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Abstract 
Recently models of neural networks that can directly deal with complex numbers, 

complex-valued neural networks, have been proposed and several studies on their 
abilities of information processing have been done. In this paper, the problem of 
amplitude estimation of sinusoidal signals from observations corrupted by colored noise 
using Hopfield neural network (HNN) is considered. We have introduce a complex 
Hopfield neural networks which can be expressed as an equivalent real valued networks 
by expanding its real and imaginary parameters separatly.  To prove the efficient of the 
proposed method, it has been compared with various amplitude estimator cited in [4].  
Simulation results show that the calculation precision of the amplitudes estimation 
improves when the mean-squared error is used.  
   
Keywords: Amplitude estimation, matched-filterbank, spectral analysis, Hopfield neural 
networks. 

 

I.  INTRODUCTION 
The need to estimate the complex amplitudes of sinusoidal signals in a noisy environment is 

encountered in many signal processing applications .Least square (LS) based amplitude estimators, 
have been most widely used due to their conceptual and computational simplicity, they are also 
known to be optimum when the observation noise is white and have a Gaussian distribution. 
However, when the observation noise is colored and, particularly, when the size of the observed 
data is relatively small, these estimators are failed [4,5]. To solve this problem, Stoica et al [4] 
investigated alternative techniques for amplitude estimation, including weighted-least-squares 
(WLS) and MAtched-FIlterbank (MAFI) approaches which are very desirable when the  
observation noise is colored. However, these techniques may perform poorly for cases of very small 
data length or small SNR that occur in practice. 

In recent years, there have been increasing research interests of artificial neural networks and 
many efforts have been made on application of neural networks to various fields. As applications of 
the neural networks spread more widely, developing neural networks models which can directly 
deal with complex numbers is desired in various fields. Several models of Hopfield complex-valued 
neural networks have been proposed in spectral estimation and their abilities have been investigated 
[1]. 

Considering the justified performances of the Hopfield neural network in the problems of 
optimization, it was largely used in the field of the spectral estimation. We fined in the literature the 
Hopfield net for AR spectral estimation [3],and  the estimation  of the position of the spectral rays 
[2]… all these methods are interested in the estimate of the frequencies without no knowledge a 
priori on the vector of observations.   

In this paper we try to apply the Hopfield neural network for the amplitudes estimation of 
sinusoidal signals corrupted by additive noise.  The idea behind this technique is to relate the 
penalty function of the least square error with the Lyapunov energy function of the HNN.  
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The remainder of this paper is organized as follows: In section 2 we present the problem 
definition. Proposed Hopfield network for amplitude estimation ²is described in section 3. Section 4 
shows the experimental results obtained using our method. Finally, section 5 contains the 
conclusion. 

II. PROBLEM DEFINITION 
Consider the noise-corrupted observations of K  complex-valued sinusoids 
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Where 
ka Complex amplitude of the kth sinusoid to be estimated; 

N Number of available data samples; 
kw  Frequency of the kth sinusoid which are known; 

)(nv observation noise, which is complex valued and   assumed to be stationary with mean zero 
and finite unknown power spectral density. 

 
Let us rewrite expression (1) in matrix form 
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Or, with obvious definitions 
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By dividing this expression in real and imaginary parts separately 
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 This can be easily expressed as: 
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We assume that the complex vector of observations is written as a new real vector where the 

real and imaginary components are ordering as follow 
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That yield immediately 
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              VaAx += .                                                                                                                   (8) 

III. PROPOSED HOPFIELD AMPLITUDE ESTIMATOR 
The idea behind the Hopfield amplitude estimator is to relate the penalty function of the 

amplitude estimation using the trivial Ls method with the Lyapunov function of the HNN which is 
given by [1,3] 
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Or in the matrix form 

VIWVVE TT
Hop −−=

2
1 .                                                                                                 (10) 

It has been shown by Hopfield that the HNN always achieves a local minimum of the 
lyapunov energy function [1]. Hence if a penalty function of an optimisation problem can be related 
with the lyapunov function, we can obtain at least a good solution for the problem. 

For our optimisation problem, the objective function to minimise is given by 
              

2
)( aAxaj −=  .                                                                                                         (11) 

This is equivalent to (12) by ignoring the constant term  xxT

             aAxaAAaaj TTT −=
2
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By relating Eq. 10 with Eq. 12, we can easily obtain the interconnection weights and the 
thresholds of the HNN 
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The dynamic equation of the HNN is given by [1,3] 
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 Since the convergence to a local minimum is guaranteed only if 0≥
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, a modified sigmoid 

function has been adapted for the problem in consideration. In our application, we have choose the 
activation function given by Eq. (15) 
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The choice of α is arbitrary with the condition that all value of amplitudes must 
verify α≤ka . The parameter β  represents the slop of the sigmoid function. It must be choose 
carefully to obtain a good result. 

