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Abstract 
Fingerprint images are typically acquired using a contact-based sensor wherein a 

user places her finger on the surface of the sensor. The elastic nature of the human skin, 
coupled with the non-uniform pressure applied by the finger on the sensor, result in 
fingerprint images whose ridges exhibit non-linear distortions. For reliable matching, 
these non-linear distortion effects must be accounted for prior to comparing two 
fingerprint images. Models based on affine transformations have been used to offset the 
effects of distortion, but they invariably lead to unsatisfactory matching results since the 
distortions are basically elastic in nature. 

 
 

Given several template impressions of a finger, we estimate the “average” deformation for 
each template image corresponding to that finger based on the thin plate spline (TPS) model. 
 

The estimated average deformation is then utilized to align the minutiae points between the 
template and query images during the matching stage. It is shown that the use of an average deformation 
model leads to a better alignment between the two sets of points as opposed to a rigid transformation. 
The average deformation is computed using two types of landmark points: minutiae points and ridge 
points. Further, an index of deformation is proposed for choosing the best deformation model arising 
from a set of template impressions corresponding to a finger. Experimental data consists of 1600 
fingerprints corresponding to 50 different fingers collected over a period of 2 weeks. It is shown that 
the average deformation model leads to an improvement in the alignment between impressions 
originating from the same finger. 

 
 

Figure 1: Aligning two impressions of the same finger using an affine transformation. Due to non-linear 
distortions, the alignment is not accurate in some regions. Only fingerprint ridges are shown for 

clarity. 
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1    Introduction 

As indicated earlier, the problem of automatic fingerprint matching involves determining a 
measure of similarity between two fingerprint impressions by comparing their ridge structure and/or 
the spatial distribution of the minutiae points [3][4][5][6]. The image acquisition process, however, 
introduces non-linear distortions in the ridge structure and, consequently, in the spatial location of 
minutiae points, thereby confounding the matching process. This distortion is a function of several 
parameters including the orientation of the sensor with respect to the finger, the amount of pressure 
applied by the subject, the disposition of the subject (sitting or standing), the motion of the finger 
prior to its placement on the sensor, the moisture content of the skin (dry, oily or wet), the elasticity 
of the skin, etc. Therefore, the distortions observed in a fingerprint vary from one acquisition to the 
next. For reliable matching, these non-linear distortions must be accounted for prior to comparing two 
fingerprint images. Deformation models based on affine transformations invariably lead to unsatisfactory 
matching results since the distortions are basically elastic in nature (Figure 1). 

To deal with the problem of non-linear distortion in fingerprint images, four types of approaches 
have been discussed in the literature. The first approach accounts for distortion in the image acquisition 
stage by capturing the least distorted print from the user. Ratha et al. [7] describe a system which does not 
accept an input image if the user applies excessive force on the sensor, thereby minimizing the effect of 
distortions on the acquired image.  The system operates by measuring the forces and torques applied on 
the sensor. Dorai et al. [8] observe a video sequence of the fingertip as it interacts with the sensor and 
measure the distortion in successive frames. When excessive distortion is observed, the system requests 
the user to provide another fingerprint. These systems require specialized hardware and the ability to 
perform extensive computations in real-time. As a result, they do not offer a practical solution to 
fingerprint deformation for real-time and embedded fingerprint applications. 

In the second approach, the distortion is estimated during the matching stage. Thebaud [9] uses a 
gradient descent technique to compute local warps when comparing two fingerprints. The fingerprint 
correlation score is used as the objective function. Besides being time consuming, this technique 
potentially results in a higher False Accept Rate (FAR) since it performs local warping to force a match 
between the two images. Kov´acs-Vajna [3] uses minutiae triplets to compare two minutiae sets. By not 
using the entire minutiae pattern at once, the cumulative effect of distortion is avoided. Bazen and 
Gerez [10] use a thin-plate spline (TPS) model to account for non-linear distortions while comparing 
two minutiae sets. 

