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Abstract

In this paper the geometry of a space is investigated using not the logic of motion of a
classical particle, but the properties of motion of a field. This appears to be sufficient for
the algebraic theory of differential equations to bring us unambiguously to a
qualitatively new mathematical space and field theory. It turns out that each differential
equation describing some process constructs its own geometry — field geometry. With
that, the arising corresponding space represents a union of three: space-time, inner
space and dynamical space. The principles of relativity are qualitatively broadened, an
explanation is found for the existence of unitary symmetry that commutes with the
Lorentz group but is generated by its representation.
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Introduction

The starting point of our investigation is the conjecture that differential equations with their
actually inherent laws of process motion are a subtler and more reliable mathematical tool to be
used in studying the properties of field and space and their interrelationship. One can hardly deny
the fact that general algebraic properties of differential equations are the properties of motion of
processes described by these equations. That is why we carry out our investigation of the field
theory by means of differential equations, while the geometrical constructions are based exclusively
on the algebro-geometric properties of these equations.

According to [1, 2, 3], each equation defines its own calculus (differential and integral) which is
isomorphic to the standard calculus. It is shown that the equation in its system of calculus becomes
linear. The equation introduces invariantly a space of independent variables (space and time) and
defines inertial frames of reference. This approach compels us to cast aside the notion of a classical
mathematical point and to introduce instead the notion of a process as an elementary object. It is the
processes described by autonomous partial differential equations that become the main tools of the
investigation of the world that surrounds us. As we have seen in [1], using one process it is possible
to describe all other processes of the same class. Moreover, within each class we can pass over from
the description of one process to the description of another process. This means that differential
equations bring us to the necessity to interpret the principles of relativity in a new light.

The theory is constructed from the standpoint of the observer who is inside some given process.
As has been mentioned, in its calculi and frames of reference this process is described by a linear
equation. The process itself can be interpreted as free motion of some field that can be in that or
another state admitted by the equation. Changes from one state to another bring about a
transformation that leaves the equation of the process invariant. It is required of the process that the
group acting on the reference system be the Lorentz group. Using this field and its various states the
observer probes the surrounding world. We call this field a test field.
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When giving a differential equation, we in fact automatically give three spaces: a space-time, a
group representation space and a tangent space. A tangent space arises because of the presence of
derivatives in the equation. These three spaces are united by a differential equation into a whole geo-
metric complex. In the tangent space there exists a group of nonintegrable transformations which is
connected through a differential equation with the Lorentz group representation. We call this group
dynamic. The dynamic group together with the Lorentz group completely defines the arisen geometry
of the space. We use the Dirac equation as an example to show that the found dynamic group com-
mutes with the Lorentz group and is isomorphic to a noncompact group SU (3, 3). It turns out that this
geometry contains a mechanism that violates the arisen unitary group.

Field Geometry

In this chapter we investigate the geometry which arises on the basis of free motion of a field.

1. Fundamental principles

In [1] we have studied with sufficient completeness the algebraic properties of differential equations.
Based on these studies, we formulate here the starting standpoints which underlie the entire further
theory.

The simplest object of the investigated theory is a process that plays the same fundamental role
as a material point and an event in classical physics. By a process we mean a physical phenomenon
that evolves in space-time in the absence of external disturbances. We postulate that any process in
some frame of reference is always described by an autonomous quasilinear system of first order partial
differential equations.

Proceeding from the algebraic theory of differential equations [1-3], we believe that this postulate
evidently tells us if not everything but at lest almost everything about the properties of real processes
and all their possible states. Note that we do not consider here processes which are not described by
differential equations.

For convenience, let us introduce some terms and notation. We call the space-time the external
space, while the space, where the sought functions of differential equations undergo changes, the in-
ternal space. The topological product of the external and the internal space is called the total space.
The dimension of a system of equations describing a given process should be interpreted as the dimen-
sion of the process itself or, which is the same, the dimension of the external space. The set of all kinds
of processes having the same dimension is called the set of processes of the same class [1].

Furthermore, the Greek letters v/, 7,0, ... denote the tensor indexes of the external space, while
the Latin letters k£, n, m, ... denote the tensor indexes of the internal space. The tensor indexes corre-
sponding to the coordinates of the conjugate internal space are sometimes overlined. The capital Latin
letters A, B, C, ... denote the indexes running through the values v, k, 1.

Let us discuss in more detail the properties of processes and their corollaries arising from the alge-
braic properties of differential equations.

(1) As we have seen in [1], the differential equation of each process defines its own frame of ref-
erence of the external space and the double numerical field acting over the elements of the internal
space. This double numerical field brings us in turn to a double frame of reference with a simultaneous
appearance of the double numerical field acting in the external space [1, 2]. In terms of this frame of
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reference we can write differential equations of other processes of the same class. In other words, we
can recognize all other processes from the standpoint of the initial process.

Note that the double numerical field generated by the differential equation has an alternative char-
acter [1, 2]. The evolving process uses only one of the fields, totally ignoring the other field. This topic
will be discussed later in follow-up paper.

(2) From the theorem on the existence and uniqueness of a solution of a differential equation it
follows that a real process always evolves while being in a concrete state. On the other hand, any
process may be in various states admitted by a differential equation. If there exists a transformation
of the considered equation that changes one state to another one, then such states are called equiv-
alent. Otherwise, they are called irreducible. It is obvious that transformations acting in equivalent
states form a group. Hence we immediately conclude that under the action of the formed group the
differential equation of the process remains invariant in view of the fact that in the absence of external
disturbances the equation describes the process with all its possible states.

(3) For various but equivalent states, the reference frames of the external space, which are defined
by the prescribed process, can be different. As has been said in (2), there exists a transformation that
changes one state of the process to another state, which results in the transformation of one reference
frame into another frame. On the other hand, as shown in [1], in the proper calculus the invariance
of the differential equation of the process leads to a linear transformation of the frame of reference,
which means that there arise inertial frames.

We next assume that the group of transformations, which is generated by the transformation of
equivalent states of considered process and acts in the external space, is the Lorentz group. Along with
this assumption, it is required that the differential equations of other processes written in the system of
calculus of the considered process be invariant with respect to this group.

(4) Suppose we are given some process with the observer inside. The process is the motion of some
field with its all possible states. From the standpoint of his process the observer defines the frame
of reference and system of calculus. As shown in [1], the differential equation in the proper calculus
is written in the linear form. Therefore we postulate that the equation of this process in the proper
calculus has the form

, Ou

~ = mu, (1.1)

where a”(v = 1,2, 3,4) are square /N-matrices, the mass m # 0 and is measured in the inverse units
of length.

