
GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 3

THE INFLUENCE OF ROLE AND CRUCIAL ATTRIBUTES OF

SOFTWARE DEVELOPMENT TEAM IN THE SOFTWARE PROJECT
DEVELOPMENT PROCESS

Dr.S.S.Riaz Ahamed

Principal, Sathak Institute of Technology, Ramanathapuram, Tamilnadu, India.

Email:ssriaz@ieee.org, ssriaz@yahoo.com

Abstract
Software development process is a team activity and it involves different phases
engaged with group of persons involved in different activities. Every individual has his
own responsibility in completion of his or her process. Though they have given a
responsibility, it is essential to have a successful project leader for the smooth execution
of the project. He has to apply a problem solving management style to work on the
project.

1 INTRODUCTION
An effective software project management focuses on three vital aspects. They are people,

problem, and process.

People: The people management maturity model defines the following key practice areas for
software people, they are recruiting, selection, performance management training, compensation,
career development, organization and work design, and team/culture development. Increasingly
complex applications can only be developed by helping people to grow, attract, motivate, deploy
and retain the talent needed to improve their software development capability.

The problem aspect: Project planning starts when the objectives and scope are established,
alternate solutions should be considered, and technical and management constraints should be
identified. Without this information, it is impossible to define reasonable (and accurate) estimates
of cost; an effective assessment of risk; a realistic breakdown of project tasks; or a manageable
project schedule that provides a meaningful indication of progress. The software developer and the
user interact to define project objectives and scope. In many cases, this activity begins as part of
the system engineering process and continues as the first step in software requirement analysis.
Objectives identify the overall goals of the project without considering how these goals will be
achieved. Scope identifies the primary data, functions, and behaviors that characterize the
problem, and more important, attempts to bound these characteristics in a quantitative manner.

If only, the project objectives and scope are understood, alternate solutions are considered to
select a ”best” approach, given the constraints imposed by delivery deadlines, budgetary
restrictions, personnel availability, technical interfaces, and myriad other factors.

The Process Aspect: The process aspect in software provides the framework from which
emerges the plan for software development can be established. A small number of framework
activities are applicable to all software projects, regardless of their size and complexity. A number
of different task sets- tasks, milestones, deliverables and quality assurance points- enable the
framework activities to be adapted to the characteristics of the software project and the
requirements of the software team. Last but not the least, umbrella activities – such as software
quality assurance, software configuration management, and measurement- overlay the process
model. Umbrella activities are not dependent on any framework activity, which occur throughout
the process.

GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 4

2 TEAM
The players in the software arena can be divided into five categories for the purpose of study:

1. Senior managers, who define the business issues and influence the project,.
2. Project (technical) mangers plan, motivate, organize, control and they are responsible for

the product.
3. Practitioners, who deliver the technical skills that, are necessary to engineer a product or

application.
4. Customers, who specify the requirements for the software to be molded.
5. End users, who utilize the software after it is launched properly.

The team structure found to be good based on the selection scheme by the management.

Mantei suggests three best models to device a best project team.
 Democratic Decentralized (dd)
 Controlled decentralized (cd)
 Controlled Centralized (cc)

Democratic Decentralized: This engineering team does not have any specific team leader.

Rather it appoints “task coordinators” for a period of short duration. The communication is
horizontal and the decision is made by the group consensus.

Controlled decentralized: In this engineering team, the process is divided into main task and
sub task. A permanent leader is been appointed and he takes care of the main task. The next level of
authority looks after the subtask. Problem analyzing being the group activity but the decision is
made only by the team leader.

Senior Engineers

Junior Engineers

GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 5

Controlled Centralized: Top-level problem solving and internal team coordination are

managed by a team leader.

The team morale is affected by the length of time the team will “live together”. DD team

structures results in high morale and job satisfaction and are therefore good for long lifetime teams.
The DD team structure is best applied to problems with relatively low modularity because of the
higher volume of communication that is required.

Mantei also describes seven factors for planning the structure of the engineering teams. They
are

 The difficulty of the problem to be solved
 The size of the resultant program(s) in lines of code or function points
 The time the team will stay together (teamlifetime)
 The degree to which the problem can be modularized
 The requirement quality and reliability of the system to be built
 The rigidity of the delivery date
 The degree of sociability (communication) required for the project.

The major that occur in teams and their remedies are given below.

