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Abstract 
The classical Heisenberg Hamiltonian equation of spinel ferrite ultra-thin films will be 
solved for third order perturbation. When second order anisotropy constant do not vary 
within the film of N=2, the film behaves as an oriented film. But the film of N=3 does not 
behave as an oriented film even for invariant second order anisotropy. Also the second and 
third order perturbations become zero in perpendicular and in plane directions, indicating 
that films behave as oriented films. For N-2 film, nearest maximum and minimum can be 
observed at 450 and 1350, respectively.  For N=3, the first nearest maximum and minimum 
are observed at 470 and 1370, respectively. In both cases, the angle between easy and hard 
direction is 900, and the energy at hard or easy directions does not vary with angle. The 3-
D plot of total energy versus angle and stress induced anisotropy indicates some energy 
minimums. Fourth order anisotropy slightly destroys the smoothness of the energy curve 
with N=3. 
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1. Introduction: 
 For the first time the effect of stress induced anisotropy on total energy of spinel ferrite thin 
films using classical model of Heisenberg Hamiltonian with third order perturbation was investigated 
in detail. Spin exchange energy, dipole energy, second and fourth order anisotropy terms, interaction 
with magnetic field and stress induced anisotropy in Heisenberg Hamiltonian were taken into account. 
The spin exchange interaction energy and dipole interaction only between two nearest spin layers and 
within same spin plane were considered for this simulation. Although these equations derived here can 
be applied for spinel ferrites such as Fe3O4, NiFe2O4 and ZnFe2O4 only, these equations can not be 
applied for ferrites such as Lithium ferrite.   
 The position of octahedral and tetrahedral sites in the structure of spinel ferrites is given in 
detail in some early report 1-5. Although there are many filled and vacant octahedral and tetrahedral 
sites in cubic spinel cell 1, only the occupied octahedral and tetrahedral sited were used for the 
calculation in this report. Only few previous reports could be found on the theoretical works of ferrites 
6. The solution of Heisenberg ferrites consist of spin exchange interaction term only has been found 
earlier using the retarded Green function equations 6. The dipole matrix elements, energy of oriented 
films and energy of second order perturbed ultra-thin films were derived in some of our early reports 
have been used for the simulations given in this report 7, 8.      
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2. Model: 
            Classical Heisenberg Hamiltonian of a thin film can be written as following. 
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            Here J, � �  ,,,,, )4()2(
soutinmm KHHDD  m, n and N are  spin exchange interaction, strength of 

long range dipole interaction, azimuthal angle of spin, second and fourth order anisotropy constants, in 
plane and out of plane applied magnetic fields, stress induced anisotropy constant, spin plane indices 
and total number of layers in film, respectively. When the stress applies normal to the film plane, the 
angle between mth spin and the stress is �m.  
            The cubic cell was divided into 8 spin layers with alternative A and Fe spins layers. The spins 
of A and Fe will be taken as 1 and p, respectively. While the spins in one layer point in one direction, 
spins in adjacent layers point in opposite directions. A thin film with (001) spinel cubic cell orientation 
will be considered. The length of one side of unit cell will be taken as “a”. Within the cell the spins 
orient in one direction due to the super exchange interaction between spins (or magnetic moments). 
Therefore the results proven for oriented case in one of our early report7 will be used for following 
equations. But the angle � will vary from �m to �m+1 at the interface between two cells.   
For a thin film with thickness Na, 
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Here the first and second term in each above equation represent the variation of energy within the cell7 
and the interface of the cell, respectively. Then total energy is given by 
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Here the anisotropy energy term and the last term have been explained in our previous report for 
oriented spinel ferrite7. If the angle is given by �m=�+�m with perturbation �m, after taking the terms 
up to third order perturbation of �, 
The total energy can be given as E(�)=E0+E(�)+E(��)+E(�3) 
Here 
E0= -10JN+72pNJ-22Jp2N+8Jp(N-1)-48.����-145.�����cos(2�) 
      +20.41�p[(N-1)+3(N-1)cos(2�] 