For equation (1.1) to describe real particles it must satisfy two conditions: the equation must be
invariant with respect to the Lorentz group and, besides, the equality

(a")t = —a” (1.2)

must be fulfilled for the Lorentz conjugation.

In the sequel we will consider only equations like (1.1) which satisfy these conditions. In that case,
as different from other equations, we will call (1.1) an admissible equation.

(5) As has been shown in Section /0 from [1], the algebraic theory brings us to a conclusion that in
order that the description of processes be orderly, solutions of differential equations should be extended
to the matrix algebra. Thus we can assume that a solution u(z) of equation (1.1) is an N-dimensional
square matrix. An equation of plane waves for (1.1) and the Dirac conjugate equation have the form

L (1.3)
dz,
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du+
— ot
dza mu, ,
where (1.2) is taken into account. In (1.3) we have introduced the following notation: z, = I 'a, 2z,
ao =l a0’ 1, = 0¥, and a € Q[1].

According to Section /0 from [1], we can introduce the metric in the space I'L x TVxV:
ds? = gadz2 + 2H spl(wiwe) tdw} dw,], (1.4)

where w,” are the coordinates of elements of the space I'Y* . Note that, as different from [1] where
we denote by w, the solutions of linear equations, here and in the sequel w,* are assumed to be inde-
pendent values. Along with TYV*¥ the equation of plane waves introduces the real one-dimensional
space '}, through which the variable z,, runs.

From the construction of (1.4) we see that g, and H, from equation (1.3) cannot be defined in a
straightforward manner.

(6) By virtue of the results of [1], the consideration of the algebraic properties of differential equa-
tions like (1.1) results in obtaining a trivial fiber space P(T'y, 'Y*" 7) with base space Iy, fibers
['V*N and projection 7 : P — I'y. 'y is the space with elements o = (g, a, a3, ay).

According to [1], an arbitrary solution u(z) of equation (1.1) is a x -mapping of the trivial fiber
space P into the space I'V*" when the fiber elements are plane waves u,. In particular, one of -
mappings is a sum

Xok = o Wak, (1.5)

aEef
(k,n=1,...,N).

As in [1], the following condition is imposed on the numerical coefficients g,:

an:]“

ae
Without going into details we wish to note that equation (1.1) implies the existence of the following

algebraic operations 'Y<V [1]:

Z Qo wan + wan) (1.6)
ael)
dobt = 33 aabhal
aeQd m=1
where w,w € TN*N and TV*V is the internal space of equation (1.1). The neutral elements in
operations (1.6) are
0=> 0, (1.7)
a€ef)
where 0 is a zero N-matrix. The unit element is the matrix
Eok =Y qudl = 0%, (1.8)
aeR

where 6 is the Kronecker symbol. The elements w and w™" of the space T'V*¥ are called reciprocal
if the equality

ww ! = Eq (1.9)
is fulfilled.
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For metric (1.4) to be realized, in the fibers T'Y*" we have to make the following requirement: if
the matrix w, # 0, then it must be nonsingular. Since in (1.6) the matrix multiplication is used, as
shown in [1], this requirement brings us to a conclusion that (1.5-9) forms an associative algebraic
field [5]. Along with this, there exist alternative operations of matrix addition and multiplication [1,
2]. In other words, in the space I'V*¥ there acts the double algebraic body. We remark incidentally
that the conjugate neutral elements arisen in the double body are represented by the zero N-matrix O
and the N-matrix co, where all elements are infinities. In the role of the conjugate unit element we
have the matrix

~ 1 <k ~k
Eqh =Y —6,=0,
aEQqa

where ) is an alternative sum to the standard sum [1], and

Sk _ {1, k=n,
" 00, k#n.
(7) In the space I'V*¥ we introduce the metric
ds* = 2HSp[(w" @w) '@dwt @dw) (1.10)
where SpA = %A’g, and H is some constant of length square dimension. Using the above-mentioned

algebra, from (6) we obtain

do* = ZHZ Gaspl(w)we) tdw! dw,). (1.11)
acf)
Let us return to (1.4) and sum it with respect to the set 2 C I'y. According to [1], we obtain
ds? = goodz’dz® + 2 Z GoHuspl(whwy) tdw] dw,], (1.12)
aeQ

It is assumed that the coefficients g, in (1.4) are chosen so that in (1.12)
Gordaz’da” (1.13)
coincides with the metric of the Minkowski space I'4.
Comparing the second summand from (1.12) with (1.11), we find that H, = H for all « € ).
Speaking in general, this is quite logical, since all fibers 'V * in the space P are equal. Recall that in
the general solution

u(@) = qalla (1.14)

a€el)
of equation (1.1) the plane waves u,, as summands are equal. Therefore H plays the role of a universal

constant.
Thus the total metric of the space I'* x P takes the final form

ds? = g, da'dz" + 2H Z Gosp|(wlwy) tdw} dw,). (1.15)
acl
From (1.10-11) it follows that (1.15) coincides with the metric of the space I'* x I'V*¥ where I'* is
the Minkowski space and I'V*¥ is the internal space.
(8) From equality (1.2) we immediately conclude that for the Dirac conjugation we have a} = —a,.
Then the commutator [a!, a,] is identically equal to zero. In that case, as shown in Section /0 from

[1], solutions u}, u,, of equations (1.3) are geodesic in the space I'Y Y with metric (1.4).
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Let us consider two states u,, and ug for 3 # «. There exists no transformation leaving equation
(1.1) invariant and, simultaneously, changing u, to ug. Therefore u, and ug are irreducible states
of process (1.1). Then, taking into account algebra (1.5-9), it can be shown that solution (1.14) of
equation (1.1) is also geodesic in the space I'* x I'V*¥ with metric (1.15).

Thus the observer, who is inside the considered process, applies in his system of calculus, the above
arguments and constructions. Using the field which is described by the admissible equation (1.1) and is
simultaneously geodesic, he can probe the surrounding world through changes occurring in the states
of the field. We call this field the test field for process (1.1), within which the observer is enclosed.

(9) The definition of the admissibility of equation (1.1) immediately implies that the internal space
must be first of all the space of representation of the Lorentz group [4]. In addition to the Lorentz
group, equation (1.1) may be invariant with respect to some group acting only in the internal space.
Hence we come to the conclusion that, as different from the external space, the algebraic structure of
the internal space and its dimension may undergo changes in passing from one process to another one.

We have thus described the algebro-geometric structure of the total space constructed by the logic
of differential equations.

