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Abstract

The classical Heisenberg Hamiltonian equation of spinel ferrite ultra-thin films will be
solved for third order perturbation. When second order anisotropy constant do not vary
within the film of N=2, the film behaves as an oriented film. But the film of N=3 does not
behave as an oriented film even for invariant second order anisotropy. Also the second and
third order perturbations become zero in perpendicular and in plane directions, indicating
that films behave as oriented films. For N-2 film, nearest maximum and minimum can be
observed at 45° and 135°, respectively. For N=3, the first nearest maximum and minimum
are observed at 47° and 137°, respectively. In both cases, the angle between easy and hard
direction is 90°, and the energy at hard or easy directions does not vary with angle. The 3-
D plot of total energy versus angle and stress induced anisotropy indicates some energy
minimums. Fourth order anisotropy slightly destroys the smoothness of the energy curve
with N=3.
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1. Introduction:

For the first time the effect of stress induced anisotropy on total energy of spinel ferrite thin
films using classical model of Heisenberg Hamiltonian with third order perturbation was investigated
in detail. Spin exchange energy, dipole energy, second and fourth order anisotropy terms, interaction
with magnetic field and stress induced anisotropy in Heisenberg Hamiltonian were taken into account.
The spin exchange interaction energy and dipole interaction only between two nearest spin layers and
within same spin plane were considered for this simulation. Although these equations derived here can
be applied for spinel ferrites such as Fe;O4, NiFe,O4 and ZnFe,O4 only, these equations can not be
applied for ferrites such as Lithium ferrite.

The position of octahedral and tetrahedral sites in the structure of spinel ferrites is given in
detail in some early report . Although there are many filled and vacant octahedral and tetrahedral
sites in cubic spinel cell ', only the occupied octahedral and tetrahedral sited were used for the
calculation in this report. Only few previous reports could be found on the theoretical works of ferrites
® The solution of Heisenberg ferrites consist of spin exchange interaction term only has been found
earlier using the retarded Green function equations ®. The dipole matrix elements, energy of oriented
films and energy of second order perturbed ultra-thin films were derived in some of our early reports
have been used for the simulations given in this report ”**.
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2. Model:
Classical Heisenberg Hamiltonian of a thin film can be written as following.

- SuSn  3(Sy T )T S . Z
H=—JZSm.Sn+a)Z( m 3n . ( m mn)g mn n))_zDﬁm(z)(Sm )Z_ZDim(“)(Sm )4

m=n rmn mn
~->H.S, =Y K,Sin26, (1)

Here J, [J[] D,*,D, “,H, ,H

long range dipole interaction, azimuthal angle of spin, second and fourth order anisotropy constants, in
plane and out of plane applied magnetic fields, stress induced anisotropy constant, spin plane indices
and total number of layers in film, respectively. When the stress applies normal to the film plane, the
angle between m™ spin and the stress is [1y.

The cubic cell was divided into 8 spin layers with alternative A and Fe spins layers. The spins
of A and Fe will be taken as 1 and p, respectively. While the spins in one layer point in one direction,
spins in adjacent layers point in opposite directions. A thin film with (001) spinel cubic cell orientation
will be considered. The length of one side of unit cell will be taken as “a”. Within the cell the spins
orient in one direction due to the super exchange interaction between spins (or magnetic moments).
Therefore the results proven for oriented case in one of our early report’ will be used for following
equations. But the angle [ will vary from [, to [1,,1; at the interface between two cells.

For a thin film with thickness Na,

> Hour Ky, m, nand N are spin exchange interaction, strength of

N-1
Spin exchange interaction energy=Ecychange= N(-10J +72]p-221p*)+8Jp Z cos(@,., —6,)

m=1
Dipole interaction energy=Edipolc

N N-1
=—48.4150) (1+3c0s26, ) +20.410p) [cos(b,,, —6,,) +3cos(f

m+1

E +6,)]

dipole
m=l1 m=1

Here the first and second term in each above equation represent the variation of energy within the cell’

and the interface of the cell, respectively. Then total energy is given by

N-1
E= N(-10J+72Jp-221p*)+8Jp > cos(8,,,, — 6,,)

m+1
m=1

N N-1
—48.4150)_(1+3c0s26,)+20.41ap ) _[cos(F,

m=1 m=1

-6,)+3cos(@,,, +6,)]

