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Abstract

Algebraic theory of a differential equation describing some process, generates proper
geometry, field geometry. The localization of group parameters is performed. From the
scalar curvature, a single Lagrangian is derived for Maxwell, Yang-Mills, Dirac and
Einstein equations for strong gravitation. In this case, in the first approximation there
arise standard interaction terms and even mass terms. In subsequent approximations the
equations of Maxwell and equations of Dirac become non-linear. As to usual
gravitation, though it is involved in the field theory developed in the paper, it has an
absolutely different nature than all other fields. The alternative properties of the
algebraic theory of differential equations allow us to conclude immediately that all fields
must be quantized. An exception is a gravitation field whose quantization is
meaningless. The developed theory suggests the existence of the double world. There
exists only a gravitational interaction between these worlds, all other interactions are
absent.
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Introduction

In the present paper we continue to study geometry of space based on properties of motion of
field that we started in [1]. In Chapter A of present paper, the observer, who still remains in his
process, performs the localization of the parameters of the Lorentz and dynamic groups. Note that
the localization is carried out with respect to the points of the space-time as well as with respect to
the components of the test field. Because of localization the compensating fields are introduced in
the theory with the aid of tetrad formalism. There arises a nontrivial algebraic relationship between
the curvature tensor components and the connectedness coefficients.

From the curvature components we construct in a nonstandard manner the scalar curvature and
then write the action integral. An approximate calculation of this integral with respect to the internal
space brings to the well known Lagrangians of fundamental fields.

In Chapter B, the last one, we investigate the questions arising when the observer passes from
one process to the other one. In that case we observe the transformation not only of the frames of
reference but also of the systems of calculus. Moreover, the algebro-geometric objects of one
process transform to the same objects of the other process. These transformations allow the
observer to reveal the gravitational interaction of the processes.
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As shown in [2-3], for each calculus generated by a differential equation there always exists its
alternative calculus. Then, along with the geometry constructed in a standard calculus, there appears
an alternative geometry. The ignoring of this geometry means the ignoring of certain general properties
of motion of real processes that were found thanks to the algebraic properties of differential equations.
Hence we come face to face with an alternative field theory and therefore with the antiworld.

A. Compensating Fields

After performing the localization of group (5.1)[ 1], we construct in a standardmanner the geometry
of the curved total space.

1. Group localization

Let some process with the observer inside be given. As shown in the preceding paragraph, in his
process the observer finds a system of calculus, a frame of reference and a group acting in the complex
of spaces. For simplicity, we assume that the differential equation describing this process is written —
in the system of calculus of this process — in form (5.9)[1]. The group acting in the complex of spaces
is G.

Assume now that the observer has decided to describe some other process in his system of calculus
and frame of reference. For this, he must probe by means of his test field (5.9)[1] the process he
wants to investigate. But he can do so if the interaction between his own process and the process to be
investigated is realizable. Otherwise he will not see that other process.

It is assumed that the processes are not violated while interacting. They undergo smooth defor-
mation. This means that the process, in which the observer is, preserves locally its internal algebro-
geometric structure. In other words, the Lorentz group and the dynamic group with their representa-
tions must remain unchanged. But for the interacting processes, this condition is realizable only if the
parameters of these groups become functions of the points of the total space. Thus we come to the

Yang-Mills idea about the localization of the parameters of the group G.

Using Yang-Mills idea, we perform the localization of the parameters of the group GG with respect
to the points of the total space. However, while doing so, we must be careful and keep in mind that
the internal space is directly connected with the test field. Test fields are in their turn described by
differential equations. The localization of the group actually implies that the algebraic operations in
the space of solutions must not be violated locally. It is understood that the same is true for a test field
as well. But as follows from transformation (8.10) [4], to preserve these operations, the group acting in
the external space must not depend on a solution of the equation, i.e. on the coordinates of the internal

space. Therefore the parameters of the group G have to be replaced by arbitrary infinitesimal functions
as follows:
£ — 05(x), & — 0"(x),

£ — @a(wivw_'_) :@a(y)a (1.1)
£ — Oz, w,w") = O%y).
Here we have somewhat ignored the derivation from (8.10) [4] and do not provide the functions ©%(y)
and O(y) with an additional algebraic structure. The obtained localized group is denoted by G.
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Let us write explicitly the action of the group G in the total space. From (5.1)[1] and (1.1) we have
70 ="+ 0/ (x)x? + 6" (x),

w* = wh + TrFu™, (1.2)
W =w —w! Ty
Nonzero elements of the matrix T% have the form

T = O%(x),
1
T = 390(@)00: 7 T + O (W)oan +10(y)0), (1.3)
TE = 17
As follows from (5.7)[1], the standard vector field F* transforms by the rule
F* = FA 4 TAFE, (1.4)

As seen from (1.1), unlike the parameters of the Lorentz group, the parameters £* and & of the group

G are localized not only with respect to the points of the external space, but also with respect to the
points of the internal space. Under the action of the group G, transformations of geometric objects
contain the parameters of this group. Then the dependence of ©% and © on w, w™ can be interpreted
as an inclusion of the interaction with the test field. Note that such interactions are of arbitrary form.
Let us give more attention to (1.4). From (1.1-4) it follows that the field F' is a function of the points
of the total space. If F'4 is assumed to be an analytic function of w, w™, then we can write
FA(y) = FA(z) + FA (a)w® + 117%4(55)711,1r + FM (z)wkuw™ + - - (1.5)

It is appropriate to remind that the obtained geometry is constructed on the basis of the field motion
logic. This geometry completely reflects all the properties of the test field. Then from equality (1.5)
we conclude that the field F(y) is the superposition of the fields F4(z), F4 (x), F(z), ... interacting
with test fields.

If in (1.2) the parameters ©%(y) and O(y) are expanded into powers of w and w™, then from (1.2),
(1.4-5) we can obtain the transformation rule for fields F'4(z), F(z),. ...

From (5.6)[1] we find the transformation rule for the dynamic vector field ®*:

3 = @4 + TADE + 0(y)hy 05, (1.6)

2. A covariant derivative for standard vectors

In this paragraph we will ignore dynamic vectors and consider the action of the group G realized
by transformation (1.2), (1.4).

(1) To the vector F'* we apply the operator 9/dy*. Assuming that under the action of the group G
the derivatives of F'4 obey the tensor rule of transformation, we come by a standard technique to the
compensating derivatives

uFP = ——— +T,4EFC. 2.1)

The compensating field T, (= T'48) is extended to the Lie algebra of group (1.2). Then nonzero matrix

elements I' 4 take the form N N
Ly =10
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~ 1~ - _
Cap = g0, 77 ]n + Baoan + iady, (22)
LAk =—T
Under the action of the group G, the compensating derivatives (2.1) undergo transformation according

to the rule .
SEE o 997 p B FE
VuF = \)F7 — ay—AVEF + Ty \W I, (2.3)
where T3 is matrix (1.3). Transformation (1.2) can be shortened to
7' =y + Q).

From (1.4) and (2.1-3) we easily find the transformation rule for compensating fields

— - - - 8QB~ aQu
F 14 — 1_‘ 174 @VF ag . @O’l—‘ 14 _ F 14 . T
Ar Ar + ot Ar Tt Ao ayA Br ayA7
= ~ 9QB -~ 9e"
a a a Qb pe a
BA—BA+C',,C@BA——ayABB——ayA, (2.4)
0QP _ 00

SOAZQDA_WSOB_W?

where c,” are the structural constants of the dynamic group.

Assume that _ B
FAZgVU + FAZ'gTV = 0' (2'5)
Since @”ETV + @Z&TV = 0, condition (2.5) does not contradict transformation (2.4). Then it is not

T

difficult to verify that there holds
Liéger + Dipgor = 0, (2.6)
where g 4 5 is the metric tensor (1.21)[1].
From (2.3) it immediately follows that the following equality is true:

ViTE =0 2.7)

(2) Let us form the operator dyA@; which we can be called the operator of an absolute differential.
Indeed, applying this operator to standard objects (a scalar, a vector, a tensor), we obtain the corre-
sponding absolute differential of this object, since it obeys the transformation rule when (1.2—4) and
(2.3) are fulfilled.