(10) To understand better the outlines of the arisen geometry at this stage of the investigation, we
will consider the case where the internal space is a spinor space. For this, among admissible equations

we choose the Dirac equation

" auy — —imu, (1.16)

where v is a 4 X 4 square matrix and the mass m # 0. The Dirac matrices ~" satisfy the well known
relations

VoYr + Ve Vo = 200 (1.17)
where g, = diag(—1, —1,—1, 1) is the metric tensor of the Minkowski space and
71/ = 51/0'70-’
The base Dirac matrices -y, are chosen so that for the Hermitian conjugation there hold the equalities
(74)(}1) = V4 <7a>(H) = ~Yas (CL = 17273)7 (75)(1_[) = s
Vs = V17273745 72 =-1
where is the Hermitian conjugation. Then the Dirac conjugation is written as
(1) = 74(1) v = 70
(75)" = 74(752(H)’Y4 =75
ut = ut),.
For the Dirac conjugation, equation (1.16) is written in the form

out
a“ V= imu™. (1.18)
:LwI/
From (1.16) and (1.18) we easily obtain the plane wave equation
duq
fyadi = —1MUq, (1.19)
Ra
dut
—duo‘ Yo = imul,
Za
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where v, = I 1a,v", I, = a,l”. Then, by virtue of the reasoning of (5)—(7), we can write

ds? = gy da’da” + 2H Z Gosp|(whwy) " tdw} dw,),
ac
where w/, w, are 4 x 4-matrix spinors. Due to the fulfillment of equalities (1.10—11), the metric of
the total space can be written in the form

ds® = gyrda’da” + 2H Splwt @ w) ™' @ dw® @ duw). (1.20)
Analogously to (1.20), let us consider the metric

0 1
ds? = g, dz’dx” + 2H;dw,jdwk, (1.21)

which will underlie the construction of our further theory. Here p = w; wy, and w™, w are standard
Dirac 4-spinors.

It is obvious that (1.21) is a somewhat distorted matrix of (1.20). However such an approach
facilitates the construction of geometry by using the available apparatus of modern geometry [6] and
also makes it possible to discern the main contours of the theory hidden behind metric (1.20) and
therefore behind metric (1.15).

2. Dynamic space

Let us discuss the geometry of a total space more thoroughly. In the standard approach, a total
space with the metric introduced above looks like a curved space. On the other hand, in Section /
it is shown that free motion of fields that are described by linear equations is geodesic. This can be
explained by the fact that the interpretation of geometry is always given on the basis of the logic of
motion of a classical particle, whereas in the considered theory we use free motion of a field. We have
already mentioned that in the theory based on the algebraic theory of differential equations there are no
classical particles — their place is taken up by test fields. Recall that the observer constructs his calculi
and frames of reference with the aid of the process within which he is confined. He does not know
about the existence of classical particles, since they cannot be described by means of the considered
process (1.1). He can describe the motion of a test field which can be in various states admitted by
the equation. Thus the probing of the space can be done only by using a test field and therefore the
interpretation of geometry must be brought in harmony with the properties of field motion.

(1) Let us find a group acting in the total space and not violating the invariance of metric (1.21).
With end in view, we are to define the transformation of the total space coordinates in the infinitesimal
form

7t =yt + M), (2.1)
where AA(y) are the infinitesimal functions we want to define. Here and in the sequel we denote by y*
the total space coordinates, i.e.

y =a,
y*=w,
yk = wy.

After some simple calculations, by the metric invariance condition we find
T =+ a4

w=w+E"T,w + (E+ i&)w, (2.2)
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W= — i, + (€ —iuw”
where ¢ are the parameters of the group. It is obvious that £, £ are the parameters of the Lorentz
group. For the Dirac conjugation we have 77 = —7,. Note that the matrices are extended to the total
algebra of Dirac particles.

Group (2.2) is the broadest infinitesimal group acting in the total space and leaving metric (1.21)
invariant. From (2.1-2) we make an important conclusion: in a total space there exists no transforma-
tion that changes the positions of the coordinates of the external and the internal space and preserves
the invariance of the metric. Hence we can state that the external space is absolutely separated from
the internal one. Moreover, the internal space and the conjugate internal space are also absolutely
separated from each other.

(2) As is known, the Dirac equation (1.16) is invariant with respect to the group

R R

w=w+ %5” [V, 7w + iéw, (2.3)
@Jr f w h/w ] - Zngr

To have a complete picture, we note that any adm1551ble equation (1.1) and the corresponding metric are
invariant with respect to the extension group acting in the internal space. We have in the infinitesimal
form _

w=w+ §w, (2.4)

N wh=wt +w,

where ¢ is the extension group parameter.

It is obvious that group (2.3-4) is a subgroup of group (2.2). An analogous situation is formed for
the symmetry groups of equation (1.1) as well as for group preserving the invariance of metric (1.15).

In Felix Klein’s "Erlangen Program" [7] it is stated that the group of transformations which acts in
the space defines the geometry of this space. Then we come to a conclusion that the geometry defined
by group (2.3—4) is not adequate to the geometry constructed on the basis of group (2.2).

On the other hand, as is known from A. Einstein’s general theory of relativity, the matter being in
the space distorts this space, i.e. the matter defines the geometry of the space. This gives us the right
to assume that it is not the geometry that defines the properties of the field, but vice versa it is the field
that must define the geometry of the space.

Thus the emergence of group (2.2), with respect to which equation (1.16) is not invariant and which
is therefore a strange one for the Dirac field, indicates that the construction of the geometry by means
of the field has not been completed. To write the metric of the space generated by the field is not
sufficient.

(3) Let us return to the admissible equation (1.1). If [, is the generator of the Lie algebra of the
Lorentz group representation, then we have [4]

[aua [ya] = éuaau - éuuaaa (25)

where a, = g,,a°. Hence it follows that the representations of the Lorentz group and the matrix a”

contained in equation (1.1) are algebraically interrelated. This relation makes it possible to declassify
equation (1.1) with respect to representations of the Lorentz group [4].

In the constructed geometry of the total space the Lie generator [, is explicitly present through

the group of transformations of the internal space. At the same time, the matrices a¢” do not figure

explicitly anywhere in the geometry despite the existence of (2.5). This rather tells us that the geometry
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constructed on the basis of test fields is not complete. Therefore we need to discuss these questions in
more detail.

Equation (1.1) contains the product a” (0/dz") . As is known, 9/0z" is the tangent vector of the
external space. This means that for the representation of equation (1.1), we must include in the theory,
in addition to the total space, the tangent space as well. This conclusion is not unexpected. After all,
the emergence of elements of the tangent space is explained by the presence, in differential equations,
of the derivatives of the unknown functions characterizing the dynamics of the evolution of a solution
in the total space. Also, we want to remind that when studying the group properties of differential
equations, the equation is considered as an invariant manifold of the jet-space.