In the third approach, the distortion is removed before the matching stage. Senior and Bolle [11] 
have developed a model which assumes that ridges in a fingerprint are constantly spaced, and that 
deviations from this model indicate the presence of elastic distortions. They apply local warps in 
regions exhibiting such deviations to make the local ridge distances nearly equal the average inter-ridge 
spacing. Their experimental results show a significant improvement in genuine matching scores (i.e., the 
matching score when comparing two impressions of the same finger), as indicated by the t-statistic. 
However, their assumption that inter-ridge spacing in a fingerprint is constantly spaced is not always 
valid. Watson et al. [12] construct distortion tolerant filters for each (template) fingerprint before 
performing a correlation type of matching. Their experiments show that applying the filter before 
matching improves the performance. 
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(a) (b) 

 
(c)                                                         (d) 

 

 
(e) 

 
Figure 2: Alignment of two impressions of the same finger using affine transformation. (a) and (b) are 
the gray scale images; (c) and (d) are the thinned (skeletonized) images of (a) and (b), respectively; and 

(e) shows the alignment based on the thinned images. Ridge lines do not align in (e). 
 

The fourth approach is more suited for introducing distortions in synthetic fingerprints. 
Cappelli et al. [13] have attempted to model the distortions that could occur in a fingerprint image by 
considering three concentric regions in a fingerprint; the inner and outer regions are assumed to have no 
distortions although ridges in the outer region can be translated and rotated with respect to the ridges 
in the inner region; the region in between is assumed to undergo non-linear distortions in order to 
accommodate the transition of ridges from the inner to the outer region. The authors, however, do not 
use this model to perform fingerprint matching. Rather, they use it to synthesize multiple impressions 
of the same finger [14]. 

Several difficulties arise when we try to ascertain the extent of non-linear distortion in fingerprint 
impressions. The distortion present in impressions of a finger is not known in advance, thereby making 
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normalization to a true template as in [11] impossible. A reference template fingerprint having no 
distortion effects is never available given multiple impressions of a finger; in other words, distortion 
effects should appropriately be measured in relative, rather than in absolute, terms between pairs of 
impressions. Bazen and Gerez [10] report the estimation of relative distortions between pairs of 
impressions based on the minutiae point pattern correspondence (see Figure 3). In this paper, we present 
an approach of estimating relative distortions based on ridge curve correspondence (see Figure 4). 
Modelling distortion effects based on ridge curve correspondence offers several advantages over minutiae 
point pattern matching, consequently leading to improved authentication performance. Unlike minutiae 
points, which can be sparsely distributed in regions of a fingerprint image, ridge curves are spread all 
over the image domain resulting in a more reliable estimate of the distortion. The spatial continuity of 
ridge curves enables sampling of a large number of points on the ridges for establishing 
correspondences, including points in the vicinity of undetected minutiae points. Obtaining 
correspondences for undetected minutiae points is not possible when correspondences are based solely on 
(detected) minutiae point patterns. Also, in some poor quality images, minutiae information cannot 
be reliably extracted and thus, should not be used to construct a fingerprint distortion model. For the 
above reasons, ridge curve-based warping techniques result in a more robust and reliable estimate of the 
distortion in fingerprint impressions, and consequently, incorporating this distortion model in the 
authentication stage yields superior matching performance. 

Most of the earlier techniques deal with the problem of non-linear distortion on a case by case 
basis, i.e., for every pair of fingerprint impressions, the distortion removal technique, via a deformation 
model, is applied and a matching score generated. No attempt has been made to develop a finger-
specific deformation model that can be computed offline and later used for matching. The main 
advantage of such a scheme is that once a finger-specific model has been computed and stored along with 
the template, re-computation of the model is not necessary during the matching stage. When multiple 
impressions of a user’s fingerprint are available, a technique is proposed for computing the average 
deformation model in the training stage using the thin plate spline (TPS) warping model based on ridge 
curve correspondence. The average deformation model corresponding to each fingerprint impression is an 
overall description of the relative distortions of the remaining impressions with that impression. In 
other words, we describe distortion effects by (i) a baseline impression and (ii) the average 
deformation model with respect to the baseline impression. An optimal baseline impression with the 
most consistent distortions is selected by means of an index of deformation. The optimal baseline 
impression is not an impression with no distortion effects; it is the impression relative to which other 
impressions of the same finger have the most consistent distortions. We show that by removing 
distortion effects using the optimal baseline impressions, superior matching performance is obtained in 
the authentication stage. 

