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Abstract:  
Denial of service by server resource exhaustion has become a major security 

threat in open communications networks. Public-key authentication does not completely 
protect against the attacks because the authentication protocols often leave ways for an 
unauthenticated client to consume a server’s memory space and computational 
resources by initiating a large number of protocol runs and inducing the server to 
perform expensive cryptographic computations. Placing puzzles at the IP layer 
fundamentally changes the service paradigm of the Internet, allowing any device within 
the network to push load back onto those it is servicing. An advantage of network layer 
puzzles over previous puzzle mechanisms is that they can be applied to all traffic from 
malicious clients, making it possible to defend against arbitrary attacks as well as 
making previously voluntary mechanisms mandatory. Although client puzzles are often 
proposed as a solution to denial-of service attacks, this research explore TLS DDoS 
attack mitigation. This method using DH based puzzle construction and shows expected 
result with puzzle and without using puzzle. 
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I. Introduction 
Denial-of-service attacks have become a major problem on the Internet. Major web sites have 

been taken down for several hours at a time by distributed denial of- service (DDoS). The attackers 
have shown an interesting combination of skill and ignorance. They are able to break into tens or 
hundreds of machines and install their tool of choice. They then use these “zombie” machines to 
actually launch the DDoS attack. Some of the tools even use encrypted communications between 
the attacker and zombie machines. The tools forge the source IP address on the traffic they generate 
in order to make determining the zombie machine somewhat harder. They will pick IP addresses 
that are on the same subnet, in order to overcome egress filtering. However, the tools work via brute 
force: they just generate random traffic (perhaps with a political message) aimed at a particular 
machine. While generating a gigabyte per second of traffic aimed at a single machine will bring 
most websites down to their knees, the sheer volume traffic stands out for anyone doing network 
monitoring. For ecommerce sites, the attacker could easily arrange an attack such that the website 
remained available, but web surfers are unable to complete any purchases. Such an attack is based 
on going after the secure server that processes credit card payments. The SSL/TLS protocol, as it 
stands, allows the client to request the server to perform an RSA decryption without first having 
done any work. RSA decryption is an expensive operation; the largest secure site we are aware of 
can process 4000 RSA decryptions per second. If we assume that a partial SSL handshake takes 200 
bytes, then 800 KB/s is sufficient to paralyze an ecommerce site. Such a small amount of traffic is 
much easier to hide.  

II. Related work 
Client puzzles have been proposed previously in the literature to combat DoS attacks [1]. The 

basic idea behind a client puzzle is to have a client prove its legitimacy by devoting some its time 
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and resources before a remote host will perform any action. Unlike other packet filtering schemes, 
client puzzles is a technique that does not need to distinguish between legitimate traffic and attack 
traffic. Instead, client puzzles rate limit all incoming traffic, including attack traffic, by requiring 
each client to solve puzzles to receive service. Recently, client puzzle schemes integrated into the IP 
layer have been proposed to mitigate flooding attacks. Congestion Puzzles by Wang and Reiter [7] 
is a recently proposed IP-layer puzzle scheme. When the puzzle mechanism is activated, each client 
is requiring solving puzzles before their packets are forwarded by a congested router. Clients 
continuously send separate probe packets along with regular data packets. When a router 
downstream detects congestion, it relays the probe packets toward the destination by changing the 
ICNMP code number to resemble a ping when it reaches the victim. This packet will be modified to 
contain the puzzle information (i.e., a nonce and the difficulty level). When a client receives the 
challenge, it begins to continuously solve puzzles and embeds the solutions in separate ICMP 
packets. The client takes the nonce it received from the router, creates its own nonce and uses both 
of those items to create the puzzle. Therefore, the client does not need to contact the congested 
router to get a new puzzle. The client sends the solutions, embedded in ICMP packets, towards the 
destination which are later intercepted by the router for puzzle verification. After correct 
verification of the puzzles, tokens are added into a token bucket at the congested router. When a 
data packet arrives, tokens are removed from the bucket. While each client is sending data packets 
and puzzle solution packets, it is also concurrently sending probe packets so it can receive new 
puzzle information. The major drawback of Congestion Puzzles is that an attacker can exploit the 
token bucket design by flooding the network with packets (without solving puzzles) in the hopes 
that this action will remove tokens that were supplied earlier by legitimate clients. The authors call 
it the 'free-riding' problem.   