From (1.2) it follows that the coordinates w and w™ of the internal space transform as components
of a standard vector, i.e. the tensor property of the test field is not violated. Hence we can apply to
them the operator of an absolute differential. As a result we obtain

DF = dyA%Awk = duw® + dyAfAfLw”, (2.8)
D: = dyA@lw: = dw;r — dyAfAﬁw:,

which in the sequel will be called canonical differentials. As will be seen below, this property of the
internal space strongly affects the structure of the arisen curved geometry.
(3) Along with (2.8), we introduce the canonical differential

DY = da” + dy*w" (2.9)
and assume that under the action of the group G it transforms by the rule
D" =D"+0O1D°. (2.10)
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From (2.9-10) it is not difficult to find the transformation rule for w? :

—V v v, o aQB v 86: z7 00"
WA:CUA—{'@UWA—WWB ay _ayA (211)
Let us consider the transformation of wj; and wy. With (1.1) taken into account, from (2.11) we
obtain 90"
wg = CUZ + @ng — 875(.4);, (212)

where &, n runs through the indexes and overlined indexes of the internal space. This transformation
implies that w{ is not a compensating field and if in some system of coordinates w¢ = 0, then under
the action of group G this object remains zero. Therefore in the sequel it will be assumed that

v — . (2.13)

v o__
wp =0, wy

In that case, the transformation rule for w? is
0Q° ooV 00V
v a7 — 2.14

A Ox™’ @.14)
where Q7 = ©9(x)x” + O (z) . By virtue of this reasoning we assume that

w? = wY(x). (2.15)
As seen from (1.1) and (2.14), under the action of the group G the dependence of w” only on x remains.
Then the canonical differential (2.9) stops to be influenced by the algebro-geometrical structure of the
internal space, which is in complete agreement with the ideology of transformation (8.10) from [4] and
(1.1).

(4) Let us introduce tetrads

—v _ v v, .o
WT_WT—i_@O' T

ek = 6% + T 4kwn, (2.16)
eﬁl :62_FAZw7J{7

where ¢ is the Kronecker symbol and w” has form (2.13) and (2.15). Using (2.16), the canonical
differential (2.8-9) can be written in the form

DA = efdy®. (2.17)
Now we introduce the operators
Vi =N, (2.18)
where
eael =02, (2.19)

which in the sequel will be called canonical compensatmg derivatives. From (2.16) and (2.19) we
obtain
ey = 0% — Tapu”, (2.20)

where we have introduced the notation
I8 =eirgt. (2.21)
At that,

1 .
FAi = éFAZ[fYV7 VT]Z + BZUGZ + ZQDA(wa

LY = 4T gy, (2.22)
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a _ ~B pa
BA _iégBa
YA = €a¥B-

The object I' 4% will be defined later. As to B9 and ¢ 4, these fields are irreducible and therefore their
definition does not need further improvement.(2.18) contains the operators

~ 0
_ =B
DA—eAay—B, (223)

which we call canonical operators.
Taking (2.4) and (2.11) into account, under the action of the group G it is not difficult to derive the

transformation rules for D4 and D, :
D' = DA+ TAD®, (2.24)
BA = ﬁ A+ TABE B,
where T3 is (1.3).
If in the dynamic space we introduce the bases D and D 4, which we call canonical, then we obtain
transformation (1.4) for standard vectors. On the other hand, in the same space we can introduce the

standard bases dy“ and 9/0y“. Then the tensor values written in these bases transform by means of
the matrix
0"

oyB’

where 7 = y+Q*(y) is (1.2) written in the shortened form. Thus the tetrads e realize the transition
from a standard basis to a canonical one, while ¢4 is an inverse transformation. Note that e4 transform
with respect to the upper index, while ¢4 with respect to the lower index by rule (2.24), and with
respect to the remaining indexes by the rule of a standard basis:
0Q¢ 4
Q4 .
oyC P
In view of (2.20) and (2.25), we can rewrite rule (2.4), by which compensating fields transform in the
canonical basis, as follows:

Tal =Dal —TPTy7 + 07T ,% — ©'T 4] — DO,

(o

A
0p +

en =cp+Thel — (2.25)

gBA - gBA - ngé +

B, = B% — T?B% + C,°0"BS — D0, (2.26)
Ba=9a—Tipp—Dab,
where (¢ are structural constants from (4.13)[1].
(5) It is not difficult to verify that the following equalities are valid:

Vaw® = 6%,
Vaw;t = 6%, 2.27)
Vay” =0,

where % is the Kronecker symbol and 4 is the Dirac matrix. Note that in the case of differentiation
of 7, it is represented as a tensor of third rank, i.e. 5.
Since the matrices h, (w, w™) of the dynamic group are constructed by means of w, w™ and v, it is
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not difficult to verify by (2.27) that

Oh,B
Vih, = —2%-. 2.28
e = 5% (2.28)
Taking into account equalities (2.6) and (2.27) we easily find
o Jgpc
Vagpe = Wa (2.29)

where EMB is the metric tensor (1.21)[1].

3. Consistency with a metric

We continue to investigate the properties of a covariant derivative acting on standard vectors.
(1) For the consistency with (4.5)[1] we introduce the metric in the curved space in the canonical
basis

0 H
Ds* =g, D'D" +2—D, D¥, (3.1)
p
where D4 is (2.17).

We introduce the covariant derivative

o

ViF? =V F? +m BFC, (3.2)

where £ is a standard vector field and m A2 are Christoffel coefficients (6.6)[1].
With (2.29) taken into account it is easy to verify that the following equality is valid:

Vagpo = 0. (3.3)
This means that the covariant derivative (3.2) is consistent with metric (3.1).
(2) It is obvious that in the standard basis a metric tensor has the form
JgAB = éELegeéa (3.4)

where ¢ 4 is a metric tensor in the canonical basis and e is tetrad (2.16).
Let us introduce the covariant derivative in the standard basis
S = oOF" B C
We require the fulfillment of the equality

Vagpe = 0. (3.6)
A solution of equation (3.6) with respect to 745 has the form
Tal =Tal + MaZ, (3.7)
where T 48 are Christoffel coefficients in the standard basis

° g logp (09ap Ogec 0Ogac
TACZEQ E 8yc + 8yA - 8yE ) (38)

and M. A2 satisfies the condition
Maggse + Matgse = 0. (3.9)
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(3) As has already been said in (4) of Section 2, the transition from a standard basis to a canonical
one and vice versa is realized by the tetrads e and é4. If F'4 is the vector represented in the standard
basis, in the canonical basis it takes the form

FA=edFP. (3.10)
Hence, the covariant derivatives (3.2) and (3.5) are related by

]

VAFP = efePVpFr. (3.11)
Using (2.1), (2.18), (2.21), from equality (3.11) with (3.10) taken into account we obtain
~ a@E ~ o ° —~
e gya teaereoUir +mig) = Tag + Mie.
After lengthy but simple transformations we obtain
L4l —Tad = Mag, (3.12)
where .
Tac = §§BE[E]LEFA6L +9arlec" + 90 TEx"),

Tac? = ef(Daet — D), (3.13)
MAg = EﬁggegMLg
By (3.13) it is easy to prove
LaBgpo + Taégpp = 0. (3.14)
Using (2.6), (2.21) and (3.14), from (3.12) we obtain

MA%E]EC + MA%EBE = 0.

