
GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 10

AN EXPERIMENTAL EXAMINATION OF EFFECTIVE SOFTWARE
PRODUCTION PROCESS: A NOVEL STUDY

Dr.S.S.Riaz Ahamed

Principal, Sathak Institute of Technology, Ramanathapuram, Tamilnadu, India.

Email:ssriaz@ieee.org, ssriaz@yahoo.com

ABSTRACT
In this era of globalization which is characterized by intense competition, the

software industry moves unrelentingly towards new methods for managing the ever-
increasing complexity of software projects. We have constantly witnessed evolutions,
revolutions, and recurring themes of success and failure. The technologies, process,
and methods have advanced rapidly, software project management and quality
assurance remains a people-intensive process.

1 INTRODUCTION
To find an organization’s present position, the SEI (Software Engineering Institute) uses an

assessment questionnaire and a five-point grading scheme. The grading scheme determines
compliance with a model known as the capability maturity model that identifies key set of activities
required at various levels or process maturity.

Capability Maturity Model

CMM is not a software process model. Instead, it is a strategy for improving the software process.

(1) CMM assists organizations in providing the infrastructure for a disciplined and mature software
process. The CMM strategy is to improve the management of the software process, in the belief that
this will lead to improvements in techniques.

(2) Maturity Levels:

Maturity Level Characterization
-------------- ----------------
1. Initial Ad hoc process
2. Repeatable Basic project management
3. Defined level Process definition
4. Managed level Process measurement
5. Optimizing level Process control

(3) An organization can assess maturity using a series of questionnaires developed by CMU's SEI
(Software Engineering Institute). Thus this approach is good for organization, which must access
software procurement.

(4) The software maturity model emphasizes measurement, training and retraining of software
personnel, and quality control of the software process. However, it also increases productivity, as a
software development organization moves up to higher level of maturity.

The SEI method ascertains global effectiveness and outlines the following five maturity levels.

Level 1: Initial - The initial software process is one in which has a few processes defined
intermittently and even with elements which lead to confusion. Success is often attributed to the
individual effort.

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 11

Level 2: Repeatable - The essence of project management process are built in to track cost,
schedule and functionality. The essential project discipline is set in right place to ensure successes
on projects, which are similar.

Level 3: Defined - Both the management and the engineering activities of a software process are
aptly documented, standardized, and integrated into an organization-wide software process.

Level 4: Managed - The software process and the associated products are quantitatively and
qualitatively collected, understood and controlled using elaborate measures.

Level 5: Optimizing - The improvement in the process is attained by continuous quantitative
feedback from the process and from testing innovative ideas and technologies and it obviously
fulfills level 4.

The five levels defined by the SEI are derived because of evaluating responses to the SEI

assessment questionnaire that is based on the capability maturity model. The results of the
questionnaire are distilled to a single numerical grade that provides an identification of an
organization’s process maturity. The SEI has associated key process areas with each of the maturity
levels. The KPAs describe those software engineering functions (e.g. software project planning,
requirements management) that must be present to satisfy good practice at a particular level.

The key performance areas are identified by the following characteristics:
 Goals- the overall objectives that the KPA must achieve.
 Commitments- requirements that must be met to achieve the set goals.
 Abilities - Set of things in the right place for achieving organization’s commitments.
 Activities - Tasks to achieve KPA.
 Implementation monitoring - methods in which activities are controlled and regulated as

they are put in the right place.
 Implementation verifying - KPAs defined across the maturity model and mapped into

different levels of process maturity.

Process maturity level 2
 Software configuration mangement
 Software quality assurance
 Software subcontract management
 Software project tracking and oversight.
 Software project planning
 Requirements management

Process maturity level 3

 Peer reviews
 Intergroup coordination
 Software product engineering
 Integrated Software Management
 Training program
 Organization process definition
 Organization process focus

Process Maturity level 4

 Software quality management
 Quantitative process management

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 12

Process Maturity level 5

 Process change management
 Technology change management
 Defect prevention

2 SOFTWARE PROCESS MODELS
In order to have a proper understanding of the subject regarding software, an individual is

required to understand different models and the significance that it has in the present day situation
to design a software. For solving an actual problem in an industrial setting, a software engineer or a
team of engineers must incorporate development strategy that encompasses the process, methods,
and tools layers and the generic phases. This strategy is often referred to as a process model or a
software engineering paradigm.