III. Technical challenges 
Implementing a puzzle protocol at the IP layer is a difficult problem that requires careful 

consideration of several technical issues, including: seamless intimation of the puzzle-handshake 
procedure into IP, granularity of puzzle generation (e.g., per packet puzzles or per-flow puzzles), 
computation and storage overhead imposed on the puzzle server, communication overhead, and 
countering protocol circumvention. A client puzzle protocol is a connection-oriented protocol that 
requires a three-way handshake between the puzzle solver (i.e., client) and the puzzle 
generator/verifier (i.e., "puzzle server" or router in an IP-layer puzzle scheme). A client initiates the 
protocol by sending the first service-request packet to a puzzle server, the puzzle server responds by 
sending back a puzzle challenge; the client responds by sending back the puzzle solution. Since a 
TCP connection is established using a somewhat similar three-way handshake, a puzzle protocol 
can be readily integrated with TCP. Unfortunately, the same is not true for IP. Unlike TCP, IP is an 
inherently connectionless protocol that transfers each packet from hop to hop until it reaches the 
destination. Obviously, requiring a client and router to perform a three-way handshake for every 
puzzle is not practical. Thus, an ideal approach to integrating the handshake procedure with IP is to 
enable each client to create its own puzzles (with some initial input from the puzzle generator) so 
that constant interaction with a puzzle generator is not needed. But at the same time, puzzles need to 
be unpredictable so that a client cannot pre-compute solutions ahead of time. Designing a protocol 
that has both features is a challenging problem. To a large extent, the method employed for 
handling puzzle information (e.g., difficulty level, nonce, solution, etc.) determines the way the 
handshake procedure is integrated with IP. Congestion Puzzles proposed by Wang and Reiter [7] 
uses a two-channel approach: puzzle information and regular data are kept in separate packets. By 
using the two-channel approach, they were able to integrate a puzzle protocol within the IP layer 
without requiring the client and router to engage in repeated three-way handshakes.  
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IV. Design  
The TLS protocol breaks up the underlying TCP stream into a record oriented protocol. The 

unshaded portions of Figure 1 diagram the opening TLS handshake.  

 
Figure 1. The TLS handshake protocol. The shaded portions are our additions. 

 
The TLS specification specifies that unknown (to a particular implementation) record type 

shall be ignored. Therefore, we use a new record type for the puzzle messages. This allows us to we 
remain backwards compatible with old TLS implementations that do not support puzzles. Though 
such implementations may time out a connection if they do not reply to a puzzle, they will not 
notice any protocol violations. This technique is only applicable to TLS and does not work for 
SSLv3 as SSLv3 does not discard unknown record types. When the server is not under attack, no 
changes in the TLS protocol are required. In order to prevent the denial-of-service attack against 
TLS, we need to add a new message after the Server Hello message and before the Server Done 
message. See the shaded portions of Figure 1. This message contains a cryptographic puzzle and is 
only sent when the server is under load. The server will then wait on a response message before 
continuing with the handshake protocol. 

A. The Client Puzzles: 
To be useful as a client puzzle, a puzzle needs to be solvable in a predictable amount of time. 

The puzzle generally should not take too long to solve (e.g., no more than a second or so on a 
relatively slow machine), but at the same time, there should be no known shortcut to solving the 
puzzle. In addition, the server needs to be able to generate puzzles while doing much less work than 
the client solving them. Of course, the server also needs an efficient method of verifying the 
correctness of a proposed solution. 