Thus, along with external and internal spaces, the differential equation of the field also involves
the tangent space in the process description. Therefore the geometry arisen on the basis of process
evolution should be constructed as a single object of three spaces. Otherwise the geometry generated
by process (1.1) will not be complete. In the sequel, the union of these three spaces will be called the
complex of spaces or, simply, the complex.

(4) The presence in equation (1.1) of the matrix ” combined with 9/Jz" indicates that it is a”’s that
are the carriers of the dynamic characteristic of field motion. In order to construct the tangent space
geometry corresponding to the differential equation (for a certain representation of the Lorentz group),
we need to find the group acting in this space and explicitly containing a”. In the sequel, tangent and
cotangent spaces with such a group will be called the dynamic space, while the group itself will be
referred to as the dynamic group.

So, let us consider the cotangent space with metric (1.21) and introduce the linear transformation

Syt = M (y)sy”®, (2.6)

where 0y* are the base elements of the cotangent space. The conditions of invariance of the metric
with respect to (2.6) lead to the condition of orthogonality of the matrix M (y) :

JapMEME = e, 2.7)

where 5 p 18 the metric tensor (1.21). From the orthogonal transformations (2.6) we choose a set of
transformations, where the matrix M (y) can be written in the form

M) = 2L,

It is obvious that if (2.6-8) is fulfilled, then transformation (2.6) will be generated by the transforma-
tion

(2.8)

7' = (), (2.9)
acting in the total space. As shown in (1), from (2.9) and (2.7) it follows that in infinitesimal terms we
come to group (2.2).

Let us perform factorization of group (2.6) with respect to subgroup (2.9). After factorization, from
(2.6) we obtain the group whose elements are nonintegrable transformations. This means that in the
total space there exists no transformation whose tangent image would coincide with nonintegrable
(2.6). In other words, for a nonintegrable transformation the points of the total space remain fixed,
while the elements of the cotangent space transform by rule (2.6).

(5) To realize the program under discussion, we will study a transformation in the dynamic space
of the form

ox = 0x¥ + qi(wrydw — swTyw),
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ow = dw — piy,woz”, (2.10)
Sw' = swt + piwty, sz,
where p, ¢ are some real functions of y* and w, w™ are 4-spinors.
Along with (2.10), we can also write a transformation of the form

0z =0z 4 q(whyow + dwtyw),

ow = Sw + pry,wox”, (2.11)
Sw =éuwt + prwty,dz”.
But since the algebra of Dirac matrices also contains the pseudovector combination v, v;, we can
write

5 = 62" + ga(wy" 56w + Swhysy w),

ow = Sw + parysy, Wz, (2.12)
Sw' = dwt — paw ™y, 501" .
For the combination v, 75, an analog to (2.11) is the transformation

0z = 6x¥ +igs(whyys0w + Swt gy w),
ow = Sw + ipsysy,wox”, (2.13)
Sw =dwt + ipswty,v502”.
(6) Let us return to transformation (2.10) and study it more carefully. We write the matrix A that
forms the second summands in (2.10):

A} = iquy,
AL = —igy"*w,

AE = ipwty,,.
The other elements of the matrix A are equal to zero. Here we use the abbreviated notation w*~} =
Wi R v w =y,
By simple calculations we make sure that the following matrix equality is valid:
A3 = 2qppA, (2.14)
where p = w;fwk.
In order that the base transformation (2.10) form the group, we have to rewrite it taking into account
(2.14) as follows:
3y = apoy”, (2.15)
where _ _
a=1+A+cA (2.16)
Transformation (2.15) preserves the invariance of metric (1.21) of the total space, which in turn is
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equivalent to condition (2.7). Let us substitute (2.16) into (2.7). After simple calculations we obtain
_ |/H1
q - 2 p7

e=—1.
Along with (2.17), there also exists yet another solution

[H 1
q=—1\/—=—--sino,
2p

1
b=

1
ep=——=
qep 5T
where © is an arbitrary function of . In (3) of Section 5, we will see that ©(y) is the group parameter
not depending on the points of the total space, i.e.

O == (2.19)

2.17)

sin O, (2.18)

(1 —cos®),

3. Dynamic group

Let us discuss the dynamic group that arises on the basis of transformations (2.10—-13) and preserves
the invariance of metric (1.21).
(1) After substituting (2.17) into (2.15-16), we obtain

oxv = 6XY,
S = bw — i— (6x" — 6XV) (3.1
=o0w —1 T — w, .
\/%_H 1 Y
Sw' = 6w +i \/ﬁ(dx” — XV wTy,,

where we have introduced the notation

OXY =iy / g%(er’y”éw — dwtyw). (3.2)

It is obvious that the right-hand part of (3.2) is a linear form of jw and dw™, but is not a total differen-
tial. Hence it follows that (3.1) is a nonintegrable transformation.
Denote the matrix of transformation (3.1) by a%. One can easily verify that the following equality
is fulfilled:
a’ =1, (3.3)
where 1 is the unit matrix.
By analogous calculations, from (2.11) we obtain

oxv = 6XY,

dw = dw + \/%((M” —0X¥)y,w, (3.4)
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— 1
Sw' = 6wt + —— (52" — 5XN)wt,,

V2H
where
v H 1 + .V +. vV
30Xy = 5—(711 Y ow + dw Y w). (3.5)
p
If b3 is the matrix of transformation (3.4), then it is not difficult to verify that
v = 1.

Let us now consider transformations (2.12) and (2.13). As shown by calculations, using these trans-
formations we can construct transformations of form (3.1) and (3.4) if and only if the metric has the
form

o 1
ds? = g,,dz"dz"™ — 2H ~dw; dw". (3.6)

p
Thus when the metric has form (1.21), on the basis of (2.10—13) there arise only transformations
(3.1) and (3.4) which do not contain the group parameters.
(2) Let us now return to solution (2.18-19). From (2.15-16) we find

dx¥ = 61" cos &, + 0X) sinéy,

ow = dw + ﬁ((b” siné; +0X7(1 —cos&;))y,w, (3.7)

owt = dwt — —;_H((Sx” siné; 4+ 0X7 (1 — cos&;))w',,

where 0. X7 is (3.2) and ¢ is the group parameter.
Analogous calculations for (2.12) give

dxv = dx’chéy + 0 XY shé,,

— )
dw = dw — ﬁ(éx”sh@ + 0X3 (chéy — 1)y, w, (3.8)

Tt = bu = (3" sh, + X5 (ché, — D)u, 75

where
H1
60Xy = \/;;(wJW”%éw + dw sy w). (3.9)
Like (3.7), this transformation also preserves metric (1.21).

It is obvious that (3.7) and (3.8) form one-parameter groups. Note that (3.7) is the compact group
and (3.8) is the noncompact one. If (1.21) is replaced by metric (3.6), then groups (3.7) and (3.8)
exchange their compactness.