GESJ: Physics 2011 | No.1(5) 
ISSN 1512-1461 

 17

     )2sincossin()1(4coscos )4(

1 1

4)2(2 θθθθθ soutinm

N

m

N

m
m KHHNpDD ++−−−− ∑ ∑

= =

  (3)  

 
 
 

∑∑
−

==

+−=
1

11

)()2sin(23.61)2sin(5.290)(
N

m
nm

N

m
m pE εεθωεθωε  

         ∑ ∑
= =

++
N

m

N

m
mmmm DD

1 1

)4(2)2( 2sincos22sin εθθεθ  

         ∑ ∑ ∑
= = =

−+−−+
N

m

N

m

N

m
msmoutmin KHHp

1 1 1
]2cos2sincos)[1(4 εθεθεθ                          (4) 

∑ ∑ ∑
−

= =

−

=

−−+−−=
1

1 1

2
1

1

222 )(2.10)2cos(5.290)(4)(
N

m

N

m
m

N

m
nmmn pJpE εεωεθωεεε  

           ∑
−

=

+−
1

1

2)()2cos(6.30
N

m
mnp εεθω      

           ∑ ∑
= =

−+−−
N

m

N

m
mmmm DD

1 1

2)4(2222)2(22 )sin3(coscos2)cos(sin εθθθεθθ  

          ∑ ∑
= =

+−+
N

m

N

m
m

out
m

in HH
p

1 1

22 cos
2

sin
2

)[1(4 εθεθ ]2sin2
1

2∑
=

+
N

m
msK εθ                       (5) 

 
 

∑ ∑∑
= ==

−−+=
N

nm

N

m
mm

N

m
mnm DpE

1, 1

3)2(

1

333 sincos
3
42sin66.193)(2sin2.10)( εθθεθωεεθωε  

                ∑
=

−−
N

m
mmD

1

3)4(22 )sincos
3
5(sincos4 εθθθθ  

                 ∑
=

−+
N

m
m

inH
p

1

3cos
6

)[1(4 εθ ]2cos
3

4
sin

6 1 1

33∑ ∑
= =

+−
N

m

N

m
m

s
m

out KH
εθεθ  

 
The sin and cosine terms in equation number 2 have been expanded to obtain above equations. Here 
n=m+1. 

Under the constraint∑
=
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N
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0ε , first and last three terms of equation 4 are zero.  

Therefore, E(�)= εα
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Also εεε
rr ..

2
1)( 2 CE = , and matrix C is assumed to be symmetric (Cmn=Cnm). 

Here the elements of matrix C can be given as following, 
Cm, m+1=8Jp+20.4�p-61.2p�cos(2�) 
For m=1 and N,  
Cmm= -8Jp-20.4�p-61.2p�cos(2�)+581�cos(2�) )cos(sin2 22 θθ −− )2(

mD  
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For m=2, 3, ----, N-1 
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When m=1 and N, 
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Otherwise �nm=0. Also �nm=�mn and matrix � is symmetric. 
                                          
Therefore, the total magnetic energy given in equation 2 can be deduced to  
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Because the derivation of a final equation for � with the third order of � in above equation is tedious, 
only the second order of � will be considered for following derivation. 
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E is the matrix with all elements given by Emn=1.  
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3. Results and discussion: 
     The energy given in above equation 11 will be calculated for film with two layers (N=2). The 
equations will be proven under the assumption of D1
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Using above results, 11
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Therefore, when anisotropy constants do not vary, the energy given in equation 11 is deduced to the 
energy of a perfectly oriented film. But when anisotropy constant varies within the film, C12=C21 and 
C22≠ C11.   
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If all the terms are considered, the C11C22 product will consist of 80 terms. Therefore, only the 
magnetic exchange energy, second order anisotropy, and the stress induced anisotropy terms will be 
considered for this simulation. For Ni ferrite, p=2.5. 
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When ��  and ���  second and third order perturbation terms become zero and the film behaves as an 
oriented film. From equation 3, 
E0= 85J ][cos )2(
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The total energy can be found from equation 11.  

