Spring
Spring is a microkernel based object oriented operating system [68]. It was developed as an

experimental endeavor by the Sun Microsystems. One of the key objectives of the Spring operating
system was to provide an enhanced programming support using advanced features like multiple
inheritance. The Spring microkernel used several new concepts in implementing interprocess
communications, virtual memory and file system. Although the development of the Spring
operating system was later abandoned, several ideas and some code from the project were reused in
the Java programming language libraries and the Solaris operating system.

4.8. JavaOS
JavaOS is an operating system developed predominantly in Java [69]. It is being developed by

the Sun Microsystems. JavaOS uses a Java Virtual Machine. The Java Virtual Machine runs on top
of a native microkernel. The device drivers and the important system components of JavaOS are
implemented in Java and executed by the virtual machine [70]. The graphics and windowing system
of JavaOS, supporting the abstract window toolkit based application programmers’ interface, is also
implemented in Java. JavaOS has been ported to several platforms including Intel x86, ARM,
PowerPC, RISC, SPARC and StrongARM. JavaOS has been developed to be used in various types
of embedded systems. It has been employed in several classes of devices including set top boxes,
networking devices and JavaStation.

4.9. JNode
JNode is an abbreviation for Java New Operating System Design Effort [71]. It is an open

source project to create an operating system using the well established Java platform. Ewout
Prangsma is one of the key contributors in this research. This project is being implemented in Java
with a minor use of assembly languages. JNode currently supports several file systems, the TCP/IP
protocol suite, a graphical user interface and USB peripherals.

4.10 JNUOS
JNUOS is an abbreviation for Jawaharlal Nehru University Operating System [72,73]. The

operating system has been developed to serve as a pedagogical tool for the courses on operating
systems. It has a microkernel based architecture. Among all microkernel based architectures, the
multiple server microkernel based architecture has been used because of its superior modularity

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 157

[74]. The operating system has a modular and stratified design with five distinct layers comprising
of system components and application programs [75]. The operating system has been implemented
predominantly in C++. To realize the different constructs of the operating system, twenty-three
different classes have been first defined. All important entities in the operating system have been
then modeled as objects of these classes [76]. The operating system supports a character user
interface and a simple graphical user interface [77]. JNUOS introduces the concept of verbose mode
of operation of an operating system [78]. The verbose mode facilitates the users to learn more about
the internal working of the operating system. The verbose mode has been implemented using three
components, viz., the information server, the verbose server and the explanation module. The
verbose server maintains a log of all the important events occurring in the computer system and also
collaborates with the information server to create a portrayal of the operation of the entire operating
system. This portrayal, or a part of it, is available to any user program on demand. The verbose
mode is then completed by the explanation module that probes the verbose server and explains its
replies to the users in a stepwise manner. The verbose mode has been tested for providing
information of various types and varied depths. The verbose mode typically reports all process
related activities including creation, termination and scheduling of all types of processes. Moreover,
the output of the explanation module can be customized.

5. Conclusions
In this paper, the pedagogical and research purpose operating systems [79] developed till now

have been classified in three categories on an ideological basis. A total of thirty-four such operating
systems developed by different organizations have been reviewed briefly. Two significant
observations were made. Firstly, the microkernel based architecture is being used much more
frequently to develop research purpose operating systems than to develop their commercial
counterparts. Secondly, the class of object oriented operating systems, although now in its research
stage, is emerging as a promising category of operating systems. So, it is perhaps the right time to
amalgamate the concepts of the microkernel based architecture with the object oriented
methodologies.

Acknowledgements
Late Prof. R.G. Gupta coauthored the initial draft of this paper. The author also acknowledges

Prof. P.C. Saxena, Prof. C.P. Katti and Dr. Anurag Dixit for their guidance and support during the
course of this study.

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 158

References
[1] Silberschatz, A., Galvin, P.B. and Gagne, G., Operating System Principles. 7th ed., John

Wiley & Sons, 2006.
[2] Tanenbaum, A.S. and Woodhull, A.S., Operating Systems Design and Implementation. 3rd

ed., Prentice-Hall, 2006.
[3] Hansen, P.B., Operating System Principles. Prentice-Hall, 1973.
[4] Chakraborty, P., A model of the computer operating systems. Journal of Management and

Information Technology, 2009, 1(1): 83-95.
[5] Madnick, S.E. and Donovan, J.J., Operating Systems. McGraw-Hill, 1974.
[6] Rosen, S., Electronic computers: A historical survey. ACM Computing Surveys, 1969, 1(1): 7-

36.
[7] Rosin, R.F., Supervisory and monitor systems. ACM Computing Surveys, 1969, 1(1): 37-54.
[8] http://en.wikipedia.org/wiki/Operating_System Operating System.
[9] Herder, J.N., Towards a True Microkernel Operating System. M.Sc. Dissertation, Vrije