Thus we have shown that (3.12) is consistent with equality (3.9).
(4) From (2.22) it follows that I" 4 is expressed in terms of ' 4%, where B4 and ¢ 4 are irreducible

objects. I'45 is uniquely defined from (3.13) by means of the tetrads e7 and ¢4. But since M45 is a
free tensor field, we choose it so that equality (3.12) is fulfilled. An exception from this rule is M 4.
As has been said in (4) of Section 2, I"'4¥ is the unknown object which needs to be defined. Therefore
by (3.12) we can write

a2 =T4) + Ma7.
It is not necessary that M 4”7 be present as a free tensor field in the discussed theory and that is why it
is discarded.
Summarizing our discussion and taking into account (2.13), (2.15-16), from (3.13) we finally ob-

tain
1o

Lo = 59" 13T o + Gl + 9ralp .
1H o L
Fk.,y. _ 5 ; guul—\u;k7 (315)
1Ho
ny = —-— VMF k
kT 2 P 9 KT

where h/p is the cofactor from metric (3.1). As can be easily noted, I',” is expressed only through
the tetrads e”(x) and €”(z). For I',”(x) expression (3.15) is the well known result for the curved
space-time represented in terms of tetrad formalism.
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4. Covariant derivatives for dynamic vectors

In the preceding paragraphs we have constructed a covariant derivative when in the set of spaces
the group G acts according to rules (1.2) and (1.4). We have excluded from the consideration dynamic
vectors which transform by rule (1.6).

Let us introduce a covariant derivative in the canonical basis for the dynamic vector ®* in the form

MPP = DydP + K,50°, (4.1)

where the operator D 418 (2.23).
Under the action of the localized group G the covariant derivative (4.1) represented in the canonical
basis transforms by rule (6.2)[1] as follows:

AD” = AydP — TSACDE + (T + h)BALDC, (4.2)
where we have introduced the notation
h =0 (y)h,.
From (4.1-2) we find in a standard manner the transformation rule for connectedness coefficients
K Ag :
Kag =Ka¢ = T{Kpe + [T+ h, Kalg — Da(T + h)¢. (4.3)
Assume that K 45 has the form
Kaé =Ta¢ + Nag +mat, (4.4)
where "', Z is (2.22) and (3.15), while m 42 is (6.5)[1].
Let us substitute (4.4) into (4.3). Using (2.26) and (6.14)[1] and keeping in mind that transforma-
tions are infinitesimal, we obtain

— ~ Ooh,
Ny = NA—TENC—F [T+ hy, N 4] —DAh+@“ayA + [h, T 4),

where Na(= N4Z)and T'4(=T48). Since
Wah = Dah + [Ta, h],
where h = ©%h,, we can write
Va(©%y,) = V4O - hy + ©Njhy,.
On the other hand, V,0¢ = D 4 ©%. By (2.28) we obtain
Oh,
oy’

Yy h=D,0% h, +6°

Then for N, we have

No=Ni—T{Ng + [T+ h,Ns| — DAO" - hy. (4.5)
Assume now that
_Na=DBj - h,. (4.6)
The substitution of expression (2.26) into N 4 = B: - ha gives
N4 = Byhe = Bbhy — TEBSh, + CLOPBGhy — DAO” - h,. (4.7)

Equating (4.5) and (4.7), we obtain linear homogeneous functions with respect to B¢ in the right-
and left-hand parts. Obtained equality must be identically fulfilled with respect to B9. In that case we
obtain

hg — ha + C5,0%h, = [T 4 h, hy). (4.8)
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Since

[0 hi] = G B, (4.9)
from (4.8) we find

B = ha + [T, ha).
This transformation coincides with (6.16)[1]. We have thus come to the conclusion that (4.8) is iden-
tically fulfilled. This means that assumption (4.6) is not contradictory.

If we substitute (4.6) and (4.4) into (4.1), then the covariant derivative extended to dynamic vectors

takes the final form

A P8 = D48 + (T48 + BihoB + maB)o°. (4.10)
It is obvious that (4.10) can be written as follows:
A PP = V@ 4 (B4R, +ma)E0°. (4.11)

From (4.10) it immediately follows that the introduction of dynamic vectors does not bring about
the formation of new compensating fields.

Thus, as follows from (2.20), (2.22) and (3.15), w”(x), B%(z, w,w™), ¢ 4(x,w,w™) are indepen-
dent fields in the obtained geometry. All other geometric objects are expressed through them.

5. Curvature tensor

Let us rewrite the covariant derivative (4.10) in the invariant form [7]:
WY = XAALYP Y, (5.1)

where Y4, ?A are self-conjugate dynamic objects, i.e. if Y4 transforms by rule (1.6), then for SA/A we
have —
Ya4=Ys— (T +0%,)5Y5. (5.2)
Asto X4 in (5.1), according to (3) of Section 5 from [1], the vector X is only a standard one.
(1) The invariant form of curvature is defined in the form [7]

R(X,Y)Z = [V, %|Z — Nix v Z. (5.3)

From (5.1) it immediately follows that in (5.3) X, Y are standard vectors, while Z is a dynamic vector.
Using (5.1), equality (5.3) allows us to write the components of the curvature tensor

Rup = DsEg — DpEy + [Ea, Eg] — Ta3"Eg, (5.4)
where 4 are matrices with the following elements:
Eaé =Tt + B4ho& + mag. (5.5)

At that, in (5.4) the object I' AE;E is defined from (3.13), while the operator D A — from (2.23).
Using (1.4), (1.6) and (5.1-2), from (5.3) we easily find the transformation rule for the curvature
tensor under the action of the group G :

Rap = Rag — TS Rep — T§ Rac + [T + ©%ha, Rapl, (5.6)

where RAB (Z RAB%)-

(2) As has been noted, in (5.1) X is a standard vector and Y is a dynamic vector. In that case, Vy- X
is meaningless. Hence we conclude that in this geometry there exists no torsion of the space which, as
is known, is defined in the invariant form as follows:

WY — WX — [X,Y].
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(3) If in (5.5) we discard the second and the third term, then from (5.4) we obtain
Rapl = DaTpk — DpTal + [T, Tull — Tap"Tst, (5.7)

which we call the truncated curvature tensor. Since the matrix I"4 is extended to the algebra of matrix

(1.3), it is easy to find nonzero elements of the matrix Rp :

Rap? = Dal'g? — DpT'a” + T " Tg" — 5T 4% — Taz"T's",

o 1 o )
Rapy, = gRABZ[%, VI8 + Gapy + iFapoy, (5.8)
RABE = —Rag},
where R R
Gap = DaBp — DpBa +[Ba, Bp] = Tap"Br, (5.9)

Fap=Dapg— Dpos—Tag oy
Matrices B4 have the form

By = Bjo,.
Using the commutation relations for the representation of a dynamic group
(04,08 = Caf 0, (5.10)
where o, are representation generators, the matrix G 45 can be rewritten as
Gap = Ga%o,, (5.11)

Ga% = DsB% — DB + G BY By — T 457 BY.
(4) Let us investigate the object Fzg which is defined from (3.13) by means of tetrads. With (2.13—
16) taken into account it is not difficult to show that

,." = eX(Dye], — D,en)iy” =0, (5.12)
' =0.
These equalities immediately imply
L, =T,,"(x). (5.13)
Now let us consider I Agk. After simple calculations, from (2.16) and (2.20) we find
_ ok
Tyb = = Ragaw" + T, 0% — T'p, 0%, (5.14)

Pap' = Rapfw) — Dapdp+Ts}o],
where 0 is the Kronecker symbol.
Thus equality (5.8) with (5.12—14) taken into account is the defining equation for components of

the truncated curvature tensor R 45.
(5) Let us consider the total curvature (5.4). Substituting (5.5) into (5.4) and using (4.9), expression
(5.4-5) can be rewritten as

Rap = Rap + Gigha + By (Daha + [Da, hal + [ma, ha) )
— B4 (Dpha + [T, ha] + [, 1)) (5.15)

+ KﬁAmB + [FA,mBD - <ﬁBmA + [FB,mAD + [ma, mp] — FAgEmE] _
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Since D 4h, + [C'4, hy] = Vah,, we obtain with (2.28) and (6.3)[1] taken into account
VAha + [maa ha] = 0.

It should be noted that from (6.6)[1] and (6.13)[1] we immediately have
A

ml/B - 0
Then, using (5.14) and (2.22), we obtain
FAEEmE = —RABanmk + RABZw:[mE + FAng — FAgmc. (516)
From (6.15)[1], (1.2) and (1.5) it follows that m 45 is a tensor value. Since
om
Vimp = Wf’

from (5.15) with (5.16) taken into account, for components of the complete curvature tensor we finally
obtain . ) .