m+1

N
->'[D,” cos’ 4, + D, cos* 6,

m=1

N
—4(1-p)D_[H,,sin6, +H,, cos, +K,sin26, ] (2)
m=1
Here the anisotropy energy term and the last term have been explained in our previous report for
oriented spinel ferrite’. If the angle is given by [I,;=C+1,, with perturbation [, after taking the terms
up to third order perturbation of [,
The total energy can be given as E([1)=E¢+E(0)+E(0 +E(°)
Here
Eo=-10JN+72pNJ-22Jp*N+8Jp(N-1)-48. 1101 (1 [1-145.0001 11 [ D cos(201)
+20.41p[(N-1)+3(N-1)cos(2[]
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N N
—cos’0Y' D, —cos* > D, —4(1- p)N(H,, sinf+H,, cos&+K,sin26) (3)
m=1 m=1

N N-1
E(¢) =290.50sin(20)) &, —61.23apsin(20)) (¢, +&,)

m=1 m=1
N N
+sin20% D, ¢, +2cos’ Osin20> D, Ve,
m=1 m=l1
N N N
+4(1- p)[-H;, cos0) &, + H, sind> &, —2K, cos20) &, ] 4)
m=1 m=1 m=1

N-1 N N-1
E(e?)=—-4p) (¢, - &,)" +290.5wc0s(20)D_&,” 10200 (&, — &,)’
m=1 m=1 m=1

N-1
—-30.60p cos(ZQ)Z (6, +&n)

m=1

N N
—(sin’ @—cos” 0)>.D, Ve, +2cos” O(cos’ - 3sin> 0)Y D, V¢, ?

m=l1 m=1

N N
+4(1- p)[ " sin 925 cos@Z:gm2 + 2K sin 2925m2] (5)
m=1 m=1

N N N
E(¢')=102pwsin20 Y. (¢, +&,)° —193.66wsin20) ¢’ —%cos@sin 0> D, ¢’

m,n=1 m=1 m=1

N
—4cos@sin 6’(§cos2 0 —sin’ 9)2 Dm(4)gm3

m=1

+4(1-

The sin and cosine terms in equation number 2 have been expanded to obtain above equations. Here

n=m+1.
N

Under the constraintzgm =0, first and last three terms of equation 4 are zero.
m=1

Therefore, E(L)=a.¢
Here a(e) = |§(9) sin 26 are the terms of matrices with
B,(0)=-122.46a0p+D,* +2D," cos? 6 (6)

Also E(s*) = %E.C.E , and matrix C is assumed to be symmetric (Cpyn=Cpm).

Here the elements of matrix C can be given as following,
Cn, m+1=8Jp+20.41p-61.2plicos(2[1)
For m=1 and N,

Conm= -8Jp-20.41p-61.2pIcos(2[1)+581Icos(2L]) —2(sin® @ —cos® ) D,
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+4cos’ O(cos’ @ —3sin> @) D, +4(1- p)[H, sin@+H_, cosd+4K_sin(20)] (7)
For m=2, 3, ----, N-1
Conm= -16Jp-40.8[1p-122.4p[Icos(2(1)+581Icos(2(]) —2(sin’ & —cos’ @) D,
+4cos” O(cos® @ —3sin” @) D,V +4(1- p)[H,, sinf+H , cosd +4K_sin(26)]
Otherwise, Cyy=0
Also E(e’)=¢’p.é
Here matrix elements of matrix [ can be given as following.
When m=1 and N,

Pom =—193.66s1in 20 +10.2 pwsin 26 — %cos @sinéD,_

out

Hin
6

cos@ ——

4K
—4cos@sin 9(§cos2 0—sin’ 0)D,_ Y +4(1-p)[ sin @ + 3 S c0s20]

When m=2, 3, ------ , N-1

Bam =—193.66sin 20 + 20.4 pwsin 20 — gcos @sinaD,

—4cosfsin 9(% cos’ @ —sin’ 0) Dm(4) +4(1- p)[% cosd — H6°“t sinf + %cos 26

Broma =30.6pasin 20 (8)

Otherwise [1,n,=0. Also [1yn=[1m, and matrix [ is symmetric.