           The graph between 
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E )(θ  and � is given in figure 1, for 5,10
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Consecutive maximum and minimum can be observed at 450 and 1350, respectively. Two nearest 
maximums can be observed at 450 and 2250. The angle between easy and hard direction is 900 in this 
case. The energy at hard or easy directions does not vary with angle. This energy curve is smoother 
than that of ferromagnetic ultra-thin film with third order perturbation 9. Although the separation 
between maximum and minimum is 900 for ferromagnetic ultra-thin film with third order perturbation, 
the positions of maximum and minimum of this curve are different from those of ferromagnetic ultra-
thin film with third order perturbation. Energy of this film is much higher than that of ferromagnetic 
ultra-thin film with third order perturbation.    
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Figure1. Graph between 

J
E )(θ  and � for thin film with N=2 

 
 

                When 
J

K s  is a variable, the 3-D plot of 
J

E )(θ  versus � and 
J

K s  is given in figure 2. At 

some stress values the energy minimums can be observed in certain directions indicating that the film 
can be easily oriented in that particular direction by applying a certain stress.  
               When N=3, the each C+

nm element found using equation 10 is consist of more than 20 terms. 
To avoid this problem, matrix elements were found using C.C+=1. Then C+
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Figure 2. The 3-D plot of 
J

E )(θ  versus � and 
J

K s  for N=2 with second order anisotropy 

 
 
 

     The total energy can be found using equation 11. The graph between 
J

E )(θ  and � is given in  

figure 3, for 10
)2(

==
J

K
J

D sm . The first nearest maximum and minimum are observed at 470 and 1370, 

respectively. Two nearest maximums are at 470 and 2270. The angle between easy and hard directions 
is 900. The energy at easy or hard directions does not vary with angle. Because some sudden 
overshooting can be observed for ferromagnetic ultra-thin film with third order perturbation, this 
energy curve is smoother than that 9. Also the positions of maximum and minimum of this curve are 
different from those of ferromagnetic ultra-thin film with third order perturbation. Energy of this film is 
smaller than that of ferromagnetic ultra-thin film with third order perturbation.    
When both second and fourth order anisotropies are taken into account, 
C12=C21=C23=C32=20J, C13=C31=0  
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Figure3. Graph between 

J
E )(θ  and � for N=3 with second order anisotropy only 

 

Similarly, total energy can be found from equation 11. The graph between 
J

E )(θ  and � is given in 

figure 4, for .510
)4()2(

===
J

D
and

J
K

J
D msm  Although the angles at maximum and minimum remain 

same as those of figure 1, some sudden change of energy can be observed at the center part of the 
curve. Therefore, introducing the fourth order anisotropy slightly destroys the smoothness of the curve. 
But this curve is smoother than that of ferromagnetic ultra-thin film with third order perturbation9.    
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Figure4. Graph between 

J
E )(θ  and � for N=3 with second and fourth order anisotropies 

 
 

4. Conclusion: 
                 Film of N=2 and N=3 behave as an oriented and non-oriented film for invariant second order 
anisotropy, respectively. Also the second and third order perturbations become zero in ��and��� 
directions, and films behave as oriented films. Nearest maximum and minimum of N=2 ultra-thin film 
can be observed at 450 and 1350, respectively.  The first nearest maximum and minimum of N=3 ultra-
thin film are observed at 470 and 1370, respectively. In both cases, the angle between easy and hard 
direction is 900, and the energy at hard or easy directions does not vary with angle. The 3-D plot of 
total energy versus angle and stress induced anisotropy shows some energy minimums implying that 
the ultra-thin ferrite film can be easily oriented in certain direction by applying particular stresses. 

Although this simulation was performed for 5,10
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D s values of Nickel ferrite only, 

this simulation can be carried out for any value of any spinel ferrite. 
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