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Abstract 
A fingerprint-based verification system has two distinct phases of operation: (i) the 

enrollment phase, during which multiple impressions of a fingerprint are acquired and 
stored in the database as templates, and (ii) the authentication phase, where the query 
image of a user is matched against the stored templates pertaining to that user (Fig.  1). 
The solid-state sensors that are being increasingly deployed in commercial applications, 
however, sense only a limited portion of the fingerprint pattern present in the tip of the 
finger. The amount of information  that can be extracted from such partial prints is 
substantially lower compared to that which can be extracted from more elaborate prints 
sensed using an optical sensor or even inked prints. The average number of minutiae points 
extracted from a Digital Biometrics optical sensor (500 × 500 image at 500 dpi) is 45 
compared to 25 minutiae obtained from a Veridicom sensor image (300 × 300 image at 
500 dpi). This loss of information affects the matching performance of the verification 
system - the relatively small overlap between the template and query impressions results in 
fewer corresponding points and therefore, results in higher false rejects and/or higher false 
accepts (Fig. 2). 

To deal with this problem, we have developed a fingerprint mosaicking scheme that 
constructs a composite fingerprint template using evidence accumulated from multiple 
impressions. A composite template reduces storage, decreases matching time and alleviates 
the quandary of selecting the “optimal” fingerprint template from a given set of 
impressions. In the proposed algorithm, two impressions (templates) of a finger are initially 
aligned using the corresponding minutiae points. This alignment is used by a modified 
version of the well-known iterative closest point algorithm (ICP) to compute a 
transformation matrix that defines the spatial relationship between the two impressions. 
The resulting transformation matrix is used in two ways: (a) the two template images are 
stitched together to generate a composite image. Minutiae points are then detected in this 
composite image; (b) the minutia sets obtained from each of the individual impressions are 
integrated to create a composite minutia set. Our experiments show that a composite 
template improves the performance of the fingerprint matching system by  4%. 

 
 

1 Introduction 
Typically, two types of representations are used to assess the similarity between a pair of 

fingerprints: (a) the global representation that examines the structure and flow of ridges over the 
entire print, and (b) the local representation, that exploits the position and orientation of certain singular 
points, called minutiae, that are present in the print (e.g., ridge endings and ridge bifurcations). By 
building a composite image, the amount of information available for these two types of representation 
increases. For example, the number of minutiae points used to represent a fingerprint may increase 
when minutiae information from two impressions of a finger are integrated. Similarly, the amount of 
ridge information available for global representation may increase as well. The challenge lies in 
accurately registering multiple impressions of the finger in order to extract more information. An 
accurate registration would aid in efficient mosaicking of the impressions. 
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Figure 1: Fingerprint verification: Multiple impressions of the same finger are stored in the database as 
templates. The query image is matched against the components of the template to verify the claimed 

identity. 
 
 

 
(a) Template Image                     (b) Query Image 

 
Figure 2: Two impressions (300×300) of the same finger acquired using the Veridi-com sensor. The two 

impressions are observed to have very little overlap. 
 

Registering fingerprint images, however, is a difficult problem for the following two reasons: 
(a) The ridges in a fingerprint image may have non-linear distortions due to the effect of pressing a 
convex elastic surface (the finger) on a flat surface (the sensor). Moreover, these distortions may be 
present only in certain regions of the sensed image due to the non-uniform pressure applied by the 
subject. (b) The presence of dirt deposits on the sensor or the finger can result in noisy or occluded 
images. It is rather difficult to register pairs of fingerprint images that are distorted differently or 
affected by noise. Ratha et al. [1] have developed a mosaicking scheme to integrate multiple snapshots of 
a fingerprint. The multiple snapshots are acquired as the user rolls the finger on the surface of the sensor 
and, therefore, a specific temporal order is imposed on the image frames when constructing the 
composite image. The authors examine 5 composition schemes that stack the grayscale images together 
and construct a composite mosaicked image, by associating a confidence value with every pixel. They 
evaluate the efficacy of these schemes by observing the area and quality (in terms of the number of 
valid minutiae points detected) of the composite image. Their experiments indicate that the mosaicked 
image has a substantially larger area and, consequently, more number of minutiae points are detected. It 
has to be noted that in their technique, successive impressions will have spatial proximity. But, in the 
case of dab fingerprint impressions obtained at different time instances, the parametric transformation 
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between impressions is not known. This complicates the problem of mosaicking fingerprint images 
captured at different time instances. 