Rapf = Rapf + Gliphaf + Raplw"miG — Rapfwimzg + rapf, (5.17)

where o C o C

mp ma
raps = GyAE - 8yBE + [ma, mp)%. (5.18)
It is obvious that (5.18) is a space curvature tensor provided that the parameters of acting continuous
groups are not localized.

6. An action integral

The aim of our further investigation is to find out what aspects of the physical theory of a field
can be explained by the geometric theory expounded here. We will follow the scheme proposed by
D. Hilbert. Namely, first we compose the scalar curvature by means of the curvature tensor and then
construct the action integral.

(1) From (5.6) it immediately follows that the curvature tensor R 45% transforms — with respect to
the indexes A and B — by the rules of a standard vector (see Section 5 from [1]) and — with respect to
the indexes C' and E — by the rules of a dynamic vector. This means that the scalar curvature cannot

be constructed by a standard technique because Rapa EBC is noninvariant with respect to the dynamic
group.
Let us compose a scalar curvature in the form
R = RapSaBal gt (6.1)

In (5) of Section 5 from [1], we have found that the matrix a7 changes standard vectors to dynamic
ones and, vice versa, dynamic vectors to standard ones at the cost of violation of the dynamic group.
We easily find that (6.1) is invariant with respect to the one-parameter groups (3.10)[1] and (3.15)[1],
but is noninvariant with respect to the commutator g;g.g; *g, *, where g; and g, are the elements of
groups (3.10)[1] and (3.15)[1], respectively. Along with this, (5.17)[1] implies the noninvariance of
(6.1) with respect to groups (3.11)[1] and (3.14)[1].

Thus the requirement that (6.1) be invariant narrows the group G to the one-parameter but localized
groups (3.10)[1] and (3.15)[1]. Moreover, scalar (6.1) does not admit a simultaneous action of these
groups. We have the right to put into action only one of them.

These questions certainly require a more comprehensive study. However, at this stage of the inves-
tigation our interest lies in mathematical constructions based on the logic of test field motion and the
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algebraic properties of differential equations.

(2) It is not difficult to verify that the sphere p = w™w = const is an invariant manifold with respect
to the group G. In the theory expounded here the internal space is treated as a ball with fixed radius
ZO .

(3) Let us consider det e5. Condition (2.13) immediately implies
det et = det e - det eg, (6.3)

where &, r runs through the indexes and the overlined indexes of the internal space.
(4) Let us compose the integral

Lz) = =

= R(x,w,w")det e5dV,, (6.4)
Vo p<e3
where dV,, is an element of the volume of the internal and the conjugate internal space, V; is the
volume of ball (6.2). By virtue of the reasoning of (3) of Section 5 from [1], we conclude that dV,, is
invariant with respect to the dynamic group acting in the dynamic space. From (2.25) we immediately
obtain the invariance of det ef, with respect to the dynamic group. In the sequel, L(z) will be called
the Lagrangian.
Integrating (6.4) with respect to some volume V; of the external space, we finally obtain the action

integral with respect to this volume
S = / L(z) det e d*x. (6.5)
Vi

(5) As has been shown in Section 4, the compensating fields w”(x), B (z, w, w™) and ¢ 4(z, w, w™)
are independent fields. To simplify our further calculations, we discard B¢ and the dynamic group.
Thus the summand m 45 is excluded from (6.5)[1]. Simultaneously, we require that ¢, be dependent
only on x :

4= palr). (6.6)
We impose on the group GG the condition under which its action on ¢ 4 preserves its independence of
w and w™. This requirement uniquely brings to the condition

© = O(x). (6.7)
Then (1.3) and (2.26) immediately imply
@I/ =¥, — @Z(l’)g@a. - EV@(:E)7

Pr =Pk — T;gsﬂm (6.8)
P =vr + Toem
where .
Ty = 205@)h,, 1T +i0(2)). (6.9)
Under requirement (6.6) the group GG narrows and in the wake of this narrowing the compensating
field o, (), p5(z) becomes a tensor value. From (6.8) we conclude that ¢, (x) can be interpreted as
potentials of the Maxwell field, while ¢, (x), ¢z(x) as a standard spinor field. Hence for ¢, and o5 we
can introduce the standard notation [5]:

o = %Ex), (6.10)
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7. Calculation of curvature components

We will calculate the curvature components under the assumptions given in (5) of Section 6.

(1) Let us consider the components R,,” of the truncated curvature tensor (5.8) which are repre-
sented in the form

(o] [e]e}

Ra,u,qli = RO’/LZ - FU;ka: - FU;EFE:7 (71)
where we have introduced the notation
Ry, = DT> — D,T',” (7.2)

+ To5T, = T5Te) — T T2
Object (7.2) depends only on z (because of (3.15)) and is a standard curvature tensor of the external

space (space-time) in tetrad formalism.
Using (3.15) and (5.14) and performing simple calculations we obtain

o oo H o o o
Ryt = Ryt + 2—pg”w,j{RM, R, }rw, (7.3)

where {A, B} = AB + BA. From (5.8) we define ]O%Mﬁ,:

o 1o )
Ry = gRas? [T + iFandy. (7:4)
From (7.4) it immediately follows that (7.3) is a quadratic equation for the components 12,,,”.
From (1.1) and (2.26) we find that I';” and I';” are tensor objects. Then, performing transformations

analogous to the above ones, we obtain

o o

Ho o
RO’/{JZ - varqu— + —gw\er{R/\r, Rak}wa

2p
o H o o
p
o H o o
Rl =Vl = Vil — DDl + T + %g”uﬁ{RmE, Ry, .
We easily obtain Rz from R,,;” by putting bars over m and k. RR,,,;; and RR,,;;;’ are defined from
(7.4). It immediately follows from (3.15) and (5.4):
Ho, °
FkZ:2_p VNRMTZ'LU;—’ (76)
v H 14 /C-)\ n
s —%g R,
(2) In (5.9) let us consider F},, which we write in the form
F,. = ZA)Z,@T — ﬁTgol, —T,%0, =T, "¢, — FV;EQOE. (7.7)

Using (5.14) and notation (6.10), we obtain

o

F,=F, +VYR,,w—w"R,.V, (7.8)
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where

F, = ZA),,ng — ﬁTgol, o (7.9)
If it is assumed that ¢, are potentials of the electromagnetic field, then F',,. should be interpreted as a
strength component in the same representation.

After inserting (7.4) into the right-hand part of (7.8), we obtain the equality by means of which we
define F,; :

1 o _ o o
= — [F,; + YR,,w —w' R, V], (7.10)
1 —i(Pw — wtW)
where B
Rapl = RABZ[’VU,’Y”]Q (7.11)
After simple calculations, from (5.9) we find
F, ! [V, 9 + EE % U]
vk — — v vkW — W v )
- i(Yw —wtW) : ; ‘
1 T 5
mk = — VR, W —w R U 7.12
g 1—7L(\Ifw—w+\1!)[ * , (7.12)
1 [T TN 1813 TN
+ g(FmT\Pnh/w Y ]k; - FkT\Dn[’Ym Y ]m)]’
1

For=

1 —i(Yw — wtW)

X 2T U+ TR, — w Ry ¥ o SO, T+ Ty 0

It is obvious that (7.3—12) are equations for the curvature components R 45Y and F4p.