 

2    General Warping Methods 
Warping methods can be used to obtain global deformation models for image registration. 

Applications of warping techniques abound in the statistical, medical imaging and computer vision 
literature. There have been a variety of image registration techniques motivated from different 
principles; examples include warping by elastic deformations [15][16], optical or fluid flow [17][18][19], 
diffusion processes [20], Bayesian prior distributions [21][22], and thin-plate splines (TPS) 
[23][24][25]. Only recently have warping techniques based on deformation models been used to model 
distortions in fingerprint images for the purpose of matching [26][10]. Warping enables the distortions to 
be estimated and subsequently removed prior to matching. It is shown in [10] that this procedure results 
in superior matching performance compared to algorithms which either do not model distortions or 
model them using rigid transformations. Distortion models based on TPS were used in [26] and 
[10]. 
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Figure 3: An example of minutiae correspondences between two impressions of a finger. 

 

 
 

Figure 4: An example of ridge curve correspondences between two impressions of a finger. 
 
 

Earlier work in modelling the non-linear distortion in fingerprint images used only the spatial 
distribution of the minutiae points [26][10]. One disadvantage of using the minutiae point pattern for 
estimating the non-linear deformation is that minutiae points may be sparse in some areas of the 
fingerprint. A more fundamental and rich feature of fingerprint images is their ridge structure. A 
skeletonized version of a fingerprint image, known as the thinned image, can be used to extract ridge 
curve information (see Figure 2). Obtaining the deformation model based on aligning the ridge curves 
offers several advantages. Firstly, ridge lines are distributed over the entire fingerprint image and thus, 
a more reliable deformation model can be obtained. Secondly, the likelihood of incorrectly 
corresponding two ridge curves is much less than corresponding two minutiae points, due to the richer 
intrinsic information available in curves compared to points. Consequently, the deformation model 
based on ridge curves yields better matching performance compared to minutiae points as is shown in 
this paper. 

When multiple impressions of a finger are available, it is observed that the nonlinear distortion 
present in them vary significantly. Further, these distortions are different for different pairings of the 
impressions (Figure 5).  
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Figure 5: Non-linear deformations (with rotation and translation parameters removed) associated 
with two pairings involving the same template: (a) Template image; (b) and (c) Query images; (d) and 

(e) Non-linear deformation of (a) into (b) and (c), respectively. 
 

 
Thus, we address the following two problems: (i) obtain a deformation model based on ridge 

curve correspondence that can be incorporated in the matching stage, and (ii) given multiple 
deformation models for a finger, select the optimal model that gives the most consistent distortion 
effects measured from a baseline impression. In this paper, we develop an average deformation 
model given multiple impressions of a single finger together with an estimate of its variability based 
on ridge curve correspondences. An index of deformation is suggested as a means of selecting a 
baseline impression with an associated average deformation model with the least variability. The 
average deformation model is incorporated in the matching stage when a query fingerprint is 
compared against a template fingerprint. Experimental results indicate that better matching 
performance is achieved by incorporating deformation models (and average deformation models) 
based on ridge curves as opposed to using only minutiae points. 
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3    The Fingerprint Warping Model 

Let 0I (x,y) and 1I (x,y) denote two fingerprint impressions, where (x,y)  S for a domain S  ∈ ⊂

R2. Our convention is to refer to 0I  and 1I  as the template and query images, respectively. A 
warping of I0 to I1 is defined as the function F : S  S such that →

 
 
 
for (x,y) ∈ S. The function F is called the warping function which takes 0I  to 1I . In our application 
we register the two impressions 0I  and 1I  by matching corresponding ridge curves. Thus, in 
equation (5.1), the warping function, F : S  S, registers two sets of ridge curves derived from → 0I  

and 1I . Let  denote a parameterized ridge curve in 1 2( ) ( ( ), ( )) , ,T
k k k k ku u t u t u t t C≡ = ∈ 0I  for k 

= 1, 2,..., n, and let  and k = 1 , 2 , . . . , n ,  denote the 1 2( ) ( ( ), ( )) ,T
k k k k kv v t v t v t t D≡ = ∈

corresponding parameterized ridge curves in 1I ; here, n is the total number of corresponding curves. 
The two sets of ridge curves, one set in 0I  and the other in 1I , with known correspondences is 
denoted by the pair (U, V) where  and . We assume that each 1 2( , ,..., )T

nU u u u= 1 2( , ,.., )T
nV v v v=

correspondence pair is aligned as close as possible using rigid transformation prior to non-linear 
warping. This can be achieved using the Procrustes analysis (see [27]) after pairs of corresponding 
points are obtained using the methodology outlined below. For n pairs of ridge curve 
correspondences, a warping function, , that warps U to V, subject to perfect alignment, is given F
by the conditions 
 