B. Puzzle Construction: 
In this section we present our main Diffie-Hellman based puzzle construction scheme, which 

will be the construction of choice for the rest of the paper. We begin by enumerating the goals we 
would like our puzzle construction to meet. Next, we present our D-H based construction along 
with an identity-based variant. Finally, we present two other puzzle constructions that prove 
interesting to examine. Lack of space forbids our including formal definitions and security proofs 
here; thus what is presented are construction sketches only and heuristic hardness claims. This is not 
to discount the importance of a formal model. On the contrary, formal definitions for puzzle 
hardness [8] are only incipient in the literature and would naturally require extension to the 
outsourcing scenario as a prerequisite for security analysis. This is beyond the scope of our present 
investigation. 

Let us introduce some notation. Let fk : {0,1}*-> {0,1}k be a one-way hash function whose 
range consists of k-bit strings. It is convenient to model f as a random oracle. The value k is a 
security parameter; we drop this superscript where appropriate for visual clarity. A parameter l 
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serves to govern the hardness of the puzzle constructions we describe. For a channel c, a timeslot τ, 
and a defending server, I, let Π I,c,τ  denote a published and authenticated puzzle. Let σ I,c,τ  denote 
the corresponding solution (which we assume to be unique).  

We let yI denote the public key associated with a particular defending server I, while xI 
denotes the corresponding private key; we let y and x be the respective keys of the bastion. We omit 
the subscript I where context makes it clear. 

C. Goals for this scheme 
Puzzle outsourcing for our purposes introduces a new set of constraints and requirements. 
We enumerate the most important of these here: 
1. Unique puzzle solutions: The practicality of our solution depends on the ability of a 

defending server to precompute puzzle solutions prior to their associated timeslot, and subsequently 
to check their correctness via table lookup. Consequently, it is important that puzzles have unique 
solutions (or a very small number of correct ones). 

2. Per-channel puzzle distribution: We want the bastion to be able to compute and disseminate 
puzzle information on a per-channel basis. In other words, the bastion should be able to publish 
information for a particular channel number c that may be used to deduce the corresponding puzzle 
for any defending server. (Different servers should have different puzzle solutions, though, so that 
one server’s ability to enumerate its own puzzle solutions does not expose other servers to attack.) 
With this property, the bastion does not even need to know which servers it is helping to defend. 
This reduces the amount of information the bastion must compute and publish, and it removes the 
need for explicit relationships or coordination between defending servers and bastions. 

3. Per-channel puzzle solution: Another desirable property is for the work done by a client to 
apply on a per-channel basis, rather than a per-puzzle basis. In particular, we would like a client that 
has solved a puzzle for a particular channel to be able to efficiently compute the token for the same 
channel number on any server. As we have already noted, this does not mean that tokens should be 
identical across servers—only that there should be considerable overlap in the brute-force 
computation needed to solve the puzzle for a given channel-number across servers. In particular, it 
is not desirable for one server to be able to use its shortcut to compute the tokens associated with 
another server, as this would result in a diffusion of trust across all participating servers rather than 
in the bastion alone. The per-channel puzzle solution property is useful because it allows a client to 
begin solving puzzles before deciding which server to visit. 

4. Random-beacon property: Sometimes it is possible to achieve a property even stronger than 
per channel puzzle distribution. Ideally, puzzles might not require explicit calculation and 
publication by a bastion. Instead they might be derived from the emissions of a random beacon. We 
use the term random beacon to refer to a data source that is: (1) unpredictable, i.e., dependent on a 
fresh source of randomness; (2) highly robust, i.e., not subject to manipulation or disruption; and (3) 
easily accessible on the Internet. A puzzle construction based on a random beacon would eliminate 
the need for explicit bastion services. (Apart from the architectural advantages, this could have the 
benefit in some circumstances of eliminating any point of legal liability for reliable puzzle 
distribution.) Hashes of financial market data or even of Internet news sources, which both can be 
obtained from numerous locations, would be candidate random beacons. Surprisingly, under this 
construction not only would the bastion (random beacon) not have to know what defending servers 
were relying on its services, but in f act it wouldn’t even need to know its data was being used to 
construct puzzles! 