 

 
                   (e)                                   (f)                                   (g) (h) 

 
Figure 3: Rolled versus dab prints. (a) - (d): A sequence of 4 rolled fingerprint impressions obtained 
using the Digital Biometric sensor. Successive image frames are known to have spatial proximity. (e) - 
(h): Four impressions of a finger obtained at different time instances using a Veridicom sensor. The 

transformation between the impressions is not known. 
 

We approach the problem of fingerprint mosaicking by treating the acquired fingerprint images 
as 3D surfaces. The rationale behind this is the observation that the imaging process involves pressing 
the 3D surface of the fingertip on a 2D flat surface. We assume that the resulting 2D intensity image 
indicates the pressure with which a user holds the finger against the surface of the sensor. Therefore, the 
intensity images may be treated as 3D range (surface) images. 

In order to generate the transformation matrix defining the spatial relationship between two 
impressions, we employ the iterative closest point (ICP) algorithm that registers two 3D surface images 
when sufficient number of corresponding points are available between the two surfaces.  The 
correspondences are used to compute an initial approximate alignment between the two surfaces; the 
ICP algorithm then attempts to find an optimal alignment such that the sum of distances between 
control points in one surface and the corresponding tangential planes in the other is minimized. 
Details of the algorithm is provided in the following section. 
 

2    Fingerprint Image Registration 
The problem of registering multiple 3D surfaces has received much attention in the literature 

[2][3]. A typical application of registration is 3D object model construction where multiple views of 
an object are integrated [4]. However, a variety of other applications exist for surface registration 
[5], including medical image analysis [6], terrain matching [7], etc. 

A 3D surface registration algorithm seeks to find the best transformation T that relates two 
entities P and Q whose range images are given by RP and RQ, respectively. Thus the goal of a 
registration algorithm is to find T such that the following objective function, D(RP,RQ), is 
minimized: 
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The transformation, T , that is used to optimally align entities P and Q, usually depends upon the 
distortions present in the range images. Thus, T  may be rigid, affine, polynomial, or elastic. For our 
application we assume T  to be a rigid transformation. T  can, therefore, be expressed as follows in 
homogeneous coordinates: 

 
Here α , β and γ  are the rotation angles about the x, y and z axes, respectively, and xt ,  and  yt zt
are the translation components along the three axes. Thus the matrix  has 6 independent Τ
parameters.In reality, the function f  is not known and, therefore, the objective function in equation 
(1) has to be replaced by an evaluation function that assumes knowledge of a set of corresponding 
points in PR  and QR . Therefore, given a set of N pairs of corresponding points, 
( , ), ,i i i P i Qp q p R q R∈ ∈  and i = 1... N, one can try to minimize the evaluation function e(RP,RQ): 

 
 
 
 

If the correspondences are not known, then it is not possible to register the images. 
Corresponding points are typically selected by extracting higher level features (e.g., edges, corners, 
texture, points of locally maximum curvature, etc.)   from the two surfaces, and looking for 
similarities between the two sets of extracted features. 

 
If the corresponding points are known, then the evaluation function shown in Equation (3) can 

be minimized by simply searching for the global minimum in the 6-dimensional parametric space 
using an iterative procedure. Such a procedure, however, does not guarantee convergence to a 
global minimum. To circumvent this problem, Chen and Medioni [8] assume that an initial 
approximate transformation, Tο , is known. A good starting approximation assures that the global 
minimum is reached quickly and surely. Equation (3) imposes a strict correspondence between 
points pi and qi. If the pair of points selected are incompatible (i.e., they are located on different 
surfaces in the two images), then an iterative procedure may converge very slowly. In order to deal 
with this issue, the ICP algorithm is used. This algorithm tries to minimize the distances between 
points in one image to geometric entities (as opposed to points) in the other. Chen and Medioni [8] 
attempt to minimize the distance of a point on one surface, to the tangential plane of the 
corresponding point in the other surface. Thus, they minimize 

 
 
 
where, sd  is the distance from the point to the plane, and  is the tangential plane jS
corresponding to  in surface jq QR . Once an initial alignment is provided, the control points are 
automatically chosen by examining homogeneous regions in the two images. 