The simulation of the continuous Hopfield network can be done with the Euler method [1] 
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Where  is the time step of the Euler method and  is the input signal of the neuron i in 
time moment t . A number of trials are performed and best results are chosen. 

tΔ )(tui

IV. SIMULATION RESULTS 
In this section we present some examples to illustrate the performance of the HNN in the 

problem of amplitudes estimation and compare our method (HOP) with the three methods (LSEK, 
APESK, and MAFI1) cited in [4]. 

In order to test the robustness of the proposed method, we have considered the white noise and 
the colored one.   

In the first example of simulation that we have done, the signal which we will estimate its 
parameters is composed of three sinusoids with parameters  

corrupted by colored noise. Such noise is generated by 
an autoregressive model where the input is a white Gaussian noise with zero mean and variance  . 
The correlation between samples is given by [4]  
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For the SNR, we have use the local SNR which the expression is given by [4] 
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where )( kfφ  is the psd of the noise, it’s expressed by 
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where a and b  are the parameter’s model. 
In the second example, we will show the performance of  HOP when the observation noise is 

white, to do this, we have considered an example that is similar to the previous one, except that 
is replaced by a zero mean complex white Gaussian noise.     )(nv
We have generated 200 Monte-Carlo simulations for different local SNR and the mean 

squared error was used to test the performances of estimators 

{ } ∑ −= 2)(ˆ
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where is the amplitude estimated at the ieme simulation.   )(ˆ iak

In all our simulations, the time step of Euler method is fixed to 0.01.  
 

A. Choosing α and β  
The choice of the Hopfield net parameters α and β  denotes the tradeoff between the fastness 

of the convergence and the best estimation of the signal amplitudes.  Obviously, the value of 
α should be chosen larger than the maximum possible value of the real and imaginary parts of 's.  
In our simulations, the value of 

ia
β can be reduced to a value less then one for better convergence. It 

depends on the magnitude of  and 's. to show the effect of the choice of the parameter ijT ib β  on the 
quality of the estimation, we have simulate our net for different value ofβ . Fig. 1.a and b show the 
effect of the parameter β  on the estimates and respectively. For , all value of 3â 1â 3â β  less then 
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one gives the same MSE, however, for , all value greater then 0.5 gives poor estimation for higher 
SNR.  

1â

We propose 4=α and ]2.001.0[∈β  ( 02.0=β  was used for the rest of simulations) as a 
possible set of parameters. 

 

 
Fig. 1.  Mean-squared error versus local SNR for the estimate (a) and (b) 3â 1â

using different value of  β  
 

B. Estimation performance Versus SNR 
To see the effect the length of the vector of observations on the quality of the estimates, we 

consider a data sequence of length 32=N and16 . We note here that the limit of Fourier is not 
checked for and which are closely spaced frequencies that cannot be resolved by Fourier-based 

processing ( 

1f 2f

N
ff 101.012 <=− ). 

In the first example we consider that the signal is corrupted by colored noise. fig. 2(a) and (b) 
show the MSE's of the amplitude estimates of and respectively for N=32.as we can see that all 
estimators (LSEK, APESK, MAFI and neuronal) of  are asymptotically efficient except that the 
APES method  has a great instability when the signal is strongly disturbed. Our estimator gives a 
better performance and robustness for all the SNR. The results for  are omitted because they 
resemble those for  . For where the limit of Fourier is checked, all the estimators have the 
same performance (fig. 2(a)) but our method still the best estimator.  

3â 1â

1â

2â

1â 3â

When N=16, the performance degrades for the three methods (LSEK, APESK, MAFI ) 
however our method offer a best performance for the two estimates (fig. 3(a) and (b)). As we can 
see in fig. 3(b), our method give a remarkable result when the two sinusoids are closely spaced and 
with a few number of observation.  

In the second example, when the signal is corrupted by white noise, it is clear from the fig. 4 
and 5, our method give a best performance for the two estimates in the two cases (N=32,16) which 
confirm the robustness of the neural estimator. 

 
 



GESJ: Computer Science and Telecommunications 2011|No.1(30) 
ISSN 1512-1232 

 

 92

 
Fig. 2.  Mean-squared error versus local SNR for the estimate (a) and  (b)  3â 1â

for 02.0=β  and 32=N  and colored noise 
 
 

 
Fig. 3.  Mean-squared error versus local SNR for the estimate (a) and (b) 3â 1â

for 02.0=β and 16=N and colored noise 
 
 

 
Fig. 4. Mean-squared error versus local SNR for the estimate (a) and (b)  3â 1â
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for 02.0=β and 32=N and white noise 

 

Fig. 5  Mean-squared error versus local SNR for the estimate (a) and (b) for 3â 1â 02.0=β and 
32=N and white noise  

V. CONCLUSIONS 
In this paper, the problem of the estimate of the amplitudes of harmonics of the sinusoidal 

signals corrupted by colored noise was studied by using the Hopfield network. we have shown that 
by using this emergent technique, we can obtain results that are more better then those cited in [4] 
and  the high efficiently is obtained when the length of data is very small and the sinusoids are 
closely spaced. As perspective, our method can easily be extended to spectral estimation of two-
dimensional (2D) data.      
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