2.1 Waterfall Model:
This model is considered the simplest process model. This model is also referred to as the

linear sequential model or the “classic life cycle”. This model states that phases are organized in a
linear order. Depending upon the nature of activities and the flow of control among them, there are
various variations to this model. In a typical model, a project often begins with the feasibility
analysis. On successfully demonstrating the feasibility of the project, the requirement analysis and
project planning starts. The design starts after the requirements analysis is complete. When the
programming is completed, the code is integrated and testing is done. On successful completion
of testing, the system is installed. After this the regular operation and maintenance of the system
takes place. It can be observed that from the waterfall model, the sequence of activities performed
in a software development project is Feasibility study, Requirement analysis and specification,
Design and Specification, coding and module testing, systems integration and testing, delivery and
maintenance.

Activities of the Waterfall Model
A Peep into the project outputs in Waterfall Model:
The output of a project employing the waterfall model is not just the final program along with

the documentation to use. There are a number of intermediate outputs that must be produced to
produce a successful product. The set of documents that should be produced in a project is
dependent on how the process is implemented; the following is a set of documents that generally
forms the minimum set that should be produced in each project.

 Feasibility study
 Requirement analysis and specification
 Design and Specification
 Coding and module testing
 Systems integration and testing
 Delivery
 Maintenance

It can be inferred that reviews are necessary, especially for the requirements and design

phases, because other certification means are certainly not available. Reviews are meetings
conducted to undress deficiencies in a product. The review reports are the out of these reviews.

Feasibility study
The Phase includes

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 13

1. Problem definition
2. Solutions on various aspects and their benefits
3. Infrastructure and Cost Estimation of benefited solutions.

Requirement analysis and specification
This phase defines the quality of the project proposed and the required resources. The

outcome of this phase is requirements specification document and the purpose of this document is
twofold: one for customer satisfaction (looking ahead the proposal whether it meets the
requirement) and the other for the sake of Software engineers. The document should be
understandable, precise, complete, consistent, unambiguous, and modifiable. The requirements list
can be classified as (i) functional requirements (ii) non-functional requirements and (iii)
Requirements on the development and maintenance process.

Design and Specification
The phase involves in decomposing the system into modules and a description report “design

specification document” is produced. The output helps to retrieve the information of different
modules and their respective functions.

Coding and module testing
Coding and module testing is the phase where actually the decomposed modules are

computerized using effective programming languages. The phase also involves the major quality
control activity – module testing that involves in testing each modules.

Feasibility
Study

Requirement
analysis &

specification

Design and
Specification

Coding and
module
testing

Integration &
System testing

 Delivery

Maintenance

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 14

Systems integration and testing
Integration amounts to assembling the application from the set of components that were

developed and tested separately. As a final stage, the development team tests the entire system.

Delivery
The delivery is done in two ways:

(i) The system is tested by selected customers and the process is called as beta testing and
(ii) The product is delivered to customer community.

Maintenance
Maintenance is defined as a set of activities that are performed after the system is delivered to

the customer. It generally consists of
 Correcting of any remaining errors (corrective maintenance)
 Changing the application based on the environment (adaptive maintenance)
 Improving, changing or adding features (perfective maintenance).

It must be mentioned that linear ordering of activities has some important consequences.
First, to clearly identify the end of a phase and the beginning of the next, some certification
mechanisms has to be employed at the end of each phase. The verification and validation means
ensures that the output of a phase is consistent with its input (which is the output of the previous
phase), and that the output of the phase is consistent with the overall requirements of the system.
The need for certification is that each phase must have some defined output that can be evaluated
and certified. That is, when the activities of a phase are completed, there should be some product
that is produced by that phase. In addition, the goal of a phase is to produce the product. The
output of the earlier phase is to produce this product. The outputs of the earlier phases are referred
to as work products (or intermediate products) and are generally in the form of documents like the
requirements document or design document. For the coding phase, the output is the code. The
output of a software project is not just the final program along with the user documentation, but also
the requirements document, design document, project plan, test plan, and test results.

2.2 Prototyping Model
One of the main objectives of the prototyping based development process is to get over the

first two limitations of the waterfall model. The idea behind prototyping is that instead of freezing
the requirements before any design or coding can proceed, a throwaway prototype is built to
understand the requirements. Of course, the development of the prototype undergoes design,
coding and testing, but each of these phases is not done very formally and fully. By making use of
the prototype, the person gets an actual feel of the system, which ultimately paves the way for better
understanding of the requirements of the system. It is indeed accepted that prototyping is an
attractive idea for complicated and large system for which there is no manual process or existing
system to help determine the requirements. Allowing the client “play” with the prototype provides
invaluable and intangible inputs that help determine the requirements for the system. It is an
effective method for determining the feasibility of certain approach.