Universiteit, Amsterdam, 2005.
[10] Ritchie, D.M. and Thompson, K., The UNIX time sharing system. Communications of the

ACM, 1974, 17(7): 365-375.
[11] Bach, M.J., The Design of the UNIX Operating System. Prentice-Hall, 1986.
[12] Lions, J., Lions’ Commentary on UNIX 6th Edition with Source Code. 6th ed., Peer-to-Peer

Communications, 1996.
[13] http://www.bell-labs.com/history/unix The Creation of the UNIX Operating System.
[14] http://www.minix3.org MINIX 3.
[15] Tanenbaum, A.S. and Woodhull, A.S., Operating Systems Design and Implementation. 2nd

ed., Prentice-Hall, 1997.
[16] http://www.linux.org/docs Documentation.
[17] McDougall, R. and Mauro, J., Solaris Internals: Core Kernel Components. Prentice-Hall,

2001.
[18] http://www.sun.com/software/solaris Solaris.
[19] Comer, D.E., Operating System Design: The Xinu Approach. Prentice-Hall, 1984.
[20] Comer, D.E. and Munson, S., Operating System Design, Vol. 2: Internetworking with XINU.

Prentice-Hall, 1987.
[21] http://www.cs.purdue.edu/research/xinu.html XINU.
[22] Pike, R., Presotto, D., Dorward, S., Flandrena, B., Thompson, K., Trickey, H. and

Winterbottom, P., Plan 9 from Bell Labs. Computing Systems, 1995, 8(3): 221-254.
[23] http://plan9.bell-labs.com/plan9 Plan 9 from Bell Labs.
[24] http://www.vitanuova.com/inferno A Compact Operating System for Building Cross Platform

Distributed Systems.
[25] Yurkoski, C.F., Rau, L.R. and Ellis, B.K., Using Inferno to execute Java on small devices.

Lecture Notes in Computer Science, 1998, 1474: 108-118.
[26] http://www.lsub.org/ls/planb.html Plan B 4th Edition.
[27] http://www.sgi.com/products/software/irix/datasheet.pdf IRIX 6.5.
[28] http://www.lynuxworks.com/rtos LynxOS RTOS.
[29] Dijkstra, E.W., The structure of the “THE” – multiprogramming system. Communications of

the ACM, 1968, 11(5): 341-346.
[30] Corbato, F.J. and Vyssotsky, V.A., Introduction and overview of the Multics system.

Proceedings of AFIPS Fall Joint Computer Conference, 1965, pp. 185-196.
[31] Daley, R.C. and Neumann, P.G., A general purpose file system for secondary storage.

Proceedings of AFIPS Fall Joint Computer Conference, 1965, pp. 213-229.
[32] David, E.E. and Fano, R.M., Some thoughts about the social implications of accessible

computing. Proceedings of AFIPS Fall Joint Computer Conference, 1965, pp. 243-247.

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 159

[33] Glaser, E.L., Couleur, J.F. and Oliver, G.A., System design of a computer for time sharing
applications. Proceedings of AFIPS Fall Joint Computer Conference, 1965, pp. 197-202.

[34] Ossanna, J.F., Mikus, L. and Dunten, S.D., Communications and input-output switching in a
multiplexed computing system. Proceedings of AFIPS Fall Joint Computer Conference, 1965,
pp. 231-241.

[35] Vyssotsky, V.A., Corbato, F.J. and Graham, R.M., Structure of the Multics supervisor.
Proceedings of AFIPS Fall Joint Computer Conference, 1965, pp. 203-212.

[36] Organick, E.I., The MULTICS System: An Examination of Its Structure. MIT Press, 1972.
[37] http://www.multicians.org Multics.
[38] Cheriton, D.R., The V distributed system. Communications of the ACM, 1988, 31(3): 314-333.
[39] http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html The Mach Project Home

Page.
[40] Rashid, R.F., From RIG to Accent to Mach: The evolution of a network operating system.

Proceedings of ACM/IEEE Computer Society Fall Joint Conference, 1986, pp. 1128-1137.
[41] Liedtke, J., Toward real microkernels. Communications of the ACM, 1996, 39(9): 70-77.
[42] Hartig, H., Hohmuth, M., Liedtke, J., Schonberg, S. and Wolter, J., The performance of

microkernel based systems. Proceedings of Sixteenth ACM Symposium on Operating System
Principles, 1997, pp. 66-77.

[43] Shapiro, J.S., Smith, J.M. and Farber, D.J., EROS: A fast capability system. Proceedings of
Seventeenth ACM Symposium on Operating Systems Principles, 1999, pp. 170-185.