 
 
 

 

3.1    Establishing Ridge Curve Correspondences 

Given a pair of grayscale fingerprint images, 0I  and 1I , we obtain their thinned versions, 0R  
and 1R , using the algorithm described in [1]. A thinned image is a binary image (see Figures 2 (c) 
and (d)) with grayscale values of 0 (indicating ridges) and 255 (indicating valleys). Each thinned 
image can be thought of as a collection of ridge curves. In order to develop ridge curve 
correspondences, we proceed as follows: 

1. Minutiae points are extracted from 0I  and 1I  using the algorithm described in [13]. Let 

0
 and 

11,., )km0 0,1 0,2 0,( , ,..., )kM m m m= 1 1,1 1,2( , ,..M m m=  denote the two minutiae sets of 

cardinalities 0K  and 1K , respectively. Here, each minutiae point ,i jm  is characterized by its 
location in the image, the orientation of the associated ridge, and the grayscale intensity of pixels 
in its vicinity. 

2. Minutiae correspondences between 0M  and 1M  is obtained using the elastic string matching 
technique described in [2]. The output of the matcher is a similarity score in the range [0,1000] 
and a set of correspondences of the form 0, 1,{( , ): 1, 2,..., }

j ja bC m m j K= =  where 

0 1  and the ajs (bjs) are all distinct. Figure 5.3 shows an example of the minutiae min{ , },K K K≤
point pattern correspondence for two impressions of a finger. 

0 1( ( , )) ( , )                  (1)I F x y I x y=

( )                 for k=1,2,........n.          (2)k kF u v=
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3. Once the correspondence between 0M  and 1M  is established, the ridge curves associated with 
these minutiae points are extracted from 0R  and 1R  using a simple ridge tracing technique. A 
minutiae point that is a ridge ending has one ridge curve associated with it while a ridge 
bifurcation has three associated ridges. In the case of a ridge ending, the ridge curve 
correspondence between the two images can be easily established since each minutiae point has 
only one associated ridge curve. However, in the case of a ridge bifurcation, the problem of 
establishing ridge curve correspondences is non-trivial due to the presence of multiple ridge 
curves for each minutiae point; each of the three component ridge curves of one minutiae point 
can potentially match with any component of the other impression. 

 
 

Figure 6: Vector representation of ridge bifurcation used to establish correspondences between 
component ridge curves. O marks the bifurcation points in correspondence, and X marks the 

points on the ridges at Euclidean distance d from O. 
 
To resolve this ambiguity, each ridge curve corresponding to the minutiae point in 0 1( )I I  is 

represented as a directional vector ( ), 1, 2,3,j jr s j =  based on two points on the ridge curve: the 
minutiae point and the d-th point (d = 20) on the ridge from the minutiae (see Figure 6). We define 

, ,( )j k j kθ γ  to be the angle that ( )j jr s  makes with  for ( ),k kr s k j≠ .  We find the vector ( )j jr s  for 
which the angles , ,{ , } ({ , }j k j kk j k j )θ γ≠ ≠  are both obtuse. This establishes the first ridge curve 

correspondence, say, 1 1,r s  without loss of generality. We then compute the cross products 

2 3rc r r= × 3 2 and . We assign the correspondence 2sc s s= × 2r s  and  if  and 3 3r s
rc sc  are of 

the same sign, and  and  , otherwise. Figure 5.4 shows an example of ridge curve 2r s3 23r s
correspondence for a pair of impressions of a finger. 

 

3.2    Sampling Ridge Curves 

Having determined the corresponding ridge curves, we next establish a correspondence 
between points on these curves by sampling every q -th point (q = 20) on each of the ridge curves. 
For the correspondence pair (U, V), we have ( )ku uk t≡  and ( )k kv v t≡  for k = 1,2,..., n.   The 

sampling of the k-th corresponding ridge curves, say at points  yields 
k1 2t , t ,..., t ,g kg  pairings of 

the form  for j = 1, 2,...,  gk. Thus, we have a total of  points in ( ( ), ( ))k j k ju t v t
=

=∑ 1

n
kk

N g

establishing the correspondence. We denote this set of corresponding points by U = (n^, n*,..., 
n*M)T and V = (So, E|, . . ., ^)T). We use TPS to estimate the non-linear deformation F based on 
these points. TPS represents a natural parametric generalization from rigid to mild non-rigid 
deformations. The deformation model for TPS is given in terms of the warping function F(u), with 