The prototype can serve as the “first system”. Both customers and developers like prototyping
paradigm. Users get a feel of the actual system and developers get to build something immediately.

Prototyping can be an effective paradigm for software engineering. The key is to define the
rules of the game at the beginning; that is, the customer and developer must both agree that the
prototype is built to serve as a mechanism for defining requirements. It is then discarded (at least in
part), and the actual software is engineered with an eye towards quality and maintainability.

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 15

2.3 The RAD Model
Rapid Application Development is a linear sequential software development process, which

emphasizes an extremely short development cycle. The RAD is a “high speed” model in which
rapid development is achieved by using a component-based construction approach. Fully functional
system can be attained within a very short time in this model provided the requirements are fully
understood.

2.4 The Incremental Model
The incremental model combines elements of the linear sequential model with the iterative

philosophy of prototyping. Under this model, the first is often the generation of a core product.
Then the supplementary issues are addressed by use and evaluation by creation of an incremental
plan. The plan is implemented and the user checks the additional features until the complete
product is born.

The incremental process model is iterative in nature. However, unlike prototyping, the
incremental model focuses on the delivery of operational product with each increment. Early
increments are “stripped down” versions of the final product, but they do provide capability that
serves the use and also provide a platform for evaluation by the user.

It is a model whose stages consist of expanding increments of an operation software product,
with the direction of evolution being determined by operational experience. Increments may be
delivered to the customer as they are developed; this is referred to as evolutionary or incremental
delivery. We may summarize the development strategy of an evolutionary process model:

1. Deliver something to the real user.
2. Measure the added value to the user in all critical dimensions.
3. Adjust both the design and the objectives based on observed realities.

This model may be also termed as incremental implementation and delivery model.

2.5 The Spiral Model
The model is recent in origin. Boehm has proposed this model. True to its name, the

activities in this model can be organized like a spiral that has many cycles. The radial dimension
represents the cumulative cost incurred in accompanying the steps done so far, and the angular
dimension represents the progress made in completing each cycle of the spiral. Every cycle in the
spiral begins with the identification of the objectives for the cycle, the different alternatives that are
possible for achieving the objectives, and the constraints that exist.

As the model is relatively new, it has the property of encompassing different development
strategies apart from development activities. For projects that have a high degree of risk, this model
is preferred as it properly takes care of the management and planning activities.

 The spiral model is divided into a number of framework activities, also called task regions.

 Customer communication – tasks required to develop effective communication between
developer and customer.

 Planning – tasks required to define resources, timelines, and other project related
information.

 Risk analysis - tasks required to accomplish both technical and management risks.
 Engineering: - tasks required to build one or more representations of the application.
 Construction and release- tasks required to construct, test, install and provide user support

(e.g. documentation and training)
 Customer evaluation – tasks required to obtain customer feedback based on evaluation of

the software representations created during the engineering stage and implemented during
the installation stage.

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 16

2.6 The Component Assembly Model
Object technologies provide the technical framework for a component based process model

for software engineering. The object-oriented paradigm emphasizes the creation of lasses that
encapsulate both data and the algorithms that are used to manipulate the data. If properly designed
and implemented, object oriented classes are reusable across different applications and computer
based systems architectures.

Under this model, data and algorithm are packaged into a class. Classes (called components),
created in the past are stored in class library. The class library is referenced and the right classes are
identified and reused.

Thus, component assembly model leads to software reuse and reusability, which has a number
of benefits. Based on studies by QSM Associates, it is found that component assembly leads to a
70% reduction in development cycle time, an 84% reduction in project cost, and a productivity
indeed of 26.2 compared to an industry norm of 16.9.

2.7 The Concurrent Development Model
It is a schematic representation of a series of major technical activities, tasks and their

associated states. The concurrent process model defines a series of events that will trigger
transitions from state to state for each of the engineering activities. Concurrency is achieved in two
ways viz

(1) System and component activities occur simultaneously and can be modeling using the
state oriented approach using the above;

(2) A typical client server application is implemented with many components, each of
which can be designed and realized concurrently. The concurrent process model is
more practical and can be applied to all types of software development and provides a
more correct and accurate picture of the current state of the project. It defines a
network of activities. Each activity on the network exists simultaneously with other
activities. Events generated within a given activity or at some other place in the activity
network trigger transitions among the states of an activity.