5. Identity-based key distribution: When puzzles are based on the public key of a defending 
server, the public key itself must be distributed via a robust directory. A desirable alternative is 
identity-based distribution, wherein the public-key of a particular defending server can be derived 
from the server name and a master key known to all defending servers. This is closely analogous to 
the well-known primitive of identity-based encryption [9].  

6. Forward security: A final desirable property is forward security. Specifically, that time-
limited passive compromise of a bastion should not undermine the DoS protection it confers.  
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D. A DH based construction 
We now describe a puzzle construction based on Diffie- Hellman key agreement [10]. It has 

all of the properties above except the random-beacon property (i.e., it has properties 1,2,3,5 and 6).  
Let G be a group of (prime) order q. Let g be a published generator for the group and l be a 

parameter denoting the hardness of puzzles for this construction. (As explained below, we require a 
strong, generic-group assumption on G.) We propose a simple solution in which the bastion selects 
a random integer r c,τ € R Zq and a second random integer a c,τ € R [r c, τ , (r c, τ +l) mod q]. (Recall that 
l is the hardness parameter for the puzzle.) Let f ‘in this case be a one-way permutation on Zq, and 
let g c, τ = g f’(a c,τ).  The intuition is as follows. The value g c, τ may be viewed as an ephemeral Diffie-
Hellman public key. A puzzle solution for defending server I is the D-H key that derives from its 
public key yI = gxI (xI is the secret key) and the ephemeral key g c, τ. Solving a puzzle means solving 
the associated D-H problem. To render the problem tractable via brute force, the bastion specifies a 
small range [r c, τ, (r c, τ + l) mod q] of possible seed values for its ephemeral key. In other words, the 
bastion publishes Π I,c,τ  = (g c, τ, r c, τ). For a client (or attacker) to solve the puzzle requires brute 
force testing of all of the seed values. In particular, for a given candidate value a’, the client tests 
whether g c, τ = gf’(a’). For a particular defending server I, the solution to the puzzle is σI = y I f’(a c,τ). 
Of course, a defending server can use its private key xI as a shortcut to the solution of the puzzle. 
The defending server can compute σI = y I f’ (a c,τ) = g c, τ xI . In other words, it essentially computes a 
Diffie-Hellman key. For a defending server, solution of a puzzle essentially requires just one 
modular exponentiation. 

On average, puzzle solution by a client (or attacker) requires l/2 modular exponentiations over 
G. Since puzzle hardness needs to be precisely characterized, we believe that any concrete 
computational hardness claim would have to depend on a random-oracle assumption on f’ and also 
a generic-model assumption for the underlying group G [11]. Thus it is important to choose G 
appropriately. (Several common types of algebraic groups are believed to have the ideal properties 
associated with the generic model, e.g., most elliptic curves and the order-q subgroup G of the 
multiplicative group Z*

p , where p = kq + 1 for small k [11].) 
 
We summarize the client and server operations as follows. 
Client 
• During period Ti, downloads random puzzles from the bastion service and solves them with 

spare computational resources. 
• During time period Ti+1, uses the solutions that were solved during the previous period Ti. 
• When initiating a request from a certain server, the client machine checks to see if the server 

has a public key for DoS prevention. If so, the client combines its puzzle solution and the server’s 
public key to make a token for a particular channel on the server. The token is appended to the 
request. 

• If the client has multiple puzzle solutions for multiple channels and one is not working on a 
particular server, the client may retry the request using a different token for a different channel. 