Chief Programmer

SpecialistsProgrammersLibrarian

GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 6

RISK ITEMS RISK MANAGEMENT TECHNIQUES
 Personnel shortfalls Staffing with top talent; job matching; team-building; key-

personnel agreements; cross training; pre-scheduling key people
Unrealistic schedules and budgets Detailed multisource cost & schedule estimation; design to cost;

incremental development; software reuse; requirements scrubbing.
Developing the wrong software
functions

Organization analysis; mission analysis; ops-concept formulation;
user surveys; prototyping early user’s manual.

Developing the wrong interface Prototyping scenarios; task analysis; user characterization
(functionality, style, workload)

Gold Plating Requirements scrubbing; prototyping; cost benefit analysis; design
to cost

Continuing stream of requirements
changes

High change threshold; information hiding; incremental
development(defer changes to later increments)

Shortfalls in externally furnished
components

Benchmarking; inspections; reference checking; compatibility
analysis.

Shortfalls in externally performed
tasks

Reference checking; pre-award audits; award-fee contacts;
competitive design or prototyping; teambuilding.

Real-time performance shortfalls Simulation; benchmarking; modeling; prototyping;
instrumentation; tuning

Straining computer science
capabilities

Technical analysis; cost benefit analysis; prototyping; reference
checking.

Constantine suggests four “organizational paradigms” for software engineering teams:

1. A closed paradigm structures a team along a traditional hierarchy of authority. Such teams
can work well when producing software that is quite similar to past efforts, but they will be
less likely to be innovative when working within the closed paradigm.

2. The random paradigm structures a team loosely and depends on individual initiative of the
team members. When innovation or technological break-through is required, teams
following the random paradigm will excel. But such teams may struggle when “orderly
performance” is required.

3. The open paradigm attempts to structure a team in a manner that achieves some of the
controls associated with the closed paradigm but also much the innovation that occurs when
using the random paradigm. Work is performed collaboratively with heavy communication
and consensus-based decision-making. Open paradigm team structures are well suited to the
solution of complex problems, but may not perform as efficiently as other teams.

4. The synchronous paradigm relies on the natural compartmentalization of a problem and
organizes team members to work on pieces of the problem with little active communication
among themselves.

3 LEADERSHIP
A successful leader is one who can motivate persons around him and make them follow him.

His work and conduct is a living example for others to emulate. People flock around the leader
impressed by certain values or characteristics that the leader has. He is of course a good
communicator and understands the problems that beset the work of the persons around him and has
concern and regard for them. As he has a good understanding of situations around him, he is able to
suggest remedies and solve problems.

Leadership is a process of influence on a group. It is an important part of a manager’s job.
Effective leadership is necessary for inspiring the people to work for the accomplishment of a given
objectives. It provides a cohesive force, which holds the group intact and develops a spirit of

GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 7

cooperation. Effective leadership is essential for efficient direction of human efforts towards the
predetermined goals.

Chester Bernard viewed leadership as the quality of behavior of individuals whereby they
guide people or their activities in organizing efforts. A leader interprets the objectives of the people
working under him and guides them towards the achievement of those objectives. In other words of
Louis A.Allen,”A leader is one who guides and directs other people. He gives the efforts of his
followers a direction and purpose by influencing their behavior.”

Leadership is a process of influencing the subordinates so that they cooperate enthusiastically
in the achievement of group goals. According to Theo Haimann, “Leadership is the process by
which an executive imaginatively directs, guides and influences the work of others in choosing and
attaining specified goals by mediating between the individuals and the organization in such manner
that both will obtain maximum satisfaction.”

Characteristics of Leadership
An analysis of the above definitions of leadership reveals that it has the following

characteristics:

1. Leadership is a process of influence: Leadership is a process whose important ingredient is
the influence exercised by the leader on group members. A person is said to have an
influence over others when they are willing to carry out his wishes and accept his advice,
guidance and direction. Successful leaders are able to influence the behavior, attitudes and
beliefs of their followers.

2. Leadership is related to a situation: When we talk of leadership, it is always related to a
particular situation, at a given point of time and under specific set of circumstances. That
means leadership styles will be different under different circumstances. At one point of
time, the subordinates may accept the autocratic behavior of the leader while at a different
point of time, and under different situation, only participative leadership style may be
successful.

3. Leadership is the function of stimulation: Leadership is the function of motivating people to
strive willingly to attain organizational objectives. Leaders are considered successful when
they are able to subordinate the individual interests of the employees to the general interests
of the organization. A successful leader allows his subordinates to have their individual
goals set up by themselves in such a way that they do not conflict with the organizational
objective.