It is a schematic representation of a series of major technical activities, tasks and their

associated states. The concurrent process model defines a series of events that will trigger
transitions from state to state for each of the engineering activities. Concurrency is achieved in two
ways viz

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 17

(1) System and component activities occur simultaneously and can be modeling using the state
oriented approach using the above;

(2) A typical client server application is implemented with many components, each of which
can be designed and realized concurrently. The concurrent process model is more practical
and can be applied to all types of software development and provides a more correct and
accurate picture of the current state of the project. It defines a network of activities. Each
activity on the network exists simultaneously with other activities. Events generated within
a given activity or at some other place in the activity network trigger transitions among the
states of an activity.

3 SOFTWARE LIFE CYCLE
The software life cycle is broken into cycles with each cycle working on a generation of the

system. To achieve economies of scale and higher returns on investment, we must move toward a
software manufacturing process driven by technological improvements in process automation and
component-based development. The life cycle is divided into two stages as a part of first order.
They are

1. The engineering stage
2. The production stage

LIFE CYCLE ASPECT ENGINEERING STAGE PRODUCTION STAGE

Risk reduction Schedule, technical
feasibility

Cost

Products Architecture baseline Product release baselines

Activities Analysis, design, planning Implementation, testing

Assessment Demonstration, inspection,
analysis

Testing

Economics Resolving diseconomies of
scale

Exploiting economies of
scale

Management Planning operations

The two stages is a little too course, too simplistic for more applications. Hence, the Rational
Objector software engineering methodology divides one development cycle into four consecutive
phases: inception phase, elaboration phase, construction phase, and transition phase. The
engineering stage is decomposed into inspection and elaboration phase, where the production stage
is decomposed into construction and transition phase. These four phases of the life-cycle process
are loosely mapped of the conceptual framework of the spiral model and are named to depict the
state of the project. In the figure, the size of the spiral corresponds to the inertia of the project with
respect to the breadth and depth of the artifacts that have been developed. This inertia manifests
itself in maintaining artifact consistency, regression testing , documentation, quality analyses, and
configuration control. Increased inertia may have little, or at least very straightforward, affect
changing any given discrete component or activity. However, the reaction time for accommodating
ajar architectural changes, major requirements changes, major planning shifts, or major
organizational perturbations clearly increases in subsequent phases.

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 18

The Inception Phase
The inception phase establishes the business case for the system and defines the system's

scope. The business case includes success criteria, risk assessment, estimate of the resources
needed, and a phase plan showing dates of major milestones. At the end of the inception phase, the
life cycle objectives of the project are examined to decide whether to proceed with the development.
Primary objectives:

 Establishing the project’s software scope and boundary conditions, including an operational
concept. Acceptance criteria an a clear understanding of what is and is not intended to be in
the product

 Discriminating the critical use cases of the system and the primary scenarios of operation
that will drive the major design trade-offs.

 Demonstrating at least one candidate architecture against some of the primary scenarios
 Estimating the cost and schedule for the entire project
 Estimating potential risks

Essential activities
 Formulating the scope of the project.
 Synthesizing the architecture.
 Planning and preparing a business case.

Elaboration Phase
The goals of the elaboration phase are to analyze the problem domain, establish a sound

architectural foundation, develop the project plan and eliminate the highest risk elements of the
project. At the end of the elaboration phase, the detailed system objectives, scope, choice of
architecture, and the resolution of major risks are examined.
Primary objectives

 Base lining the architecture as rapidly as practical
 Base lining the vision
 Base lining a high-fidelity plan for the construction phase

Engineering Stage Production Stage

Inception Elaboration Construction Transition

Idea Architecture Beta Releases Products

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 19

 Demonstrating that the baseline architecture will support the vision at a reasonable cost in a
reasonable time

Essential activities

 Elaborating the vision
 Elaborating the process and infrastructure.
 Elaborating the architecture and selecting components.