Therefore, the total magnetic energy given in equation 2 can be deduced to

E(1))=E+a.& +%g~.c.g~ +&2pE (9)

Because the derivation of a final equation for [ with the third order of [ in above equation is tedious,
only the second order of [ | will be considered for following derivation.

Then E(T))=E¢t+a.€ +% eC.e

Using a suitable constraint in above equation®, it is possible to show that & =—C*.a
Here C" is the pseudo-inverse given by

cc* =1—%. (10)
E is the matrix with all elements given by E,,=1.
After using [] in equation 9, E([1)=E,— %&.C *a-(C )’ B(C*a) (1 1)

3. Results and discussion:

The energy given in above equation 11 will be calculated for film with two layers (N=2). The
equations will be proven under the assumption of D1(2)=D2(2) and D1(4)=D2(4). According to above
equations, C] 1:C22 and C12:C21.

1

2(C21 - sz) -

Therefore from equation 10, C*2 =C "2 = -C'u=-C'n
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Using above results, @.C*.a = (&, —a,)’C "1
But from equation 6, for a film with two layers [1,[1(] Therefore,a.C*.a =0.
Also (C*a)? B(CT @)= (Cii 1+C12 1) [011(Ciy 1+C12 ")

+12(Ca " +Caa )]

H(Cat TH+Ca 1) [21(Ciy " T1+Ci2 1)

+22(Ca1 "1 +Caa [1)] (12)
If C*12 =—C*1i and C*2 =—C*», and (1,11, then (C*&)> B(C &) =0.
Therefore, when anisotropy constants do not vary, the energy given in equation 11 is deduced to the

energy of a perfectly oriented film. But when anisotropy constant varies within the film, C,,=C,; and
Crp#Cyy.

Therefore, C'11 =—C"12 = Cp +C and C'21=—C'n = €y +C,,

2(C11022 _Czlz) 2(Cz12 _C11C22 ) .
Hence, a.C*.ad =(a, —a,) (C'ua, —C na,)
If all the terms are considered, the C;;C;; product will consist of 80 terms. Therefore, only the

magnetic exchange energy, second order anisotropy, and the stress induced anisotropy terms will be
considered for this simulation. For Ni ferrite, p=2.5.

Then from equation 7, C,, = —20J +2c0s26D,'” —24K_ sin 26
C,, =—20J +2co0s26D,” — 24K sin 20, and C;,=C,=8Jp=20J
B, =—0.67sin 26D, — 8K, cos26

B, =—0.67sin 26D, —8K, cos 26, and [11,=[12=0

a, = Dl(z) sin260,and «a, = Dz(z) sin 260
Finally from equation 12,

3 Bu(Cy +Cy)° + B (Cy +Cy))’°

. . 8(C11C22 _0212)3

When [0 and [J[1[] second and third order perturbation terms become zero and the film behaves as an
oriented film. From equation 3,

Eo=85J—cos” 0[D,"” + D, 1+12Ksin(217)

The total energy can be found from equation 11.

The graph between E©®

(C )’ B(C a)=(a, —a,)

©) )

and [] is given in figure 1, for D3 = Ijs =10, D3 =
Consecutive maximum and minimum can be observed at 45° and 135°, respectively. Two nearest
maximums can be observed at 45° and 225°. The angle between easy and hard direction is 90° in this
case. The energy at hard or easy directions does not vary with angle. This energy curve is smoother
than that of ferromagnetic ultra-thin film with third order perturbation °. Although the separation
between maximum and minimum is 90° for ferromagnetic ultra-thin film with third order perturbation,
the positions of maximum and minimum of this curve are different from those of ferromagnetic ultra-
thin film with third order perturbation. Energy of this film is much higher than that of ferromagnetic
ultra-thin film with third order perturbation.

5.
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and [ for thin film with N=2

Figurel. Graph between ESH)

K K
When TS is a variable, the 3-D plot of E© versus [ and TS is given in figure 2. At

some stress values the energy minimums can be observed in certain directions indicating that the film
can be easily oriented in that particular direction by applying a certain stress.

When N=3, the each C ", element found using equation 10 is consist of more than 20 terms.
To avoid this problem, matrix elements were found using C.C'=1. Then C',, is given by
cro_ cofactorC .,

detC
zero. The second order anisotropy constant is assumed to be a constant within the film for the
convenience.