(3) We will solve system (7.3—12) approximately, assuming that the constant H is a sufficiently
small value. Besides, it is assumed that the spinor fields ¥ and ¥ are values of order H¢, where
e > 0. Applying the method of successive approximations and eliminating summands of higher than
first order with respect to /, we obtain

o 00 Ho ~ ~
Pbauz = RUMZ + 2_,091/)\w+{R>\T’ Rau}w7

v HOI/ D on
Roky = 2_,09 “V(,RW,CU)Z,
Rmk;«/ = 07

Ho,, ~
R -V =_—= yuRTk’
mkT 2p HTm

F,,T _ [1 . Z(@w o w+\11)]_1 (713)
% | Fyr + Ryl (T, 7w — w[y,,7]0) |

Fyk = [1 — Z(Ew — w*@)]*lvyﬁk,
Fﬂk - O, o
F - =2i[l —i(Vw —w™ )|, "

mk
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where - .
Ror = Ry [7: 7" ] + Fardy. (7.14)
(4) Let us calculate det e§7 in (6.3-4). Like in (3), the calculation will be performed with accuracy

up to first order with respect to H. For this we consider det e§7. By (2.20), (2.22) and (7.6), we can
write

det & = det [55 SET, mw* + 65 anwk}

= det [52—1% (52[%7 Y Rwk = 65y, 7 hw )—i‘l’n (5i k—(iw;‘f)}

Taking into account that W, is a value of order H¢, while I',” is of order H, we have
1 14 T
ot = det 55— 30,2 (55wt a5 )]

x det [5?7 — i, <5§ k_ 5%10;;)}
The second determinant is calculated exactly and found to be equal to
1 —i(Yw —wh).
The first determinant is calculated with an accuracy up to first order with respect to H:

det ef; = [1 —1 (@w — w+\11)]_1
1 v n 1 v T
x <1 + gnrl, v Tiw® = ST,y }fiw;?) :
Using (7.6) with an accuracy up to first order with respect to H, we finally obtain
1

det ef? =[1-i(Pw—w'l)] "+ %él’“uﬁ {}N%W, [7,,,77]} w, (7.15)

where R, is (7.14), and {A, B} = AB + BA.

8. Calculation of the Lagrangian

In the preceding paragraph we have found approximate expressions (7.13-15) for curvature com-
ponent. We want to calculate Lagrangian (6.4) for the fields w”(x), ¢, (), Ui (x) and *(z). In (7.13)
we have found curvature components with an accuracy H up to first order. In this paragraph, to avoid

oo _
cumbersome calculations, it is additionally assumed that R,,;, and ¥, ¥ are sufficiently small values.

This assumption allows us to discard the summands containing R, quadratically, and W, U above
second order. But before proceeding to the calculation of Lagrangian (6.4), we should establish some
auxiliary relations.

(1) As can be easily verified, the elements of the matrix a7 of transformation (3.1)[1] satisfy the
equalities

agaf =47,
ag = 52 —aa,, (8.1)
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ay =14 ——-w
5 CJH1
ag = —i 357 w, (8.2)
H
ay = —iy/ 375“&

k =
12
and &, n, ¢ run through the indexes and overlined indexes of the internal space.

(2) As is known, the spurs of Dirac matrices " are equal to zero. The Lie algebra matrices con-

structed on 7 also have spurs equal to zero. Moreover,

ISSN 1512-1461

where

H
e o
a ? 2 W Yok

sp(y"r...4") =0 (8.3)
when m is an odd number. It is not difficult to verify the validity of the following equalities:
sp[7":7"1 =0, (8.4)

P[0V 1005 77)) = 40,05 = 9,09") 8-
(3) Let us calculate the scalar curvature (6.1) under the restrictions that have been introduced in (4)
of Section 6. Along with this, in (6.1) we discard the summand 7 45%, and denote the remaining part

by A. By (6.6)[1], (7.13) and (8.1), we can reduce A to the form

p vi.m .o k o > ki i n w _k1%vo
A= _Rki [auaE - al/an] + RVMn[akaU — Gza }g

H No o

2p ° = 1
+ EpRmqu {aga% — alak — 2 (w"aly — wiak) wm] (8.5)
+ 2—p1i2— Elaka™ — ata (w”a” — w+a“) w’

mpn kEYm n'm k k “'n m

H 2

20 . 1 . . 1 -
+ ﬁpRmsz [aﬁa”m —atak — 2_p <w”af; — w,ja%) w™ — 2—p(w,ja% —w"ak ) w/f

(4) (7.13) and (7.15) contain
[1—i(Tw —w™ )]

Let us expand this function into powers of Ww — w*W. Then the product A - det S is a polynomial
function of w and w™ . Using equalities (8.3—4), it is not difficult to calculate integral (6.4). It is obvious
that this procedure is rather cumbersome and therefore we will demonstrate these calculations only for
some summands from (8.5).

(5) We take the first summand from (8.5) and multiply it by (7.15). By (7.13—14) and (8.1-2), we
obtain

1 5 g T v Z > T v
Al = |:8_pRl/T,uw+’7 [70’77“]7 w + Q_IOFVwa/ » ]w:| (86)
= -1 H ~
X {(1—2(\I/w—w+\ll)) +Ew+ {RVT,[7V7’VT]}M:| :
p

Let us substitute (7.14) into (8.6) and remove the brackets. If the obtained expression is substituted
into (6.4) and integrated, then the summands, where w and w™ are not contained simultaneously to an
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equal degree, vanish. Therefore when unbracketing product (8.6), we discard such summands from
the very beginning:

1o 10
_ (o v + [T v
A1 - 8_pR1/Tuw Y [707’7 ]’7 w + %Fm'w [’Y Y ]w

1o _
+ —RVTZwWT[%, Y w - (Tw) (w* )

+ Pty 4w - (Tw)(w* )

2p
H o, AT v + 5 A €
QRuruw Y Vo VI w - w {Rm[’y )Y ]}w
128
+ 32_/)2FUTw+[777 ’Yy]w ' w+{§)\€7 [’7)\7 76]}21}

The integration of this sum gives

Li(z) = [EuTzswm, ) + sl ﬂ)}

]_oo o _
+ Lops {QRWZSp(vT Vo Y 17°) + Fursp([Y7, W’UD‘I"I’]

1 oo _ o —
+ Gy [QRWZW Vo Y IVY + F W, 7”]‘1’]

+ HpyRor0sp(Y [o Y 10Y) 8P4 Boe, [, 7]}

+ Hug Ryr0sp(y o IV { Roe, [V 771}
+ HugForsp((77, 7)) sp{ Rae, [, 7]}

+ HurFoursp(07, 7 H R, [0 71
As is known, the matrices [y, y"] form the closed Lie algebra with traces equal to zero. Then the
spur of odd products of such matrices will also be equal to zero. Therefore in L;(x) the summands
containing [,,~"] and triple products [v,,77], will vanish.

e)e}

Using (8.4) and the equalities R, = —R,,7, sp(AB) = sp(BA), it is not difficult to verify the
validity of

Ry 5sp(Y V5,7 ]7") = 16R,

[e]e]
where we have taken into account that §; = 4, and R is a classical scalar curvature of the space-time

[e]e}

R =R, (8.7)
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Analogous calculations carried out for other summands in L, (x) give

[e]e}

Li(z) = (71 + [l PP R

~ = T v Loo O~ T v
+ 150 (ZFW\I/[V AT+ S R 177y \11) (8.8)
__ ©o oM

+ HU4RW;F79W

+ Hiiy Y,
where . i

FY =g F,,. (8.9)

Note that /iy, . . ., 115 are numerical coefficients depending only on the dimension of the internal space.

By analogous calculations in the same approximation carried out for the second summand in (8.5) we
come to the same result as (8.8).

(6) Let us now consider the second and the third summand in (8.5). Multiplying them by (7.15), we
obtain

; k| K n
2 Rmn[aam—a
A = 2P pn |

k 1 () n b + M\, n
b (el —wiau |

H n ok
+ Ry [aZ al, — aka

I
7

i (8.10)

— 5 (w"ay — w+a%)wﬂ

_ — H ~
X (1 + z(\IJw — U)JF\I’) — (\Ifw — w+\11)2 + KIOWJF{RV‘M [71/7 ’YT]}w> .

Let us multiply (8.10) with respect to volume (6.2) of the internal space. It is not difficult to ver-
ify that the cofactor of the summands not containing U and ¥ is made up of traces of the matrices
which are products of an odd number of Dirac matrices 7. In that case, as follows from (8.3), such
summands vanish. The summands containing ¥ and W linearly have w* and w raised to an odd degree
as their cofactors. When integrated, such summands also vanish.