(3) Let us rewrite (3.7-8) in the infinitesimal form

Syt = oy + £, Agoy”, (3.10)
and L

Syt = oyt + £,Ba0y", (3.11)
where the nonzero elements of the matrix A are written in the form

v . /H - v
Ak:Z 5p 1w+7k7
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v | H v
AL = —iy/ 5P Lk, (3.12)

1

A =i @vﬁw,
- 1
Ab = i ——wTy,,
14 /2H VK,
while for the matrix B we obtain
14 H — v
By = §P 1w+7 Vsks
14 H — 4
Bf =\ o 0w, (3.13)
1
Bl’f = ﬁﬁ%w
- 1
By = ——==w",75.

V2H
Using transformations (2.11) and (2.13), we find the one-parameter groups preserving metric (1.21).

In the infinitesimal form these transformations look like
Syt =y’ + & ERSY”, (3.14)

and L
SyA = oyt + €, F46y5. (3.15)
The matrices £ and F' have the following nonzero elements:

v . H - v
Ek = Z\/ ?p 1w+’yk7
14 H — v
EY = ,/5p Lk, (3.16)
1

k k
v = T =",
\/12H7
o
51 Yuk,
and
14 - H — v
Fy =1 Eﬂ 1w+’Y Vsks
v . H - v
Ff = =iy 50 957w, (3.17)

1
Fy = i\/ﬁ7]g7uw7
T 1
Fy=—i

v \/ﬁw+7V75k'
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From (3.12-13) and (3.16-17) we immediately obtain
SpA = SpB = SpE = SpF = 0.

Note that (3.14), like (3.10), acts in the dynamic space compactly, while (3.15) noncompactly.
It is not difficult to verify the following equalities:

ALAS = =67,
B{B: = ¢, (3.18)
E{E: = =7,
FYF: =67,

where the summation is performed over the index £: AYAS = Ay AY + A%A’j, and ¢ is the Kronecker
symbol.
Let us consider the commutator [A, B] which we denote by L. Nonzero elements of the matrix L
have the form _
L? ==-2C7, (3.19)
LS = ASB7 — BSAY,
where &, 7 run through the indexes and overlined indexes of the internal space. In (3.19) there has
appeared the matrix C' with nonzero elements
Cr = S~ wt ey . (3.20
Since C,, = 5706’;’ is antisymmetric, it is obvious that the elements of the 4-matrix C satisfy the
equality

C* = pol + 1, C?, (3.21)
where ~
pr = sp(C?).

By virtue of (3.21), it can be assumed that 1, C ) 6’2, C3 are independent matrices, since the rest of the
matrices C™ (m > 4) are linearly expressed through them. It should be noted that in (3.21) the higher
degree of the polynomial of C coincides with the dimension of the external space.

Further, forming all possible commutators of A, B, L and taking into account (3.12—16), we obtain
a complete Lie algebra. In that case, due to equality (3.18) the arisen new algebras are expressed either
linearly through A and B or quadratically. Moreover, some of them contain the matrices C , 6’2, 53,
and they convolute with the matrices A and B by means of the tensor indexes of the external space.
For instance, instead of the elements A} there appear elements of the form (52) VAL

Now let us form all possible commutators of the matrices A and E. In the matrix algebra, instead
of the matrix C (3.20) there appears the matrix

i

CY = 5o w7 . (3.23)
It is not difficult to verify that the matrices C' and C are related by the equalities
CrCT = pydY, (3.24)
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where 67 is the Kronecker symbol and
py = CyC3 + C20; + CIC3. (3.25)

From (3.21) and (3.24) it immediately follows that C' is linearly expressed through C and C3.

The fulfillment of equalities (3.18), (3.21) and (3.24) indicates that the Lie algebra of the complete
continuous dynamic group formed by all base matrices A, B, E/, F' and the concurrently arisen matrix
C is closed. As preliminary calculations show, the dimension of the complete continuous group is
equal to 35. We have mentioned above that the spurs of the base matrices are equal to zero. Then
the spurs of the matrices forming the complete Lie algebra are also equal to zero. Since the arisen
Lie algebra is a matrix one, from the known classification of classical Lie algebras it follows that the
complete continuous group is isomorphic to noncompact SU(3.3).

(4) As has been noted in (1), the dynamic transformation (3.1) is nonintegrable. It is not difficult
to verify that all other base transformations are also nonintegrable. Thus we conclude that dynamic
transformations act only in the dynamic space and, at that, leave the points of the total space fixed.

(5) Let us consider group (2.3) whose subgroup is a Lorentz group. In the infinitesimal form it is
written as ]

7t =yt + Agy”,
dy" = dy* + Mdy®,

where the nonzero elements of the matrix A have the form

A =g,
1 1 v o ;
Ay = g€l I + i, (3.26)
AF = AT

¢ are the Lorentz group parameters, and ¢ is the phase group parameter. Then the generator of group

(2.3) can be written as
o o S 0 o —— 0
where the matrix A is (3.26).

Let us consider group (3.7), whose infinitesimal form is (3.10). The elements of this group are
functions of w and W. In view of this fact and taking into account that dynamic transformations
leave the points of the total space fixed, the commutator of the algebras of these two groups takes the
form [A, A]. After elementary calculations we obtain

[A,A] = 0. (3.28)
Analogously, it can be shown that that the other base groups (3.11), (3.19) and (3.20), too, commute
with the Lorentz group. Hence we conclude that the dynamic continuous group commutes with group
(2.3).
Simple calculations show that for the discrete groups (3.1) and (3.4), too, we have the equalities
[a, A] =0, (3.29)
[b, A] = 0.
(6) Now let us return to the admissible equation (1.1) and metric (1.15) generated by it. From
the definition of admissibility it follows that (1.1) is invariant with respect to the Lorentz group and
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equalities (1.2) are fulfilled. In that case, the internal space is the space of representation of Lorentz
groups and, simultaneously with this fact, we see that equality (2.5) is fulfilled.
In the dynamic space we introduce the following transformations in the infinitesimal form:

v v , q + -1 + v + v
dx" = dx” + &1/ E%QO‘SP[(MO‘UJQ) (wha"dw, — dwla"w,)],

- 1
0Wa = Wy + & 1——=0a,w 02", (3.30)

VeH

dwl = dwl — &

14
N Waa, 0",

and
a,wy0z", (3.31)

where &, £, are the group parameters and a, = gc}wa". These transformations are nonintegrable and
therefore they leave the points of the total space fixed. By direct calculations we can verify that (3.30)
and (3.31) preserve the invariance of metric (1.15). These one-parameter groups can be treated as base
groups by means of which we can construct a complete dynamic group.