= + + TF(u) c A.u W s(u), (3)  
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where u  S, c is a 2×1 translation vector, A is a 2∈ ×2 affine matrix, 
TW  is a N×2 coefficient 

matrix,  where σ σ σ= − − −* * * T
1 2 Ns(u) ( (u u ), (u u ),..., (u u ))

 
 
 
 
 
 

In equation (3), there are 6 and 2N parameters corresponding to the rigid and non-rigid parts 
of the deformation model, respectively, resulting in a total of 2N + 6 parameters to be estimated. 
The restrictions 
 
 
 
j = 1, 2,...,N provide 2N constraints. For the parameters to be uniquely estimated, we further 

assume that W satisfies the two conditions (i) =T
N1 W 0  and (ii)  where 1  is the =T

sU W 0, N
vector of ones of length N. Thus, the parameters of the TPS model can be obtained from the matrix 
equation 
 
 
 
 
 
 
 
where H is the N × N matrix with entries σ= −* *

i, j i jh (u u ). 
The matrix equation in (6) gives rise to a TPS model that minimizes the bending energy 

subject to the perfect alignment constraints in (5). A more robust TPS model can be obtained by 
relaxing the constraints in equation (5), and instead determining the function F which minimizes 
the expression 

 
 
 
 
 
 

Where 
 

 
 

 
 
represents the bending energy associated with = T

1 2 jF (F ,F ) ,F  is the jth component of F, and λ > 
0. The case λ = 0 gives rise to the TPS model described by equation (6). For general λ > 0, the 
parameters of the resulting TPS model can be obtained using equation (6) with H replaced by 

λ+ NH I ,  where  is the N × N  Identity matrix. NI
 
 

( )2 log 0
( )                      (4)

0, 0

u u u
u

u
σ

⎧ >⎪= ⎨
=⎪⎩

* *( ) ,      for j=1,2,....,                     (5)j jF u v=

1
1 0 0 0 ,                   (6)

0 0 0

N
T T
N
T T

H u W v
c

u A

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 2 22 2 22

2 2
1

( , ) ( , ) ( , )
( ) 2            (8)j j j

s
j

F x y F x y F x y
J F dxdy

x x y y=

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
∑∫

* * * *

1
( ( )) ( ( )) ( ),                         (7)

N
T

j j j j
j

v F u v F u J Fλ
=

− − +∑
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4    Average Deformation Model 

Suppose we have L impressions of a finger, 1 2 LT ,T ,...,T . Each impression, iT , can be paired 
with the remaining impressions, ≠jT , j i,  to create −L 1  pairs of the form i j(T ,T ). For the pair 

i j(T ,T ), we obtain a non-linear transformation Fij by employing the technique described in section 
5.3. Note that Fij transforms every pixel in the template fingerprint, Ti, to a new location. Thus, we 
can compute the average deformation of each pixel u in Ti as 

 
 
 
 

There will be L average deformation models corresponding to the L impressions of the finger. 
The average deformation is the typical deformation that arises when we compare one fingerprint 
impression of a finger (the baseline impression) with other impressions of the same finger. Figure 7 
shows that changing the baseline impression for the finger will result in a different average 
deformation model for that finger (the Φ values are as discussed in section 4.1). Figure 8 shows the 
average deformation for 3 different fingers; it can be clearly seen that the average warping 
functions are different for the 3 fingers indicating that the fingerprint deformation is finger-specific. 

 

 

1( ) ( ),                                 (9)
1

i ij
j i

F u F u
L ≠

=
− ∑
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Figure 7: The average deformation model (shown as deformations on a reference grid) corresponding to 
6 templates of a finger sorted in increasing Φ-values. (a) is chosen to be the optimal template since it 

has the least Φ-value. 
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Figure 8: The average deformation model (shown as deformations on a reference grid) of 3 different 
fingers . 