The Construction Phase
During the construction phase, a complete system is iteratively and incrementally developed

and made ready for transition to the customer community. This includes completing the
implementation and testing of the software. At the end of the construction phase, the operational
decision is made.
Primary objectives

 Minimizing development costs by optimizing resources and avoiding unnecessary scrap and
rework

 Achieving adequate quality as rapidly as practical
 Achieving useful versions

Essential activities

 Resource management, control, and process optimization
 Complete component development and testing against evaluation criteria
 Assessment of product releases against acceptance criteria of the vision

The Transition Phase
During the transition phase, the software is shipped to the customer. This phase typically

starts with a ``beta release'' of the systems. At the end of the transition phase, the life cycle
objectives are reviewed and possibly another development cycle begins.
Primary objectives

 Achieving user self-supportability
 Achieving stakeholder concurrence that deployment baselines are complete and consistent

with the evaluation criteria of the vision
 Achieving final product baselines as rapidly and cost-effectively as practical

Essential activities

 Synchronization and integration of concurrent construction increments into consistent
deployment baselines.

 Deployment-specific engineering
 Assessment of deployment baselines against the complete vision and acceptance criteria in

the requirements set.

4 CONCLUSION

Software Process is a compendium of information that describes how a software organization
plans for, manages, builds, qualifies, and maintains software. In other words, the standard software
process consists of a number of building blocks that are used in different ways to support software
projects. Development process in software is unfathomable. Its limits are not difficult to be
assigned nor it possible to fix boundaries. Yet, as a matter of discipline, it is necessary to tailor the
process to the specific needs of one’s project to one’s hand. As the clock has two hands, the
software development process has technical complexity and management complexity. Both these
complexity must be synchronized and must act in tandem so that they tick well to show good time.

GESJ: Computer Science and Telecommunications 2012|No.4(36)
ISSN 1512-1232

 20

As discipline is tailored and built into the process development, logic coupled with judgement is
injected and the methods, techniques, culture, formality, values and organization become part of the
development process.

REFERENCES
1. Pressman, Scott (2005), Software Engineering: A Practitioner's Approach (Sixth,

International ed.), McGraw-Hill Education.
2. David I. Cleland, Roland Gareis (2006). Global project management handbook. McGraw-

Hill Professional, 2006. ISBN 0071460454. Pp.1-4.
3. Albert Hamilton (2004). Handbook of Project Management Procedures. TTL Publishing,

Ltd. ISBN 07277-3258-7.
4. Edward Kit, Software testing in the real world, Addison-Wesley publications, 2000, ed.1
5. Pankaj Jalote, An integrated approach to software engineering, Narosa publications, 1997,

ed. 2
6. Shari Lawrence Peleeger, software engineering theory and practice, Pearson education,

2001, ed. 2
7. Richard Fairly, Software engineering concepts, McGraw-Hill Inc.,1985
8. Barry W. Boehm, Software Engineering Economics, Prentice-Hall Inc., 1981.
9. Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison Wesley, Boston,

MA, 2006.
10. Ho-Won Jung, Seung-Gweon Kim, and Chang-Sin Chung. Measuring software product

quality: A survey of ISO/IEC 9126. IEEE Software, 21(5):10–13, September/October 2004.
11. Martin Stevens (2002). Project Management Pathways. Association for Project

Management. APM Publishing Limited, 2002.
12. Morgen Witzel (2003). Fifty key figures in management . Routledge, 2003. ISBN

0415369770. Pp. 96-101.
13. Bjarne Kousholt (2007). Project Management –. Theory and practice.. Nyt Teknisk Forlag.

ISBN 8757126038. p.59.
14. F. L. Harrison, Dennis Lock (2004). Advanced project management: a structured approach .

Gower Publishing, Ltd., 2004. ISBN 0566078228. p.34.
15. Stellman, Andrew; Greene, Jennifer (2005). Applied Software Project Management.

O'Reilly Media. ISBN 978-0-596-00948-9.
16. Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley,

Boston, MA, second edition, 2002.
17. Jeff Tian, Software Quality Engineering: Testing, Quality Assurance, and Quantifiable

Improvement, IEEE Computer Society Press, 2005, ISBN: 0471713457.
18. Musa, J.D, A. Iannino, and K. Okumoto, Engineering and Managing Software with

Reliability Measures, McGraw-Hill, 1987
19. Dustin, Elfriede (2002). Effective software Testing. Addison Wesley. p. 3. ISBN 0-20179-

429-2.

Article received: 2010-04-29

http://www.spinellis.gr/codequality
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-20179-429-2
http://en.wikipedia.org/wiki/Special:BookSources/0-20179-429-2

	Activities of the Waterfall Model
	Feasibility study
	Requirement analysis and specification
	Design and Specification
	Coding and module testing
	Systems integration and testing
	Delivery
	Maintenance
	2.2 Prototyping Model
	2.3 The RAD Model
	2.4 The Incremental Model