We have thus shown that for any irreducible representation of the Lorentz group there exists its own
dynamic group.

(7) Analyzing the results of (3), we come to the conclusion that the dimension of the dynamic
continuous group depends on the algebraic properties of Dirac matrices (i.e. on the representation of
the Lorentz group) and — through equality (3.21) — on the dimension of the external space, but does
not depend on the dimension of the internal space. Indeed, if we extend the dimension of the internal
space of the Dirac equation and, when doing so, do not violate the algebraic properties of the matrix
7", then the dynamic group SU(3.3) will not change.

An analogous picture is observed when we consider arbitrary representations of the Lorentz group.
From (3.30-31) it immediately follows that the matrices a” contained in the admissible equation (1.1)
play the key role in the dynamic group construction. These matrices dictate not only representations
of the Lorentz group, but also the formation of the corresponding dynamic group.

(8) Let us consider group (2.2). We perform calculations analogous to those done in (5) for base
admissible subgroups and group (2.2). It is easy to verify that these groups do not commute with each
other.

There arises a question why (2.3) commutes with a dynamic group and (2.2) does not. The most
important point in the case of (2.3) is that the internal space is the space of representations of the
Lorentz group and, simultaneously with this, equality (2.5) is fulfilled for the matrices v” and [y, ~y7].
The nonfulfillment of even one of these two conditions leads to the noncommutativity with the dynamic
group.

From (1) and (2) of Section 2, it immediately follows that group (2.2) not only violates equality
(2.5), but, simultaneously with this, the internal space ceases to be the space of representations of the
Lorentz group. Obviously, the violation of (2.5) brings about the violation of the invariance of the
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Dirac equation. Therefore group (2.2) should be rejected.

Let us proceed now to equation (1.1). If (1.1) is an admissible equation, then the internal space
is the space of representations of the Lorentz group and, simultaneously with this, equality (2.5) is
fulfilled. Obviously, the Lorentz group and the dynamic group (3.30-3.31) commute with each other.

4. On the dynamic group representation

If some group acts in the tangent space, then, as is known, the tensor field, if it exists, is transformed
according to the tensor laws. In the theory presented here, in a dynamic space there acts a dynamic
group. Then any considered tensor field transforms by the rule of representation of this group. On the
other hand, the internal field is the field generated by test fields. This means that the internal space is,
generally speaking, the space of representations not only for a Lorentz group, but also for a dynamic
group.

Justify this reasoning, we consider transformations (3.11) and (3.14) and investigate the Lie algebra
of this group. Calculations show that the following commutative relations are valid:

[BaE] =P,

[P,B]=-E+"B, (4.1)
P
PE|=-B-"E,
where the nonzero elements of the matrix P have the form
P’ =0, (4.2)
P = BSE, — E5BY,
p=wrw, p=w'ysw. Here ,n runs through the indexes and the overlined indexes of the internal

space.
Let us show that there exists a two-dimensional representation of algebra (4.1). For this, we intro-

duce the matrices
_ (s 0

0y = (S g) 4.3)
03 = <—(”)}/5 %5> .

Let these matrices act on v = (wy, ws), where wy, w, are two copies of 4-spinors. Extending the Dirac

conjugation and multiplying by the matrix —io5, we obtain

v— vt = ()" = —ivty,0,, 4.4)

where v(#) is the Hermitian conjugation to v. For such an extension of the external space, metric (1.21)
takes the form H
ds* = E]de”df +2—dvtdv, (4.5)
p
where p, 1s a scalar value of the form i
_ ot
Py =V 0.
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Along with this, let us modify groups (3.11) and (3.14). For this, in the matrices B, E/, P we make
the replacement: w — v, wt — vt p=wrw — p, = vTv,

y Y0 , (1 0 y
Gy

Then we obtain B — By, © — F,, P — P5. These matrices satisfy the commutative relations (4.1).
Thus we confirm the conclusion made in (8) of Section 3 that the algebraic structure of a dynamic
group does not change when the dimension of the external space increases.

For conjugation (4.4) we obviously have

ii_ = —01,
;_ = —039,
O';— —= —03.
Let us introduce new matrices which by means of (4.3) can be written as follows:
~ 1
B = 501,
BeL2o - L(igdian, (4.6)
2p, 11 2p, " ’ .
P—Q(@+@)@,
P2

where p, = vtv, p, = vTy5v. By direct calculations it can be verified that matrices (4.6) satisfy the
commutative relatlons (4.1).
From equality (4.6) we express 01, 09, o3 through B E P as follows:

01 = 2B7

02 = (P} +75) > (20, B — 2p,F), (4.7)
o3 = 20(p3 +75) 2 P.
Now, in (4.7) we replace the matrices B E P by By, Ey P», respectively. The arisen matrices are
denoted by hy, ho, hs. Next, in the modlﬁed dynamlc space we introduce the group

Y3 = dys + t"ha (v, v1) oYy, (4.8)
where
B
y2 9
yék) = Ul—:.

It is obvious that (4.8) is a dynamic group arisen on the basis of the modified one-parameter groups
(3.11), (3.14), but with generators h,, where t* are the group parameters. It is not difficult to write an
exact representation of group (4.8), acting in the internal space:

v=v+t%,0, 4.9)
vt =0t —tto,.
The differentiation of these equalities gives
dv = dv + "o ,dv, (4.10)

dv = dvt — t'dvto,.
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Combining (4.8) and (4.10), in the dynamic space we finally obtain
Oyz = 0yy + (00 + ha(v, 0] poys", (4.11)
where 0,2 = 0, while the other elements coincide with (4.3).
As expected, if the internal space is a representation of the dynamic group, then, in addition to (4.8),
there appears a summand with matrices o,,.

Since the matrices h, are the functions of v and v™, by analogy with (3.27), for the elements of the
Lie algebra of group (4.9-11) we introduce the generator

0 0
— + N + Y
2, = he(v,v") + 0, (avaav) + (v U“aw) , (4.12)
where the term 9
(@), (P
V% (g) 5y )
is formally represented in the form [(0/0v) o,v] . By simple calculations we obtain
(54, 20] = CS, ., (4.13)

where C¢, are the structural constants of a noncompact group SU (1.1).
So, we come to the following conclusions:

a) We have shown that the internal space is the space of representations of the Lorentz group
and the dynamic group. This result is in a fairly good agreement with our understanding of the set of
admissible test fields.

b) As follows from (2.3) and (4.9), the Lorentz and dynamic groups act unitarily in the internal
space. The phase group, contained in (2.3) (the parameter £) also acts unitarily. As to the extension
group (2.4), it falls out of this pattern and does not act unitarily.