 
 
 

4.1    The  Index of Deformation Φ
We consider the following two questions in this section: 

1. Which of the L average deformation models can be considered to be the optimal model for 
this finger? 

2. Will the optimal model, when incorporated in the matching stage, result in improved 
performance compared to the suboptimal models? 
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In order to address these questions, we first define the pixel-wise covariance matrix associated 
with the i-th average deformation, iF , as follows: 

 
 
 
 
where Fij is the deformation function that warps Ti to Tj. The covariance matrix defined at each 
pixel u, is a measure of the variability associated with the estimated deformation functions. Two 
choices of pixel-wise measures of variability are given by (i) the determinant, 

φ =
i iF F(D (u)) D (u) ,  and (ii) the trace, φ =

i iF F(D (u)) tr(D (u)).  Pixels with large (small) values 

of φ  indicate high (low) variability in the deformations ijF . We propose to use the values of φ  to 
determine the optimal model for a given finger. We define the ith index of deformation, Φi, as 
 
 
 
 

where, φ =(D) tr(D) , and |S| is the number of pixels in the domain S. Subsequently, we choose *i
T  

as the template with the smallest variability in deformation if = Φ*
ii argmin i . In effect, we 

choose that template  that minimizes the average variation across pixels measured in terms of iT iΦ . 
Low (high) values of the index of deformation indicate that the warping functions are similar 
(dissimilar) to each other. 
 
 

4.2    Eliminating Erroneous Correspondences 
For each baseline fingerprint impression, it is important to determine the set of minutiae points 

that are correctly paired to form a correspondence. The reason for this is that the average 
deformation model is sensitive to the accuracy of the ridge curve correspondence, which in turn 
depends on the minutiae correspondence. It is, therefore, necessary to check the correctness of the 
minutiae correspondences prior to obtaining the ridge curve correspondences. Figure 9(a) gives an 
example of two incorrect minutiae correspondences which result in incorrect ridge curve correspon-
dences (Figure 9(b)). These erroneous correspondences have to be eliminated prior to computing 
the average deformation model; failure to exclude such minutiae points results in a warping model 
that exhibits spurious distortions. This is done using the technique described below. 

For the given baseline fingerprint impression, minutiae points that have a correspondence with 
at least  of the remaining L - 1 impressions are extracted. We denote the set of all extracted =l l( 5)
minutiae points by , where K is the total number of such minutiae points.   = =iM {m ,i 1,2,...,K}
Each  has a corresponding minutie point in at least l of the L-1 impressions. im

 
 
 
 
 

( ) ( )1( ) ( ) ( ) . ( ) ( )          (10)
1i

T
i iij ijF

j i
D u F u F u F u F u

L ≠

= − −
− ∑

( )( )
1

1 ,                        (11)
i

s

i F u
u

D
S

φ
=

Φ = ∑
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Figure 9: Examples of incorrect minutiae correspondences (a) resulting in erroneous ridge curve 
correspondences (b). 
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Figure 10: Effect of eliminating unreliable minutiae correspondences on the average deformation model; 
(a) template fingerprint, (b) average deformation model with p = 100, and (c) average deformation 

model with p = 60. 
 

We denote these pairings by , where  is the total number of l ii 1 i 2 i(m ,p ),(m ,p ),...,(m ,p ) l i
pairings. We now develop a measure of reliability for minutiae point mi as follows: 

1. Sampled ridge point correspondences are obtained for each =i j i(m ,p ), j 1,2,...,n  based on 
which a TPS deformation model, 

i j(m ,p )F  is computed. The average deformation model for the 

minutiae point  is given by im
 
 
 
 
 

Here, the average deformation model is obtained in a 10 x 10 square region, say , centered at im
S

im . 
2. Let 

 
 

( , )
1

1( ) ( )
i

i i j
m m p

ji

F u F u
=

= ∑
l

l
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denote the site-wise variability measure of the deformations F(mi,pj) around Fmi. The average 
variability is measured by 

 
 
 
 
 

with small values of  indicating better reliability. Correspondences pertaining to those imR

minutiae points with  values lower than the p-th percentile (e.g., p = 60) are used to develop imR
the average deformation model for the template fingerprint. 

For the incorrect minutiae correspondences in Figure 9, the value of R for the top minutiae 
point was 93.2 (the 60-th percentile value of R was 55.5 for this template) while the lower minutiae 
point occurred in less than 5 corresponding pairs and hence was eliminated. Figure 10(a) shows the 
average deformation model that results for this template when all correspondences are used (i.e.,p = 
100); Figure 10(b) gives the deformation model for p = 60. 