Then C12:C21:C23:C32:20J, C13:C31:O, uod 1:D2:D3: Dm(z) sin 26.
C11=C33=-20J+ 2(co0s 20) D, ?-24K sin(217)
Cao=-40J + 2(cos20) D, ' -24Ksin(2(1) and

. Under this condition, E.& = 0, and the average value of first order perturbation is

c,C, -C,’ C,’
Therefore, C*11 = 2“ 2 322 =C',C'i3 = 5 32 > =C'y
C11 sz _2C32 C11 C11 sz _2C32 C11
—-C.C C,’
C+12 — 5 3211 - =C+21 :C+23 :C+32,C+22 — 5 11 5
C11 sz _2C32 Cn C11 sz _2C32 C11
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a.C*.a 1, [2CT 1 +4C 5+2C 54+C ]
Here Eq= 137.5] —3cos” 6D, * +18K,sin(207)
Biy = By = By =—0.67sin26D,_ Y — 8K cos26
o=01=013=031=H30=123=0

_ 3 _ 3
(C+a)ZB(C+a) — 0{3,311{2(C22 C32) +(C11 - 32C32)
(C11C22 _2C32 )

}

angle Biradians) ksl

E(9)

: K : :
Figure 2. The 3-D plot of =5 versus [ and JS for N=2 with second order anisotropy

The total energy can be found using equation 11. The graph between ESH) and [] is given in
D, K
figure 3, for '3 = JS =10. The first nearest maximum and minimum are observed at 47° and 1370,

respectively. Two nearest maximums are at 47° and 227°. The angle between easy and hard directions
is 90°. The energy at easy or hard directions does not vary with angle. Because some sudden
overshooting can be observed for ferromagnetic ultra-thin film with third order perturbation, this
energy curve is smoother than that ? Also the positions of maximum and minimum of this curve are
different from those of ferromagnetic ultra-thin film with third order perturbation. Energy of this film is
smaller than that of ferromagnetic ultra-thin film with third order perturbation.

When both second and fourth order anisotropies are taken into account,

C127=C1=Cr3=C3,=20J, C13=C3,=0
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D0 0=,=1=2D," cos* 8+ D, )sin 20.
C11=C33=-20J + 2(c0s 260) D, ¥ -24Ksin(2[1)+ 4 cos® O(cos* 6 —3sin’ §) D,
Cao=-40J+2(cos 20) D, P -24Ksin(2[1) + 4 cos® O(cos* @ —3sin §) D, ¥
Eo=137.5] —3cos’ D,? —3cos* D,V +18Ksin(2[1)
By = By = By = —0.67sin 26D, Y —8K_ cos26 —4cosBsin 0(20052 0 —sin’ 9)D,_“

hp=lp1=1013=031=13=[123=0
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Figure3. Graph between =5 and [] for N=3 with second order anisotropy only
. . E(0) . .
Similarly, total energy can be found from equation 11. The graph between =5 and [ is given in
@ K )

figure 4, for 3 = TS =10and T] =5. Although the angles at maximum and minimum remain

same as those of figure 1, some sudden change of energy can be observed at the center part of the
curve. Therefore, introducing the fourth order anisotropy slightly destroys the smoothness of the curve.
But this curve is smoother than that of ferromagnetic ultra-thin film with third order perturbation’.
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Figure4. Graph between and [ for N=3 with second and fourth order anisotropies
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J

4. Conclusion:

Film of N=2 and N=3 behave as an oriented and non-oriented film for invariant second order
anisotropy, respectively. Also the second and third order perturbations become zero in [1[land (][]
directions, and films behave as oriented films. Nearest maximum and minimum of N=2 ultra-thin film
can be observed at 45° and 135°, respectively. The first nearest maximum and minimum of N=3 ultra-
thin film are observed at 47° and 137°, respectively. In both cases, the angle between easy and hard
direction is 90°, and the energy at hard or easy directions does not vary with angle. The 3-D plot of
total energy versus angle and stress induced anisotropy shows some energy minimums implying that
the ultra-thin ferrite film can be easily oriented in certain direction by applying particular stresses.

&) &)
Although this simulation was performed for D3 = % =10, D,
this simulation can be carried out for any value of any spinel ferrite.

= 5 values of Nickel ferrite only,
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