¢) Under the action of the dynamic group the coordinates v, v of the internal space acquire a
certain specific feature: they do not react to the action of the matrices h,, but get transformed by the
representation matrices o,. Thus under the action of the Lorentz, phase and dynamic groups we have

1
@:U—l—§£Z[vy,70]v+§“aav+z’§v, (4.14)
1
vt =0t - 3 "oy, Y7] — Evto, — kvt

5. Geometry of a complex

Summarizing the results of our studies, we can say that by giving a differential equation we auto-
matically mean that we give a complex of three spaces: external, internal and dynamic. Let us discuss
once more some questions connected with the geometry of a complex based on the field motion logic.
As has been said above, our starting point is Felix Klein’s statement that the geometry of a space is
defined by the group acting in it.

(1) Let us consider the continuous groups (2.3), (4.9) and (4.11). Combining these groups, we
obtain the transformation rule for the elements of a complex in the infinitesimal form

T = gt ¢

w=w+ Tw, (5.1)

wt =wt —w'T,

60



GESJ: Physics 2010 | No.2(4)

ISSN 1512-1461

dy* = oy + (T + € ha) 0y", )

where dy4 are the base element of the cotangent space. The nonzero elements of the matrix T have
the form:

=g,
2 1 v g a -
To = 3& 1077 + £ 0ay, + i€, (5:2)
TE = —T7% .

Denote group (5.1) by G. In (5.1-2) we again use the notation introduced in Sections /, 2, but now w
denotes the coordinates of the modified internal space, and dy“ the coordinates of the corresponding
dynamic space.

(2) From (5.1) it immediately follows that the Lorentz group (parameters £, £”) acts in the external
space, while the dynamic group (matrices h,) acts in the dynamic space. These groups act independent
of each other.

As seen from (5.1), the internal space is the space of representations of the Lorentz group (spinor
space) and the dynamic group (generators o).

In Section 3 we have shown that the Lorentz group and the dynamic group commute with each
other. With this property agrees the commutativity of representations of these groups, which follows
from the equalities

[V, 77) 0] =0, (5.3)
[71/0-27 Ull] =0.

As seen immediately from Sections 2, 3, base dynamic groups are constructed from the dynamic
part of the differential equation of the test field (matrices ¢” and, in the case of the Dirac equation, ma-
trices ") and from the elements of the internal space. This means that the dynamics of the considered
test field is imprinted on the dynamic group and, thereby, on the geometry of the complex.

(3) In the total space let us take two infinitely close points M and M; with coordinates y* and
y? + dy”. As indicated in Section 2, the dynamic group being a nonintegrable transformation does

not act on the total space and leaves the points of this space fixed. This means that the group G acts on
the coordinates dy* through the matrix 7. Then we find
dy” = dy + T4dy®. (5.4)

The tangent vector 9/dy* and the cotangent vector dy*! are self-conjugate. Hence (5.4) immediately
yields _
0 _ 9 % 5 O
oy oy A oyB’
Thus we have come to the conclusion that under the action of the group G, along with the vector
4 transformed by rule (5.14) as follows

(5.5)

T4 = 4 4 (T + €h,) 407, (5.6)

there exists a vector F'4 whose transformation gives

FA=FA 4+ T4FB, (5.7)
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Following these transformation rules, in the sequel we will call F'* a standard vector, and ®* a dynamic
vector.

From (5.6-7) it immediately follows that the dynamic group forbids to perform the operation of
addition of vectors ® and F.

By virtue of (5.4), under the action of group (4.11) metric (4.5) remains invariant. The invariance
of the metric does not change if instead of (4.9) we take transformation (4.14).

Let us now return to the questions arisen when deriving (2.18-19). If instead of £ we consider the
function ©(y), then O(y) will appear in (4.14) as a localized group parameter for o,. In that case, for
(4.14) to preserve the invariance of metric (4.5), we come to result (2.19). This means that the obtained
total geometry does not admit arbitrariness and in the dynamic group the group parameters must be
independent.

(4) Let us go back to equation (1.16). The internal space of this equation is extended so that it
becomes also the space of representation of the dynamic group. If w = u(x) is an element of the
modified internal space, then the equality

ou
dw = dx¥
w D T
and transformations (5.1-2), (5.4-5) readily imply
ouF  ouF ouF o Ou™
— —&° Tk ——. 5.8
ox? 8x”$ & 0x° + " Oxv (5-8)

In order to preserve the invariance of equation (1.16) with respect to transformations (5.1-3) and (5.8),

it must be reduced to the equation

0
—ify”aga—;i = mu. (5.9

As said in Section /, the observer is enclosed within process (1.16). His entire reasoning and all
constructions are in the frame of reference and the system of calculus of process (1.16). However,
when the internal space becomes the space of representation of the dynamic group, the observer must
pass from (1.16) to a process described by the modernized equation (5.9). Recall that here we deal with
the representation of subgroup (4.1) of the dynamic group. In all constructions within the framework
of process (1.16), we replace the matrices v by the matrices —i7” 5. Along with this, by virtue of
(4.4) the Dirac conjugation for the coordinates of the internal space w is defined in the form

wt = —iw(H)74U2,
where H is the Hermitian conjugation.

(5) Let us investigate the geometric properties of the matrices a and b which form transformations
(3.1) and (3.4) in the dynamic space.

a) Since (3.3) holds and (3.1) acts only in the dynamic space, we can interpret transformation

(3.1) as a reflection in this space. Hence, under the action of the group G the equalities
la, h,]) =0, (5.10)
are fulfilled, while the matrix a7 is transformed by the rule
a=a+[T,al, (5.11)
where [, | is the commutator.

b) Let us consider the cotangent vector dy“* which under the action of the group G transforms
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by rule (5.4). Taking into account (3.3), we write
El\g;A = apdy®, (5.12)
dy* = aggg;B . -

From (3.1) it immediately follows that, as different from dy“, dy* is not an integrable object. This

leads to a conjecture that the matrix a transforms standard vectors to dynamic ones, and dynamic
vectors to standard ones. Then this conjecture should be analyzed in terms of the action of the group

G. For this, we assume that some standard vector F'* and some dynamic vector ®* are interrelated by
the equality
@i = a%Fi (5.13)
F* = apd”.
As has been said, (5.6—7) are fulfilled under the action of the group GG. Then (5.13) can be rewritten in
the form
gi = :’%Eia (5.14)
F* =agd”.
Using the infinitesimal transformations (5.6—7), from the first equality (5.14) with (5.13) taken into
account we obtain

a=a-+ [%, al + £*h,a. (5.15)
The second equality (5.14) leads to the transformation
a=a+T,a] - Eah,. (5.16)
From (5.15) and (5.16) we immediately have
{a,h.} =0, (5.17)

where is {, } an anticommutator.
The above reasoning can be extended to the matrix b as well.
Simple calculations show that the following equalities are fulfilled:

{CL, A} =0,
[CL, B] =0,
[CL, E] =0,
{[Z’ Z]} :OO, (5.18)
{b.B) =0,
{b7 E} =0,
[bv F] =0,

where A, B, E, F' are generators of transformations (3.10—11) and (3.14—15). Using equalities (5.18),
we can find the commutative relations of the matrices a and b with all commutators made up of matrices
A, B, E, F. Then, by analogy with (5.18), either commutation or anticommutation takes place.