An iterative procedure is adopted to converge to the global minimum (and hence the 
superscript k in the above equation). Since an approximate initial transformation matrix is known, 
convergence to the global minimum is assured, and since there is a relaxation in the condition of 
strict correspondence between points (equation (4)), convergence is faster. 
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3    Fingerprint Mosaicking 

We pose the fingerprint mosaicking problem as a 3D surface registration problem that can be 
solved using a modified ICP algorithm. The initial alignment of fingerprint images IP and IQ is 
obtained by extracting minutiae points from each individual image, and then comparing the two sets 
of minutiae points using an elastic point matching algorithm [12]. The comparison proceeds by first 
selecting a reference minutiae pair (one from each image), and then determining the number of 
corresponding minutiae pairs using the remaining sets of points in both the images. The reference 
pair that results in the maximum number of corresponding pairs is chosen. Let (pQ,qQ) be the 
reference minutiae pair and let (pl, qi),... (pN, qN) be the other corresponding minutiae pairs. Here, 

( , , ,
i i i ii x y zp p p p p )θ=  and ( , , , )

i i i ii x y zq q q q qθ= , where (x,y) are the spatial coordinates of the 
minutiae points, z is the intensity of the image at (x,y) and θ is the minutiae orientation. The initial 
transformation, , is computed using Horn’s method of unit quaternions [13] that operates on the 0T
( x , y , z )  values. In this technique, the translation parameters in Equation (2) are computed using 

the centroid of the point sets ( , ,
i i i

)x y zp p p  and ( , , )
i i ix y zq q q , and the rotation components are 

computed using the cross-covariance matrix between the centroid-adjusted pairs of points. 
 
3.1 Preprocessing the Fingerprint Image 
Since the ICP algorithm uses distances from points to planes, it is very sensitive to rapid and 

abrupt changes in surface direction. Therefore, the fingerprint images are first median filtered using a 
3×3 mask. This operation removes any undesirable “salt-and-pepper” noise that may be present in the 
valleys (furrows) of the fingerprint image (which may contribute to abrupt changes in the range image). 
The intensity values of the median filtered image are then scaled to a narrow range of values ([9, 10]) to 
ensure a fairly smooth change in surface direction in the corresponding range image of the fingerprints 
(Figure 4(b)). 

 
3.2 Fingerprint Segmentation 
The purpose of segmentation is to separate the foreground and background regions in the given 

intensity image. The foreground corresponds to those regions in the image that have valid fingerprint 
information (i.e., the ridges and valleys of the fingerprint), while the background represents those 
regions that do not have this information. It is useful to mask out the background of the images before 
registering the images using the ICP algorithm. This prevents the ICP algorithm from choosing 
control points in the background region (which is possible due to the homogeneity in intensity in these 
regions) and then attempting to align the images using these points. The algorithm to segment an 
image is as follows: (a) The preprocessed grayscale fingerprint image is converted to a binary 
image by examining the histogram of intensities and choosing a threshold. (b) An edge detection 
algorithm is applied to the binary image to get the outline of ridges. (c) Graham’s convex hull 
algorithm [11] is used to generate a polygon that segments the fingerprint image (Figure 4(c)). 

 
3.3 Fingerprint as a Range Image 
The intensity values are directly used as range values. Therefore, the intensity value of the 

image at the planar coordinate (x,y) is treated as the range value at that location. We now have two 
range images RP and RQ, that are obtained from the corresponding intensity images IP and IQ, 
respectively. Figure 4(d) illustrates this mapping for a portion of the image in 4(c). 

 
3.4 Registering Fingerprint Images 
The two range images, RP and RQ, are now subject to the iterations of the ICP algorithm. At 

each iteration k, the transformation Tk that minimizes Ek in Equation (4) is chosen. The process is 
said to have converged when, 
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where є  is some threshold, є ≈ 0.  

The final transformation matrix, Tsolution, is used in the following two ways. 
1. It is used to integrate the two individual images and create a composite image whose spatial 

extent is generally larger than the individual images. Minutiae points are then extracted from this 
larger image. 

2. The minutiae sets from the individual images are augmented using 
solutionT . 

 

 
 

Figure 4: Mapping an intensity image to a range image. (a) The original intensity image. (b) The 
intensity image after median filtering and scaling. (c) The segmented intensity image. (d) The range 

image corresponding to the boxed region (rotated by  90o) in (c). 
 

 
 
 
 
 
 

 Average Size Average Number of Minutiae 
Input Image 
Mosaicked Image 

300 × 300 336 
× 332 

22  
30 

 
Table 1: Increase in average image size and average number of detected minutiae as a result of 

mosaicking. 
 

 
 
Mosaicked Images 
The given intensity images IP and IQ are integrated into a new image IR. Since solutionT  

transforms  into , we compute the new spatial coordinates of every pixel PI QI
PI  in RI . We 

extract a new minutiae set ( 1RM ) from this image using the algorithm described in [12] (see figure 
5(e)). Note that the spatial extent of the composite image is generally larger than the individual 

1
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images. Figure 6 shows the result of mosaicking on six different fingerprint pairs. Table 1 lists the 
increase in image size and the number of detected minutiae in the composite image. 

The mosaicking procedure may sometimes result in poorly aligned images. This can happen 
when: (i) the segmentation of either of the images is erroneous, (ii) the images are noisy, or (iii) there 
are very few (< 5) corresponding points available to provide a valid initial alignment (Figure 7). 