• A client that has just booted up and stated solving puzzles may have to wait up to an entire 
time period before it has a solution that can be used. However, once the client is in the cycle of 
solving puzzles it will always have a valid solution. 

Server 
• During time period Ti, downloads all the puzzles for the channels and computes a token list 

from them using its private key. The list is used during the next period, Ti+1. 
• If the system load is low and there is no DoS attack, then the server ignores the tokens and 

processes requests as though there were no DoS prevention system. 
• During an attack the server only accepts requests that have valid tokens for solutions. The 

request token for a particular channel is quickly checked against the table of valid tokens. The 
amount of resources granted will be limited on a per channel basis. 
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V. Implementation 
In order to measure the effectiveness of our solution, we modified the OpenSSL library to 

support servers and clients that understood our puzzle protocol. On the server side, hooks were 
added to the mod_ssl Apache module and as a client the TLS enhanced version of lynx was used. 

A. The OpenSSL Library 
OpenSSL is an open-source library that includes support for the SSL and TLS protocols as 

well as the underlying cryptographic operations needed by SSL and TLS. OpenSSL handles 
connections on a per-socket basis and does not keep any global process state. This prevents a clean 
separation between our modified OpenSSL library and server applications because we need to 
measure the global server load. On the client side however, the application never needs to be aware 
whether the puzzle protocol took place. Clients can trivially support the protocol just by relinking 
with the modified library. In OpenSSL, the TLS handshake is implemented as a state machine 
representing the current location in the protocol. To add support for puzzles on the server, a new 
state was added after the server certificate request state. In this state the server either sends a puzzle 
request and switches to a state waiting to receive the puzzle reply or immediately switches to the 
server done state. The puzzle reply state will wait to receive a puzzle solution before switching to 
the server done state. If a puzzle solution is never received the connection will time out. On the 
client side, we treat the reception of a puzzle as an “unexpected event”, in the incoming message 
handler because the client is expecting a handshake record. The puzzle solution is then computed 
and returned to the server before the handshake processing continues. The biggest challenge is 
deciding whether a server should send a client puzzle. Because OpenSSL has no notion of 
application or system wide state, it has no way to count the number of RSA operations a server has 
committed to. To remedy this problem, we provide callbacks to alert the application whenever we 
commit to or finish an RSA private decryption. We also add a callback that allows the server to 
decide whether to send a client puzzle on the current connection, and if so, how many bits the 
puzzle should be. This control flow is shown in Figure 2. 

B. Performance without Client Puzzles 
Using one client and less than 550Kbps of traffic, we were able to completely load the server. 

The number of pending RSA operations was continually increasing for the first 100 TLS 
connections made to the server during a simulated attack. At this point, there were no more Apache 
processes available to handle additional requests, so the number of pending requests falls as RSA 
operations complete with no new operations being committed to, as clients are unable to make new 
connections to the server. Figure 3 shows the latency experienced by a legitimate user trying to 
connect to the server during this period during a representative benchmarked run. By using two 
attacking computers, we were able to double the latency experienced by the legitimate user. These 
simulated attacks can be continued indefinitely by the attacking computers. These results show that 
an unprotected TLS server is indeed vulnerable to these attacks.  

 
Figure 2: Control flow in OpenSSL with client puzzles 
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VI. Conclusion 
Client puzzles are an effective means of countering a denial-of-service attack against TLS 

servers. We showed how the robustness of authentication protocols against denial of service attacks 
can be improved by asking the client to commit its computational resources to the protocol run 
before the server allocates its memory and processing time. The server sends to the client a puzzle 
whose solution requires a brute-force search for some bits of the inverse of a one-way hash 
function. The difficulty of the puzzle is parameterized according to the server load. The server 
stores the protocol state and computes expensive public-key operations only after it has verified the 
client’s solution. The puzzles protect servers that authenticate their clients against resource 
exhaustion attacks during the first messages of the connection opening before the client has been 
reliably authenticated. 
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