Further, from (8.2) it follows that a and a¥ contain the cofactor /H /2. This cofactor can be taken
out of the brackets of the entire expression. If we leave the summands enclosed in the brackets in the
same approximation as in Section 7, then after simple transformations we obtain

Nk 1 m
5t | (9 ) (ofoh - afal - f(wtal —wiafyur) < (Wl — Tw).,  (8.11)

H | 4 (9,0m) (afah, - aal, = L (wbaf — watyuwy)
By equalities (8.1-2), we can write
- 1
alak — a%akﬁ - %( Fall — wi al)w™
H1 1 1
=i\ 5= <v“2”w" — 7" = w [y, Y w — —wW“wwm) : (8.12)
2p 2p p
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k w4 Y, +
w'ay, — wy az)wy,

H1 1 1
=i\~ ( WA+ —w AT w [y, Y w — —wW‘ww;Z) :
2p 2p p

Let us substitute (8.12) into (8.11). The resulting expression is integrated over volume (6.2). Having
first symmetrized the coefficients of the polynomial of w™, w and then using (8.3—4), after simple
transformations we finally have

ok w ok
a,.a,, — a-a,, — —

Lo(x) = %— [(V, ) "% — TV, 0] (8.13)

where 714 1s the numerical coefficient depending on the dimension of the internal space.

(7) Now we will consider the last summand in (8.5). Multiplying it by (7.15), we obtain
1 7 1
g (0"l — ey~ o (i,

3\ !

2p° 7
A3 = I - [aka —atal —

— w"afn)wj} (8.14)
- Ty + H +1D v T
x [14+i(Tw — wt¥) — (Vw — wh)? +Kw {R,-, [, 7 |}w] .
p
By the same reasoning and calculation as in (6), we find

1%
Ls(x) = N7R+M8H‘I"Ij (8.15)
where [i,, 115 are the numerical coefficients.
(8) Thus the total Lagrangian (6.4) arising on the basis of (8.5) is the sum of (8.8), (8.13) and (8.15).

The obtained sum is divided by 1tH, where 1 is the numerical coefficient of R. (1 could have been
introduced in (6.4) from the very beginning as the cofactor of V;). We retain the previous notation of
the obtained Lagrangian.

From the phenomological theories it follows that in the Lagrangian the coefficients of F”F" and
(V¥ - 4" — U~*V,U) should be at least of the same order. This leads to the condition

g?

N = . (8.16)

Then the Lagrangian takes the final form

Lx) = (L4 p HVETO)R 4 i/ (iiﬁm LRI Y 2 W) 8.17)
+ ,u3§”TRMMF + u4FTF” + 151 (V, Uy — Uy, 0) + ,LLG\/—I_W\II,
where i, . . ., 45 are numerical coefficients. In (8.17) the objects RWT and R are defined from (7.2)
and (8.7), 1?; is defined from (7.9) and (8.9), and
vV, = D,V + %F,,Z[%, VU + i, U, V, T (8.18)

1 o
=D, ¥ — gryZ‘D[’YU,’Y“] —1p,V,

where I';}) has form (3.15).
As has been mentioned, we have performed the same calculations as in Section 7. In the case of suc-
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[e]e] [e]e] [e]e]
cessive approximations, in the Lagrangian there arise summands of the form HR?*, HR,.,,R"™",

CoH Y (OW)2, (oH (U, U) (V¥ ), (FF)? and so on. This implies that the equations of Maxwell
and equations of Dirac appear to be non-linear objects.

(9) For simplicity, in (8.17) we discard the summand containing f;, /15 and the second summand
containing /i,. Then we have

1 oo o __ o o
L() = 2 R+ pgiVHE, O[T A 10 + pg FLF (8.19)

— — 1 —
' Iy — M _

+ 15t [(V,0) A0 — UV, 0] + pg \/ﬁ\w.
It is obvious that (8.19) is the classical Lagrangian of the interacting strong gravitation, Maxwell and
Dirac fields. The summand with i, is the well known anomalous magnetic moment of the Dirac field.

(10) In Section 6 we have excluded from the consideration the geometric object B (z, w,w™). Let
us expand B9 into powers of w and w™. As a simple illustration we can investigate the case with
Bj(z), Bj(x) and B(x). These fields form constructions analogous to ¢, (z), ¥(z) and U(z), but
where the algebra to which they are extended is noncommutative and the dynamic group is specific.
B, (z) will bring us to Yang-Mills fields, and By, (), Bz (x) to noncommutative Dirac fields.

(11) From (8.19) it immediately follows that the mass of the Dirac field U is equal to j14/ (,u5 VH ) .

As has been said in (3) of this section, from (6.1) we have discarded the summand with r, ..

Calculations show that when this summand is present in (6.1), in Lagrangians (8.17) and (8.19) there
arises the summand y, H 2. Obviously, p, H ! should be interpreted as the squared mass for strong
gravitation, i.e. for the field e (x).

Preliminary investigations show that Yang-Mills field B%(x) and the noncommutative Dirac field
Bj(x) also contain mass terms.

The only field having no mass is the Maxwell field ¢, (z).

(12) Thus, in constructing the theory of compensating fields, the observer is within process (5.9)[1].
Since all the time he uses the calculus of process (5.9)[ 1], he will not be able to leave this process. He
can manipulate only with various states of his process — the consequence of this is the appearance of
the Lorentz group and the dynamic group.

(13) Let us return to Lagrangian (8.17) and discard all the summands responsible for the interaction

between the fields e”(x), ¢, (x) and ¥(z), U(z). As a result we obtain

1 oo oyoT ) a\Ij u _Va\Ij J—
L(x) = LR+ paF7F] + pisi (%7 U — Uy @> + \/—%\w (8.20)

In that case, we have the delocalization of the group G, i.e. the restoration of the group G. It is obvious

that (8.20) is invariant with respect to the group GG. The equations obtained from (8.20) correspond to
the fields described in the frames of reference and systems of calculus of the observer from process
(5.9)[1] in the absence of interaction (both with the observer’s process and with each other).

B. Basic Principles of Process Motion

In this chapter we consider the set of all possible kinds of noninteracting processes. We intend to
investigate the properties of this set and establish algebraic relations arising between processes.
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9. Questions of relativity

(1) It has been more than once mentioned that each differential equation, describing free motion of
a process, contains a proper double numerical field, where each field acts alternatively. These fields
generate in turn alternative calculi and alternative frames of reference [2, 3]. It should be emphasized
that, due to the alternativeness of a double field, while being realized the process chooses only one of
the fields, thereby uniquely choosing the corresponding calculus and frame of reference. This means
that the process evolution takes place according to the algebraic rules dictated by the chosen numerical
field.

(2) As has been established in [2, 3], the differential equation of a given process takes a linear form
in its calculus and frame of reference. We want to specially remark that we have not studied in detail
what concrete linear form this equation has and on what its construction depends. These issues need
further careful investigation and therefore we confine our discussion to the above-mentioned remark.
Hence, like in the preceding chapters, it is assumed that the equations of the considered processes are
reducible to form (1.1)[1].

(3) Being in a given process, the observer begins to investigate the algebraic properties of his
process. As was shown in Sections 8, 9 of [2], each process has its own inertial frames of reference.
By virtue of the reasoning of Section / from [1], we require that the group acting over the inertial
frames of reference be the Lorentz group. In this case, the equation of the considered process must be
invariant with respect to the action of this group. Besides, we assume that equalities like (1.2)[1] are
fulfilled. In other words, the equation of the considered process is an admissible one.

By virtue of the reasoning of Sections /-6 from [1], the group acting in the set of spaces of the

considered process is assumed to be analogous to the group G (5.1-2)[1]. To simplify our further
discussion, we assume that in all considered processes such groups act in the proper calculi of these
processes.

(4) Suppose we have two processes 7 and mo. Inside the process m; is the observer. As said
in (13) of Section 8, the observer can describe the process 75 in his system of calculus provided that
there exists an interaction between both processes. In a certain sense this interaction must be complete;
otherwise the observer from 7; will not see the process 7, or will see it partly. He writes the differential
equation of the process 7, in the language of the calculus system and reference frame of the process
m1. In the obtained equation the unknown functions are the values by means of which various states of
the process 75 can be described. After this, the observer discards the interaction terms from the arisen
equation. The arisen equation of the process 75 is autonomous, since 7; and 75 already interact and
there are no other processes.