The following are some of the crucial attributes of successful software project managers:

1. Hiring skills: Few decisions are as important as hiring decisions. Placing the right person
in the right job seems obvious but it is surprisingly hard to achieve.

2. Avoiding adversarial relationships among stake-holders is a prerequisite for success.
3. Decision making skill: The jillion books written about management have failed to provide

a clear definition of this attribute. We all know a good leader when we run into one, and
decision making skills seems obvious despite its intangible definition.

4. Team-building skill: Teamwork requires that a manager establish trust, motivate progress,
exploit eccentric prima donnas, transition average people into top performers, eliminate
misfits, and consolidate diverse opinions into a team direction.

5. Selling skill: Successful project managers must sell all stakeholders (including themselves)
on decision and priorities, sell candidates on job positions, sell changes to the status quo in
the face of resistance, and sell achievements against objectives. In practice, selling requires
continuation negotiation, compromise and empathy.

GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 8

4 COMMUNICATION
Communication is the key to everything in the universe and People evolve process and they

rectify problem through communication and interaction. How effectively this is done is a function
of harmony among the three vital forces. Communication is the important factor in the project
coordination. The best way of communication makes the information reach the round table in
proper way and exact way.

Kraul and Streeter examined a collection of project coordination techniques that are
categorized as follows:

Formal, impersonal approaches: Include software engineering documents and deliverables
(e.g source code), technical, memos, project milestones, schedules and project control tools,
changes requests and related documentation, error tracking reports and repository data.

Formal, interpersonal procedures: Focus on quality assurance activities applied to
software engineering work products. These include status review meetings and design and code
inspections.

Informal, interpersonal procedures: Include group meetings for information dissemination
and problem solving and “collection of requirements and development staff”.

Electronic communication: Encompasses electronic mail, electronic bulletin boards, Web
sites, and by extension, vide-based conferencing systems.

Interpersonal network: Informal discussions with those outside the project who may have
experience or insight that can assist team members.

Award Fee Flow down plan
The implementation of the award fee flow down plan was intended to achieve the following

objectives:
 Reward the entire team for excellent project performance.
 Reward different peer groups relative to their overall contribution.
 Substantially reward the top performers in every peer group
 Minimize attrition of good people.

The basic operational concept of the plan:
 Management defined the various peer groups (systems engineering, software engineering,

business administration, and administration)
 Every six months, the people within each peer group ranked one another with respect to

their contribution of the project. The manager of each peer group also ranked the entire
team. The manager compiled the results into global performance ranking of the peer
group.

 Each award fee was determined by the customer at certain major milestones. Half of
each award fee pool was distributed to project employees.

 The algorithm for distributions to project employees was fairly simple. The general
range of additional compensation relative to each employee’s salary was about 2% to
10% each year.

 The distribution to ach peer group was made relative to the average salary and total
number of people within the group. The differences in employee’s salaries within each
group

5 PERSONALITY TRAITS
The software project leader often concentrates on understanding the problem to be solved,

managing the flow of ideas, and at the same time, letting everyone in the team know (by words, and
far more important, by actions) that quality alone counts.

GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 9

Four key traits are identified for the team leader for effective management of a software
project:

Problem solving: An effective software project development-leader, identifies the technical
and organizational issues that are most relevant, systematically structure a solution and properly
motivate other practitioners to develop the solution, apply lessons learned from past projects to new
situations, and remain flexible enough to change if it is discovered that the steps initiated are not
fulfilling the objectives.

Leading Identity: A leader, who leads his team apart from being confident, should take
control when necessary and the assurance to allow good technical people to follow their instincts as
long as they are in tune with the objectives.

Achievement: Accomplishment and initiative should be rewarded and the leader should
often demonstrate “this” through his own actions that controlled risk taking are encouraged and not
punished.

Tact and Team Building: A leader who has the quality of “reading the team’s mind”, must
be able to understand verbal and non-verbal signals and react to the needs of the people from where
it springs from. A leader must remain under control in high-stress environment.

6 PROJECT ORGANIZATIONS
The structure of the organization can be tailored to the size and circumstances of the specific

project organizations. The main fault of the default organization are as follows:

 The project management team is an active participant, responsible for producing as well as
managing. Project management is not a spectator sport.

 The architecture team is responsible for real artifacts and for integration of components,
not just for staff functions.

 The development team owns the component construction and maintenance activities. The
assessment team is separate from development. This structure fosters an independent
quality perspective and focuses a team on testing and product evaluation activities
concurrent with on-going development.