 
 

5   Experimental Results 
In order to apply the TPS model to reliably estimate fingerprint deformation, we need to have 

several impressions of the same finger. Large number of impressions of a finger are not available in 
standard fingerprint databases (e.g., FVC 2002 [28]). Therefore, fingerprint images of 50 fingers 
were acquired using the Identix sensor (256 x 255, 380 dpi) over a period of two weeks in our lab. 
There were 32 impressions corresponding to every finger, resulting in a total of 1600 impressions. 
One half of the impressions (L = 16 for each finger, resulting in 800 impressions) were used as 
templates to compute the average deformation model for each finger, while the remaining 800 
impressions were used as query images for testing. For each template image, T, the minutiae set, 

TM , and the thinned image, , were extracted. The average deformation model of , TR T TF , 
was obtained based on pairings with the remaining 15 impressions of the same finger (equation (7) 
with λ = 0.1). The minutiae set TM  was transformed to the deformed set, (T T T )MD F M≡  using 

TF .   A total of  800 sets (50 x 16) of deformed minutiae points were thus obtained. In order to test 
the matching performance of the deformed minutiae sets, and the utility of the index of 
deformation, Φ, the following two experiments were conducted. In both these experiments, the 
minutiae matcher described in [2] was used to generate the matching (similarity) score. 

In the first experiment, the matching performance using the average deformation model was 
evaluated. Every template image, T, was compared with every query image, Q, and two types of 
matching scores were generated for each comparison: the matching score obtained by matching (i) 

TM  with QM , and (ii) TMD  with QM . The Receiver Operating Characteristic (ROC) curve 
plotting the genuine accept rate (GAR) against the false accept rate (FAR) at various matching 
thresholds is presented in Figure 12. An overall improvement of 2% is observed when the average 
deformation model is used to distort TM  prior to matching. 
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Figure 11: Improved alignment of template and query images using ridge curve correspondences (right 

panel). The alignment using minutiae correspondences are shown in the left panel. Both sets of 
alignment use the TPS warping model. 
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Figure 12: Improvement in matching performance when ridge curve correspondences is used to develop the 

average deformation model. 
 

 
 
Figure 13: Matching performance when the Φ index of deformation is used to select optimal templates. 
Both optimal and suboptimal templates using ridge curve correspondences result in superior matching 

performance compared to minutiae correspondences. 
 
 

In the second experiment, the advantage of using the index of deformation is demonstrated. 
The Φ-index of deformation (with ( ) ( )D tr Dφ = ) of every template image is used to rank the 
templates according to their variability in the distortion. The template images can now be split into 
two sets: (i) impressions with the least Φ values for every finger (the Φ-optimal templates) and (ii) 
the remaining impressions for every finger (the Φ-suboptimal templates). We repeated the matching 
procedure outlined above using these two template sets. The resulting ROC curve is shown in 
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Figure 13. From the figure, it is clear that using Φ-optimal templates results in better performance 
compared to using Φ-suboptimal templates. Further, the Φ-suboptimal templates still yield better 
performance compared to the non-distorted templates thus demonstrating the importance of the 
average deformable model. 
 

6.  Conclusion 

In this Paper, a deformation model for estimating the distortion effects in fingerprint 
impressions has been proposed. The distortion is computed based on ridge curve correspondence. It has 
been shown that the deformation model based on ridge curve correspondence gives superior 
authentication performance compared to minutiae point pattern matching. The warping model samples 
the ridge curve and uses thin-plate splines for estimating the non-linear deformation. An index of 
deformation has also been proposed for selecting the “optimal” template from a given set of 
fingerprint impressions. 

The work presented here can be expanded in several ways. An interesting exercise would be to 
design an incremental approach to updating the average deformation model, i.e., updating the current 
average deformation model of a finger by using information presented by newly acquired fingerprint 
impressions. The technique proposed here uses a simple pixel-wise averaging measure to compute the 
average deformation model. This measure is sensitive to extreme deformations borne out by outliers; thus, 
more robust measures of describing the finger specific average deformation model are needed. The effect 
of the number of training samples (used to develop the average deformation model ) on the matching 
performance has to be systematically studied. 

Non-linear deformation in fingerprints is a consequence of utilizing contact-based sensors for 
imaging the fingertip. Using an acoustic (ultrasound) camera to procure fingerprint images may help 
avoid this problem [29]. However, an ultrasound camera introduces other challenges that may affect the 
quality of the image (e.g., a high quality reconstruction procedure is required to “assemble” an 
image). Further, the cost of the camera and its size may limit its deployment in real-world 
applications. 
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