Let group (5.1-2)[1] (or its analogue) act in the process 7. Recall that the equation of the process
71 has form (1.1)[1] and is the invariant of group (5.1-2)[1]. Therefore the calculus system of the
process m; remains invariant with respect to group (5.1-2)[1]. Then in the equation of 7, at least the
derivatives of the unknown functions get transformed, since the Lorentz group acts on the coordinates
of the external space of the process ;. Naturally, the equation of the process 7 must be invariant with
respect to group (5.1-2)[1].

We call 75 the process observed from the process 7y if the equation of 75 can be described in the
system of 7;. If, simultaneously, the equation of the process 7; can be described in the system of s,
then 7; and 7, mutually observable processes. As shown in [2], mutually observable processes belong
to processes of the same class.

(5) Let us consider the set 7 consisting of mutually observable processes. Let w1, o € II. Then,
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as was shown in Sections &8, 9 from [2], there exists a transformation of the process 7, to 75 and vice
versa. Along with this symmetry property, it is proved that the arisen transformations possess the
following transitive property: if the observer passes from m; to 75 and then to 73, the intermediate
transformation falls out and, as a result, bypassing 75 he passes from 7; directly to 7. In addition
to symmetry and transitivity, the set II possesses the reflexivity property: each process from II is
observable within itself.

(6) A process is called elementary if it is one-dimensional and, accordingly, is described in some
system by one quasilinear differential equation with partial derivatives of first order.

Let us return to the set II. Since all processes from 1I are mutually observable, they are processes
of one and the same class. Let N be the dimension of the internal spaces of processes from II.

Assume that the observer is in some process 7 € II. Since the set I1 consists of mutually observable
processes, the observer can write, in his system, the differential equations of all processes.

Now assume that 7* € II is the process whose equation in the calculus system of the process 7 has
the form

b e OUP
Ak(uk)@ = F*(u), 9.1
(k=1,...,N),

where summation is performed only over v from 1 to 4. It is obvious that system (9.1) is split into N
independent equations. Thus the observer from 7 can say that the process 7* consists of NV elementary
processes which do not interact with each other. However, if the observer passes to another process 7,
then in the new system of calculus the equations of elementary processes from 7* can be nonlinearly
interrelated. During this transition, the sought functions u!, . .., 4" of equation (9.1) do not transform
[2]. In other words, in the system of 7, the equation of 7* has a quasilinear form, while, unlike (9.1),
elementary processes do not interact with each other.

Such behavior of the process 7* should not be regarded as exceptional. Generally speaking, any
process from II must possess analogous properties. This however depends on the completeness of the
process II. If I is complete, we call it the space of mutually observable processes of order N and
denote by I1V.

(7) Let us consider processes from the space I1"V. Transformations arising when one process changes
to another process are realized by means of the characteristic functions of differential equations de-
scribing this process and have the properties discussed in (5). Under these transformations there arise
algebraic objects. In particular, as has been shown in [2], the inertial frames of reference of processes
are algebraic objects.

Let us discuss frames of reference in more detail. Let the observer be in a process m € II*V.
According to Sections 8, 9 from [2], he finds his own N frames of reference, among which only one
arbitrarily chosen copy is independent, while the remaining /N — 1 copies are expressed through it. On
the other hand, as shown in (6), any process from II"V consists of N elementary processes. Therefore
each elementary process generates its own frame of reference. This is clearly exemplified by (9.1).

According to [2], when passing from 7 to 7o, the inertial frames of the process m; transform to the
inertial frames of the process 7y, where 71, 7o € IV, If, for instance, 2% and x4 are the coordinates of
the external spaces of the processes of 7; and o, respectively, then we have

zy = far(af). 9.2)
Note that if the equation of the process 75 is nonlinear from the standpoint of the process 7, then
transformation (9.2) is also nonlinear [2]. Hence we conclude that the inertial frames of the process 7
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are not the inertial frames of the process 5.
(8) Thus the algebraic theory of differential equations leads to two types of transformations:

a) The observer is in an arbitrarily chosen but fixed process of the space IT". Within his process
he finds the frame of reference and the system of calculus. Applying the reasoning given in Chapter A,
the observer discovers a group of transformations of form (5.1-2) [1] that preserves the invariance of
the equation of his process. After that he writes the equations of all processes from IT" in terms of his
frame of reference. Since the processes of the space IV do not interact with each other, the observer
requires that all processes be invariant with respect to the action of group (5.1-2)[1].

b) Let the processes 7, o € IIV. As shown in [2], when passing from 7; to 75, a transforma-
tion is formed that changes 7, to 5. Such transformations acting in the space 11V satisfy the properties
from (5). Concurrently, there arise algebraic objects such as a numerical field, a system of calculus,
inertial frames of reference and so on. A concrete algebraic object of one process transforms to the
same kind of object of the other process.

10. Existence of the Double World

We continue the investigation of the properties of a double algebraic field and its influence on the
hierarchy of physical processes. As has been stated in (1) of Section 9, each of these algebraic fields
acts alternatively and generates its own frame of reference and system of calculus. In [2-3] we have
established the existence of an operation transforming the system to an alternative system and called
this operation algebraic conjugation (more exactly, p-conjugation).

For algebraic conjugation, the differential equation of the process transform to the conjugate equa-
tion [2]. The obtained equation describes the process which we have called the antiprocess with respect
to the considered process.

(1) Let us consider the process described by the standard Dirac equation

ou”
vk = —imu". (10.1)
oxr?
As shown in Section 7 from [2], an equation of the antiprocess is written in the a-conjugate form as
5, 00" _
Ak — = —ima". (10.2)
ox¥

In (10.1) the summation is performed over the same indexes (a+b = a + b), while in equation (10.2)
the symbol ~ over the same indexes denotes alternative summation b = (¢! +b=1)~!
For the a-conjugation, the values contained in (10.1) and (10.2) are interrelated by the equalities

[2]

¥ = Ho/.’I}V,
mm = Hy',
ak — A2ﬁi
nuﬁ7
j: =17 (10.3)
~ -1
A:?Jk //7
A4k 7

As different from (7.3) [2], in (10.3) we have 1ntr0duced the constant H, having the dimension of the
length square.
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(2) In the preceding chapters we have investigated the geometry arising on the basis of process
(10.1). In constructing the geometry we used the calculus in the terms of which the equation itself was
represented.

Using (10.2) we find the metric

S U
ds? = g;?dx”daf—l——dwgdwk. (10.4)
p
Taking into account (10.3), from [2] it follows that (10.4) and (1.21)[1] are interrelated as follows:

dz¥ = Hy/da",

HH=H,
- o 1
wk - 72%_'*7
wn
v 1o
~
dw = 2%—A,
1 v
. ~27
dw™ = @7 k>
- p=1/p,
where p = @ @". One can easily show the validity of
dsds = Ho. (10.6)

(3) As is known, equation (10.1) is invariant with respect to group (2.3)[1]. Using the mathematical
methods presented in [2] and the reasoning of Sections /—2 from [1], we find the group preserving the
invariance of equation (10.2). These transformations can be written in the infinitesimal form

=+ G+

D=1 + 87527710 — i€, (10.7)
@ =~ 8GO+
where '
5,777 = 7

VA=A,
Here we have used the notation introduced in [2]. Note that, as different from (2.3)[1], in (10.7) the
group parameters are infinitely large values.

It is not difficult to verify that transformations (2.3)[1] and (10.7) are a-conjugate to each other.
Therefore these two groups are isomorphic.

(4) Suppose the observer passes from process (10.1) to antiprocess (10.2). He begins to investigate
process (10.2). According to (1) of Section 9, the observer finds calculi and the frame of reference
used by the process under investigation. In these systems he describes the motion equation of this
process which is written in form (10.2). Without experiencing any inconvenience he can apply the
same methods of geometry investigation which he used in process (10.1).

Along with group (10.7), the observer discovers the dynamic group with its representation. He finds
the rule of differentiation of geometric objects.