 Quality is everyone’s job, integrated in all activities and checkpoints. Each team takes
responsibility for a different quality perspective.

6.1 Software Management Team
Most projects are over constrained. Schedules, costs, functionality, and quality expectations

are highly interrelated and require continuous negotiation among multiple stakeholders who have
different goals. The software management team carries the burden of delivering win conditions to
all stakeholders. In this regard, the software project manager spends every day working about
balance

Life-Cycle Focus
Inception Elaboration Construction Transition
Elaborating phase
Planning
Team formulation
Contract baselining
Architecture costs

Construction phase planning
Full staff recruitment
Risk resolution
Product acceptance criteria
Construction costs

Transition phase
planning
Construction plan
Optimization
Risk management

Customer satisfaction
Contract closure
Sales support
Next-generation
planning

The software management team takes ownership of all aspects of quality. In particular, it is

responsible for attaining and maintaining a balance among these aspects so that overall solution is
adequate for all stakeholders and optimal for as many of them as possible.

6.2 Software Architecture Team

GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 10

The software architecture team is responsible for the architecture. This responsibility
encompasses the engineering necessary to specify a complete bill of materials for the software and
engineering necessary to make significant make/buy trade-offs so that all custom components are
elaborated to the extent that construction assembly costs are highly predictable. For any project, the
skill of the software architecture team is crucial. It provides the framework for facilitating team
communications, for achieving system-wide qualities, and for implementing the applications. With
a good architecture team, an average development team can succeed. If the architecture is weak,
even an expert development team of superstar programmers will probably not succeed.

Life cycle focus
Inception Elaboration Construction Transition
Architecture prototyping
Make/buy trade-offs
Primary scenario
definition
Architecture evaluation
criteria definition

Architecture
baselining
Primary scenario
demonstration
Make/buy trade-off
baselining

Architecture maintenance
Multiple componenet issue
Resolution
Performance tuning
Quality improvements

Architecture
maintenance
Multiple-component
issue resolution
Performance tuning
Quality improvements

To succeed the architecture team must include a fairly broad level of experience including the

following:

 Domain experience to produce an acceptable design view (architecturally significant
elements of the design mode) and use case view (architecturally significant elements of the
use case model)

 Software technology experience to produce an acceptable process view (concurrency and
control thread relationships among the design, component, and deployment models),
component view (structure of the implementation set), and deployment view (structure of
the deployment set)

The architecture team is responsible for system-level quality, which includes attributes such

as reliability, performance, and maintainability. These attributes span multiple components and
represent how well the components integrate to provide an effective solution. In this regard, the
architecture team decides how most multiple component design issues are resolved.

6.3 Software Development Team

The software development team is the most application specific group.
Life-Cycle Focus

Inception Elaboration Construction Transition
Prototyping
support

Critical component design
Critical component
implementation and test
Critical component baseline

Component design
Component implementation
Component stand-alone test
Component maintenance

Component maintenance
Component documentation

 In general, the software development team comprises several sub-teams dedicated to groups

of components that require a common skill set. Typical skill sets include the following:

 Commercial component: specialists with detailed knowledge of commercial component
central to a system architecture.

 Database: specialists with experience in the organization, storage and retrieval of data.
 Graphical user interfaces: specialists with experience in the display of organization, data

presentation, and user interaction necessary to support human input, output and control
needs.

GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 11

 Operating systems and networking: specialists with experience in the execution of multiple
software objects on a network of hardware resources, including all typical control issues
associated with initialization, synchronization, resource sharing, name space management ,
reconfiguration, termination and inter-object communications.

 Domain applications: specialists with experience in algorithms, application processing, or
business rules specific to the system.

6.4 Software Assessment Team
There are two reasons for using an independent team for software assessment, The first has to

do with ensuring an independent quality perspective. This often debated approach has its pros(such
as ensuring that the ownership biases of development do not pollute the assessment of quality) and
cons (such as relieving the software development team of ownership in quality , to some extent.) A
modern process should employ use-case-oriented or capability-based testing (which may span many
components) organized as sequence of builds and mechanized via two artifacts:

1. Release specification (the plan and evaluation criteria for a release)
2. Release description(the results of a release

Life-Cycle Focus
Inception Elaboration Construction Transition
Infrastructure
planning
scenario
prototyping

Infrastructure baseline
Architecture release
testing
Change Management
Initial user manual

Infrastructure upgrades
Release testing
Change Management
User manual baseline
Requirements Verification

Infrastructure maintenance
Release baselining
Change management
Deployment to users
Requirements verification

Some component tests may get elevated to evaluation criteria, with their results documented

in release descriptions. Many components may undergo only informal component testing by the
development team, with the results captured only within the test software built by a developer.
Formal testing for many components will then be subsumed in higher level evaluation criteria and
corresponding release descriptions. All components are not create equal: Some of them deserve
formal component testing to verify requirements, while others are best tested in the context of
capability testing.