As has been said in Section 3, the Lie algebra of the total dynamic group is formed by the com-
mutation of generators A, B, E, F. From (5.18) it follows that equalities (5.12) and (5.17) are not
fulfilled for the whole dynamic group. More exactly, a certain partitioning of the dynamic group takes
place. If, for example, the one-parameter groups (3.10) and (3.15) regard transformations (5.13) as a
change of standard vectors to dynamic vectors and vice versa, groups (3.11) and (3.14) regard these
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transformations as reflections, i.e. the vector dynamics does not change.
Hence we come to the conclusion that the matrices a and b are a certain mechanism that violates
the action of a continuous dynamic group in a dynamic space.

6. Differentiation in a complex of spaces

After we have established the metric of a complex of spaces and found the groups defining the
geometry of these spaces, we see that the metric tensor and elements of a dynamic group depend
on the points of the internal space. In view of this fact we should construct a method of covariant
differentiation. Moreover, since there are no arbitrary functions in dynamic groups and the metric
tensor is a concrete function of the points of the internal space, the connectedness elements must also
be concrete functions.

For simplicity, we will consider a complex of spaces where there acts group (5.1) and the metric
has form (4.5).

Let a covariant derivative of the dynamic vector field ®4 have the form

B

° 0P
B _ Ba&C
Vo~ = A +mac®”. (6.1)
Taking into account the results obtained in Section 5, we conclude that under the action of the group G

the tensor value V 4®% transforms with respect to the indexes A by rule (5.5), and with respect to B —
by rule (5.6):

Vi®” = Vu®P — TGNVe®” + (T + £ ha) G PC, (6.2)

where the matrix 7" is (5.2), h are generators of the dynamic group acting in the dynamic space. From
(6.2) we immediately obtain

VihoE = 0. (6.3)
(1) For (6.1) to agree with metric (4.5), the following equality must be fulfilled [6]:
Vigne =0, (6.4)

o . . . . .
where gp¢ is the metric tensor. The connectedness coefficients are written in the form
B_° B, ~ B
mac = Mac +Mag, (6.5)

where m 42 are Christoffel coefficients

o Lo 0gar . Ogec  0gac
B BE
= — — ) 6.6
mAC 9 g ( ayc 8yA 3yE ( )
From (6.4) we find
ﬁlAggEB +77lA§gCE =0. (6.7)
For the convenience of our further calculations we introduce the notation
° 0 °
DA:W—F'ITLA, (68)

where the matrix m 4 (= m42) is formed from (6.6).
(2) In this stage of the investigation we are interested in fundamental issues of the arisen theory.
Therefore, for the sake of simplicity, we will consider the dynamic group (3.10). From condition (2.7)

64



GESJ: Physics 2010 | No.2(4)

ISSN 1512-1461

we easily find

Alges + Afges = 0. (6.9)
Using the conclusions of (1), for (3.10) condition (6.3) takes the form
DAAZ + [ma, AJp =0, (6.10)

where f)A is (6.8).
By 2.14), it is not difficult to verify that the following matrix equality is valid:

A= —A. (6.11)
Let us solve equation (6.10) for m 4. Taking into account (6.11), we find
fia = [Dad, A] — ZA[E)AA, AlA, (6.12)
where ] oA )
DjA = oA + [ma, Al.

After substituting (6.12) and (6.5) into (6.1), we obtain the covariant derivative corresponding to the
base dynamic group (3.10). Simple calculations using (6.9) show that (6.12) satisfies equality (6.7).
This means that the found covariant derivative (6.1) agrees with metric (4.5).

We have thus seen that for the dynamic group there exist connectedness coefficients m 4 and they
are expressed through generators of the group. For the total continuous dynamic group, matrices m 4
have a cumbersome structure and therefore we will limit our discussion to the above-given results.

(3) It is obvious that for a standard vector F“ that transforms by rule (5.7) the covariant derivative
(6.1) takes the form

UFE = DoFP.
We conclude by giving the rule of transformation of m 45 under the action of the group G. Using
(5.6), from (6.1-2) we easily find

L o o " aahaB
Mas = mad — ThmpS + [T + he, mal5 — € Wf' (6.13)
In view of (6.3), transformation (6.13) can be rewritten in the form
Mag =mag — Thmpg + [T, malg. (6.14)

It appears that under the action of the group G the connectedness coefficients m 42 transform like
components of a standard tensor of third rank. This agrees with the fact that m 42 are formed from
w,w™ and v* which transform by rule (5.1) and, at that, m 42 are concrete functions of w, w* and 7".

On the strength of this reasoning, under the action of the group G, matrices transform by the rule

Tra = ho + [T, ha. (6.15)

Conclusion

Let us summarize the results of our investigation. For this, we will consider a freely evolving
process with the observer inside. He studies his process. We remind that the considered process does
allow the observer to use any instruments or external processes not to violate the dynamics of his
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process. He can manipulate only with various states of his process and also with its dynamics. The in-
vestigation of the algebraic and geometric properties of the process leads to the following conclusions:

a) The process contains its own numerical field (or algebraic body) on the basis of which the
corresponding system of calculus is constructed. In this system the differential equation of the process
is always linear.

b) The process always evolves in a complex of spaces which consists of the external space
(space-time), the internal space and the dynamic space.

¢) In the external space, the process defines its inertial frames of reference. The Lorentz group
acts in this space.

d) In the dynamic space, the process motion laws inherent in the differential equation of the
process define the dynamic group.

e) The internal space, where solutions of the equation undergo changes, is the space of repre-
sentation of the Lorentz group and the dynamic space.

This is the internal algebro-geometrical structure of any process.

Remark. Representations of the Lorentz group and the dynamic group in the internal space can
be both reducible and irreducible. We however do not discuss this issue in detail in this stage of our
investigation. In principle, in the internal space there may also exist an incidental group that commutes
with representations of the Lorentz group and the dynamic group. But since we are interested in the
algebro-geometric structure of processes, we do not consider incidental groups connected with the
properties of external and dynamic spaces.
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