 
The intensity images IP and IQ are integrated into a new image IR. Since Tsolution transforms IP 

into IQ, we compute the new spatial coordinate of every pixel IP in IR. We extract a new minutiae set 
( 

1RM  from this composite image using the algorithm described in [12] (see figure 5). 

 
 
Augmented Minutiae Sets 
Let PM  refer to the minutiae set extracted from PI  and QM  refer to the minutiae set extracted 

from IQ. The composed minutiae set 2RM  is obtained by computing the (x, y, θ) parameter of each 

minutia in the composite image. The new (x, y) coordinates (i.e., the spatial coordinates) of the 
minutiae points (of the first image) is determined by simply multiplying the old coordinates with the 
transformation matrix       (Figure 5f).  The minutiae orientation, θ, is not recomputed. 
 

 
  
      (a)                              (b) 

 
 

 
 

(c)                                          (d) 
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(e)                                               (f) 

 
Figure 5: Composite template construction: (a) First image after segmentation. (b) Second image 

after segmentation. (c) Initial alignment. (d) Final alignment. (e) Minutiae extracted from mosaicked 
images. (f) Composite minutiae set obtained by augmenting individual minutiae sets. 

 

 
 

   (a)                                                (b) 
 

 

 
 
 

                                                  (c)                                                  (d) 
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                                              (e)                                                     (f) 

 
Figure 6: The result of mosaicking six pairs of fingerprint impressions. The spatial extent of the 

mosaicked image is observed to be larger than that of the component images. 
 

 
                                               
                                             (a)                                                  (b) 

 
Figure 7: Examples of poorly mosaicked image pairs. Integrating Images 

 
 

4    Experimental Results 

We have conducted the following experiments to validate the effectiveness of the transformation 
and integration described in section 3.4. We have two different techniques to obtain a composite 
minutiae set. The two minutiae sets are indicated by MR1 (obtained by extracting minutiae from the 
composite image), and MR2 (obtained by integrating individual minutiae sets). We treat these sets as 
template minutiae sets against which a query minutiae set can be matched. 

Fingerprint images of 640 different fingers, corresponding to 160 different subjects, were acquired 
using the Veridicom sensor as described in the previous chapter. 4 different impressions of each of these 
fingers were obtained over two different sessions separated by a period of six weeks   (2 impressions in each 
session). The two impressions acquired at the same session were used to construct the template minutiae 
set of a finger, while the other two impressions were used as query images during the test phase of the 

experiment. Thus, 640 pairs of images were used to construct the minutiae templates 1RM  and 
2RM , 

and the rest (1280) were used as query images.  
Given a minutiae set MU (of the query image IU), and the template minutiae sets MP, MQ, 

1RM  

and 
2RM , we perform the following comparisons: (i) MU with MP, (ii)MU with MQ, (iii) MU with 
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1RM , and (iv) MU with 
2RM . Thus we get a set of four scores corresponding to these comparisons. 

The ROC curves depicting the performance of these 4 different matchings are shown in figure 8. It is 
clear from these graphs that a composite template image results in improved matching performance. We 
further observe that a better matching performance is obtained by using 

1RM   rather than 
2RM . 

This may be due to incorrect minutiae orientation in MR2. Note that when augmenting the two 
minutiae sets, MP and MQ, no systematic technique is used to adjust the minutiae orientation in the 
composite minutiae template, 

2RM . While the use of 
1RM  results in better matching performance, 

generating MR1 introduces several spurious minutiae that have to be carefully discarded. The spurious 
minutiae are a consequence of misalignment of the ridges present in the two individual impressions that 
are being integrated. 
 

 
Figure 8: The ROC curves indicating improvement in matching performance after mosaicking 

templates. Utilizing the minutiae points that are extracted from the composite fingerprint image 
(MR1) results in the best matching performance. 

 
5  Conclusions 

We have described a fingerprint template construction technique that integrates information 
available in two different impressions of the same finger. The method makes use of corresponding 
minutiae points to establish an initial approximate alignment, and a modified ICP algorithm to 
register the two impressions. The transformation matrix generated by the ICP algorithm is used to 
construct composite information from the individual impressions. Our experiments indicate that 
mosaicking the images together and then extracting the (template) minutiae set results in a better 
matching performance.The mosaicking scheme suggested here has been used to register two impressions of 
a finger. By repeated application of this procedure several impressions of a finger (> 2) may be 
integrated. Fingerprint mosaicking elegantly addresses the problem of partial fingerprint images and is, 
therefore, an essential component of a fingerprint recognition system. 
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