[44] Shapiro, J.S. and Hardy, N., EROS: A principle driven operating system from the ground up.
IEEE Software, 2002, 19(1): 26-33.

[45] http://www.eros-os.org EROS: The Extremely Reliable Operating System.
[46] http://www.capros.org CapROS: The Capability Based Reliable Operating System.
[47] http://www.coyotos.org The Coyotos Secure Operating System.
[48] http://www.cs.vu.nl/pub/amoeba The Amoeba Distributed Operating System.
[49] van Renesse, R., van Staveren, H. and Tanenbaum, A.S., Performance of the Amoeba

distributed operating system. Software – Practice and Experience, 1989, 19(3): 223-234.
[50] Tanenbaum, A.S., van Renesse, R., van Staveren, H., Sharp, G.J., Mullender, S.J., Jansen, A.J.

and van Rossum, G., Experiences with the Amoeba distributed operating system.
Communications of the ACM, 1990, 33(12): 46-63.

[51] Tanenbaum, A.S., Distributed Operating Systems. Prentice-Hall, 1995.
[52] http://programatica.cs.pdx.edu/House Haskell User’s Operating System and Environment.
[53] http://www.rink.nu/trac/ilios Trac Integrated SCM and Project Management.
[54] http://www.ghs.com/products/rtos/integrity.html Integrity Real Time Operating System.
[55] http://www.cl.cam.ac.uk/research/srg/netos/old-projects/nemesis Nemesis.
[56] http://research.microsoft.com/os/singularity Singularity.
[57] Hunt, G. and Larus, J., Singularity: Rethinking the software stack. ACM SIGOPS Operating

Systems Review, 2007, 41(2): 37-49.
[58] Jones, A.K., The object model: A conceptual tool for structuring software. Lecture Notes in

Computer Science, 1978, 60: 7-16.
[59] http://www.nextarchive.net NeXT Archive.
[60] http://www.rocklyte.com/athene The Athene Operating System.
[61] http://choices.cs.uiuc.edu Choices.
[62] Campbell, R.H., Johnston, G., Kenny, K., Murakami, G. and Russo, V., Choices (class

hierarchical open interface for custom embedded systems). ACM SIGOPS Operating Systems
Review, 1987, 21(3): 9-17.

[63] Hacker, S., Bortman, H. and Herborth, C., The BeOS Bible. Peachpit Press, 1999.
[64] Sydow, D.P., Programming the Be Operating System. O’Reilly, 1999.
[65] Brown, M.C., BeOS: Porting UNIX Applications. Morgan Kaufmann, 1998.
[66] http://www.syllable.org Syllable.

GESJ: Computer Science and Telecommunications 2010|No.3(26)
ISSN 1512-1232

 160

[67] http://www.viralpatel.net/taj/home.php TAJ – An Object Oriented Operating System.
[68] http://research.sun.com/features/tenyears/volcd/papers/Mitchell.pdf An Overview of the Spring

System.
[69] https://javaos.dev.java.net JavaOS Project Home.
[70] Mirho, C.A. and Saulpaugh, T., Inside the JavaOS Operating System. Addison-Wesley, 1999.
[71] http://www.jnode.org/node/1 JNode Handbook.
[72] Chakraborty, P., Design and Implementation Considerations for a Pedagogical Object

Oriented Operating System. M.Tech. Dissertation, Jawaharlal Nehru University, 2008.
[73] Chakraborty, P., Thesis overview: Design and implementation considerations for a

pedagogical object oriented operating system. Journal of Computer Science and Technology,
2010, 10(1): in press.

[74] Chakraborty, P. and Gupta, R.G., A structural classification and related design issues of
operating systems. Proceedings of Second National Conference on Methods and Models in
Computing, 2007, pp. 265-273.

[75] Chakraborty, P. and Gupta, R.G., The design of a pedagogical operating system. Proceedings
of Second National Conference on Computing for Nation Development, 2008, pp. 517-527.

[76] Chakraborty, P. and Saxena, P.C., The object model of the JNUOS operating system.
Proceedings of Third National Conference on Computing for Nation Development, 2009, pp.
281-284.

[77] Chakraborty, P. and Saxena, P.C., A comparison of the shell commands of three contemporary
operating systems. Proceedings of National Conference on Modern Trends in Information
Technology, 2009, pp. 89-95.

[78] Chakraborty, P., Verbose mode of operation of a pedagogical virtual machine operating
system. Proceedings of Third National Conference on Methods and Models in Computing,
2008, pp. 43-53.

[79] Chakraborty, P. and Saxena, P.C., Novel approaches to teach and learn courses on computer
operating systems. Computer Science and Telecommunications, 2009, 5(22): 174-176.

Article received: 2010-03-02