(5) After finding the group (10.7) and the dynamic group, the observer, being in process (10.2),
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begins to localize the group parameters with respect to the points of his total space. By analogy with
(1.1) he writes R N

§o — 05(7),

£ —6"(D),

&= 0Yw,m, o), (10.8)
£ = 047, b, 0.
Using his alternative mathematical methods [2—3], the observer constructs the geometry under condi-
tion (10.8). He defines the scalar curvature and writes the alternative integral of action

S = /E(f)&e;c’é:c/l\f, (10.9)
where o
—~ 1 ~ —_ AN AN
1@E) = 7/ R @, 0" et d T, (10.10)
Vo Jp>12

Performing the same approximate calculations as when deriving (8.19), the observer finds the La-
grangian from (10.2):

~ 130 . =0 N A . EPSCIR
@)= =R+ fiyiVHFoe OR300 + 1, FLF2 (10.11)
~ = s~ P PN 1 =~
Yo (Va0 S TRV = 0T
H

where R

V¥ =D, U + 80,2 7,577V + i, V.
The a-conjugancy of Lagrangians (8.19) and (10.11) can be proved by using the mathematical tools
presented in [2-3] and equalities (10.5). This means that each compensating field has its own compen-
sating antifield.

(6) The alternativeness inherent in the double numerical field is preserved when passing to the
double process (process and antiprocess). This tells us that during the origination of the process there
1s no antiprocess and, vice versa, if there is the antiprocess, then the process is absent. This conclusion
should not be surprising, since the formation of the double numerical field is a consequence of the
properties inherent in a double process.

The above reasoning implies that there is no interaction between the process and the antiprocess.
Be it otherwise, the alternativeness law would be violated. Therefore the process and the antiprocess
are not mutually observable.

(7) Let us consider the space I1"V. To each process from II" we assign the antiprocess. We call the
obtained set the space of antiprocesses of order NV and denote it by V. If we carry out some algebraic
operation in I1V, then the same operations can be carried out in 1V and they will be isomorphic to
each other. Then the mutual observability of processes from II" implies the mutual observability of
processes within the space V.

Assume that there is some antiprocess 7 € IIV that is observable from a process 7y € IIV. 7 is the
antiprocess of a process m € IIV. If the observer is in 7, then he can pass from 7 to 7; and then to
7. Using the transitive property of passages of the observable processes that has been discussed in (5)
of Section 9, we come to the conclusion that the processes 7 and 7 are mutually observable. But this
contradicts the conclusion of (6) on the mutual observability of the process and the antiprocess.
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Thus the spaces ofA processes ITV and IV are mutually nonobservable.

(8) Let 71,7 € IIYV be respectively the antiprocesses of the processes 71,7 € IIV. As stated
in (7) of Section 9, there exists a transformation changing the process 7, into mo. In [2] its has been
shown that this transformation converts with no changes at all the antiprocess 7; to the antiprocess 7.
Algebraic objects from antiprocesses are formed by the same rule as the corresponding objects from
processes. In particular, if 7% and 7% are the coordinates of the respective antiprocesses 7; and 7, then
by (9.2) can write

Ty = fia(71"). (10.12)

11. On gravitation

Let us again turn our attention to the space of processes IT"V. As has been indicated, IT" consists of
mutually observable but not interacting processes of order N.

When one process converts to another process, for frames of reference there arises a nonlinear
transformation of form (9.2). As has been said in Section 9 these transformations have quite specific
features but at the same time they are of quite a general character. After all IIV consists of a multitude
of arbitrary processes of order N. The only restriction is that in its system each process is invariant
with respect to the Lorentz group.

It is appropriate to recall here Einstein’s lift. The arguments of the great scientist as to this mental
experiment are well applicable for the interpretation of transformation (9.2). Then, being guided by
Einstein’s theory of gravitation, due to the existence of transformation (9.2) we make the following
conclusion: between processes IT'V there must exist gravitational interaction.

It is obvious that the reasoning given above for transformation (9.2) is quite applicable to transfor-
mation (10.12) as well. Then we can say that there exists gravitational interaction between processes
of the space IV,

Under the a-conjugation, processes 7, ™o € IIYV transform respectively to antiprocesses 71, Ty €
IV, From (9.2) and (10.12) we see that the a-conjugation does not change the function f;5. Therefore
for the a-conjugation the gravitational interaction does not change, i.e. for gravitation there exists no
antigravitation.

We can evidently say that, while acting, gravitation does not distinguish between processes and
antiprocesses. For gravitation they are the same objects. But then using conclusions of (7) of Section
10, one can explain the existence of dark matter [9].

In this stage we limit our discussion to the above-given argumentation, since the construction of
a comprehensive theory of gravitation from the position of the algebraic properties of differential
equations requires meticulous investigation.

12. Double algebra and quantization

(1) Let us consider the space of processes IT"V. As has been said, processes from IT"V are mutually
observable. Moreover, there always exists a transformation enabling the observer to pass from one
process to any other process. In this context, processes from IV can be called equivalent processes.

As has been stated in (6) of Section 9, among other processes of order N there exist, in IIV,
processes consisting of [V elementary processes which interact with each other. (9.1) is just a such-
like process. It is obvious that in its system of calculus each of these equations takes a linear form.
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Therefore any process from ITV can be represented in its system of calculus as a set of N elementary
processes of which each one is described by its linear differential equation of first order.

(2) In view of the results obtained in Section /0 from [2] and in Section / from [1], we think that to
construct the consistent and complete algebro-geometric theory of differential equations their solutions
must be represented in the matrix form. Though the mechanism of realization of this representation
for a given equation needs further detailed investigation, we nevertheless can already make some con-
clusions.

As is shown in Section /0 from [2], if solutions are represented in the matrix form, an algebraic field
expands to an algebraic body [6]. The group properties of a differential equation and the availability
of an algebraic body must form a certain algebraic ensemble. It is this ensemble that controls a given
process and its changes, defines the rule of interaction with other processes and establishes a possible
splitting into other processes. This object forms its elementary process and it can hardly be split into
more elementary processes without violating the algebraic body. Perhaps the existence of elementary
particles can be explained by these irreducible elementary processes.

(3) Along with the above-said, if we take into account equalities (10.37-38) [2] which are fulfilled
for alternative processes, we will not be evidently far from the truth if we say that the quantization of
a field is the joint manifestation of the algebraic properties of a process and its antiprocess. Thus we
come to a conclusion that, speaking in general, any field described by a differential equation must be
quantized.

All this taken together gives us an analogy with photons passing through a plate with two closely
lying holes. We assume that the path of a photon from the source to the screen through the first hole is
one state of the photon, and through the second hole the second state. For sufficiently large energy of
a photon flux two light spots are formed on the screen, i.e. photons behave like classical particles. In
that case we say that if a photon is in one state, then the second state is excluded, i.e. these states have
an alternative character. When the flux energy decreases, the screen shows the interference picture.
Then we say that alternative states of a photon interfere with each.

It would be appropriate to mention here that the probabilistic aspects of quantum theory play an
important role in the questions discussed. Therefore, because of the emergence of a numerical double
field, alternative analysis and, as a consequence, of the anti process for every process we are faced
with a necessity to understand the probability theory in a new light. By taking a course for interpreting
the probability theory from the standpoint of the algebraic theory of processes we acquire the right to
expect nontrivial results and conclusions. A possibility should not be ruled out that the existence of
living matter can be explained in terms of anti-process of a stochastic process.

(4) In Section /] we have come to the conclusion that gravitational interaction involves all processes
without making any distinction between processes and antiprocesses. Simultaneously, we have seen
that gravitation and antigravitation identically coincide. Then because of the absence of alternative-
ness, quantization for a gravitational field becomes meaningless.

Conclusion

In the investigation that we have carried out we wanted first and foremost to reveal those math-
ematical structures and regularities of the field theory that manifest themselves through the algebro-
geometric properties of differential equations. We tried not to enforce any postulates or conjectures
from outside.

It is astonishing how much a differential equation can tell us. Evidently, it is not a big exaggeration
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to say that answers to many if not to all fundamental questions concerning the construction of space
and the properties of matter are hidden in the algebro-geometric properties of differential equations.
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