The assessment team is responsible for the quality of baseline releases with respect to the
requirements and customer expectations. The assessment team is therefore responsible for exposing
any quality issues that affect the customer’s expectations, whether or not these expectations are
captured in the requirements.

7 CONCLUSION

Software development team are motivated by career growth, job satisfaction and the
opportunity to make an impression and get recognition. Software development work extends itself
to many large domains and hence the need for order and rule should be prevalent. The discipline of
software development process and management extends itself in full to planning, automation, and
project control. It is believed that the project control activities act as the “senses” of the project.
They are the parameters to determine the true health of the plan and make a review of the disparity
between what had been planned earlier and what had been accomplished. Remedial measures must
be set in at the appropriate time and implemented at all levels. Involvement and interest by the
development should be sustained throughout and they need to be properly encouraged on this count

GESJ: Computer Science and Telecommunications 2011|No.3(32)
ISSN 1512-1232

 12

8 REFERENCES
1) Pressman, Scott (2005), Software Engineering: A Practitioner's Approach (Sixth, International

ed.), McGraw-Hill Education.
2) David I. Cleland, Roland Gareis (2006). Global project management handbook. McGraw-Hill

Professional, 2006. ISBN 0071460454. Pp.1-4.
3) Martin Stevens (2002). Project Management Pathways. Association for Project Management.

APM Publishing Limited, 2002.
4) Morgen Witzel (2003). Fifty key figures in management . Routledge, 2003. ISBN 0415369770.

Pp. 96-101.
5) Bjarne Kousholt (2007). Project Management –. Theory and practice.. Nyt Teknisk Forlag.

ISBN 8757126038. p.59.
6) F. L. Harrison, Dennis Lock (2004). Advanced project management: a structured approach .

Gower Publishing, Ltd., 2004. ISBN 0566078228. p.34.
7) Stellman, Andrew; Greene, Jennifer (2005). Applied Software Project Management. O'Reilly

Media. ISBN 978-0-596-00948-9.
8) Albert Hamilton (2004). Handbook of Project Management Procedures. TTL Publishing, Ltd.

ISBN 07277-3258-7.
9) Edward Kit, Software testing in the real world, Addison-Wesley publications, 2000, ed.1
10) Pankaj Jalote, An integrated approach to software engineering, Narosa publications, 1997, ed. 2
11) Shari Lawrence Peleeger, software engineering theory and practice, Pearson education, 2001,

ed. 2
12) Richard Fairly, Software engineering concepts, McGraw-Hill Inc.,1985
13) Myers, Glenford J. (1979). The Art of Software Testing. John Wiley and Sons. p. 145-146.

ISBN 0-471-04328-1.
14) Barry W. Boehm, Software Engineering Economics, Prentice-Hall Inc., 1981.
15) Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison Wesley, Boston,

MA, 2006.
16) Ho-Won Jung, Seung-Gweon Kim, and Chang-Sin Chung. Measuring software product quality:

A survey of ISO/IEC 9126. IEEE Software, 21(5):10–13, September/October 2004.
17) Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley,

Boston, MA, second edition, 2002.
18) Jeff Tian, Software Quality Engineering: Testing, Quality Assurance, and Quantifiable

Improvement, IEEE Computer Society Press, 2005, ISBN: 0471713457.
19) Musa, J.D, A. Iannino, and K. Okumoto, Engineering and Managing Software with Reliability

Measures, McGraw-Hill, 1987
20) Dustin, Elfriede (2002). Effective software Testing. Addison Wesley. p. 3. ISBN 0-20179-429-2

Article received: 2010-04-29

	RISK ITEMS
	RISK MANAGEMENT TECHNIQUES
	3 LEADERSHIP
	Characteristics of Leadership

	4 COMMUNICATION
	6.1 Software Management Team
	Life-Cycle Focus
	Life cycle focus
	6.4 Software Assessment Team

	Life-Cycle Focus

