
GESJ: Computer Science and Telecommunications 2012|No.1(33)
ISSN 1512-1232

 21

MOVING TOWARD EFFECTIVE SOFTWARE PROJECT SCHEDULING

AND PLANNING TO ESTABLISH REASONABLE PLANS FOR
PERFORMING THE SOFTWARE ENGINEERING AND FOR MANAGING

THE SOFTWARE PROJECT
Dr.S.S.Riaz Ahamed

Principal, Sathak Institute of Technology, Ramanathapuram, Tamilnadu, India.

Email:ssriaz@ieee.org, drssriaz@gmail.com

Abstract
The purpose of Software Project Planning is to establish reasonable plans for
performing the software engineering and for managing the software project. Software
Project Plan defines what the work is, and how this work can be completed. This plan is
developed at the beginning of the software project and is continually refined and
improved as the work processes. It can be useful to management as a frame work for
review and control the process of developing the software. Additionally, the Software
Project Plan can define each of the major tasks and estimate the time and resources
that are required to complete these tasks. The process of creating a schedule begins
with the identification of tasks that must be completed in order to finish the project.

Keywords: Risk Matrix (RM), Work Breakdown Structure (WBS).

1 INTRODUCTION
The software planning begins with a statement of the work to be performed and other

constraints and goals that define and bound the software project (those established by the practices
of the Requirements Management key process area). The software planning process includes steps
to estimate the size of the software work products and the resources needed, produce a schedule,
identify and assess software risks, and negotiate commitments. Iterating through these steps may be
necessary to establish the plan for the software project (i.e., the software development plan). This
plan provides the basis for performing and managing the software project's activities and addresses
the commitments to the software project's customer according to the resources, constraints, and
capabilities of the software project. During planning, a project is split into several activities which
may be pursued in parallel or in series. The Plan define a strategic model to devise the project more
effective and execute based on the strategic plan. Though there are many strategic models are
recommended, each has its own Importance.

Risk and Contingency Analysis Process
An important aspect of effective planning is the analysis of risk inherent in the project. The

objective is to identify all critical areas of risk and then to develop procedures and contingency
plans to minimize the impact of strategic and conditional risks. Contingency analysis consists of
examining the risks that threaten the critical success factors of the project, ranking the issues to
focus management effort and developing responses. This process leads to the production of the Risk
Matrix.

Risk Matrix and Contingency Deliverable
The Risk Matrix deliverable has the responsibility for.

 Identifying all risks considered.
 Ranking the risks in terms of impact to the project and the probability of occurrence.

This is achieved through the use of a Risk Matrix diagram

GESJ: Computer Science and Telecommunications 2012|No.1(33)
ISSN 1512-1232

 22

Activity Planning Processes
The purpose of the activity planning stage is to :-

 Identify the activities required to achieve the milestones.
 Assign roles and responsibilities to project team members.
 Estimate activity durations and dependencies.
 Schedule the activities.
 Produce accurate costing for the project.
 Establish reporting and communication levels.
 Establish the acceptance criteria.

Project Specification Deliverable
This document details how the requirements of the project are to be implemented. It should

outline the skill bases, technologies and strategies employed to deliver each of the milestones. It
should also define any limitations / caveats that have had to be made to the final deliverable.

Roles and Responsibility Matrix Deliverable (Internal)
This is an internal document that references the responsibility of each team member with

activities. It should also detail exactly what the responsibility level is such as advisory, executor,
consultant.

The Project Plan Deliverable
The project plan shows tasks, milestones, dependencies and schedules. It is usually

implemented by way of the Gantt chart or Pert chart. The project plan should clearly show the effort
requirements for each task and the team members allocated to the task. This plan is used in multi-
project environments as a method of controlling and balancing resource requirements. The project
plan is the starting point for the live project plan that is used in the Driving stage.

2 SOFTWARE PLANNING
It is found that software projects span a broad range of application domains. It is valuable but

risky to make specific planning recommendations independent of project context. It is valuable
because most people in management positions are looking for a starting point, a skeleton they can
flesh out with project-specific details. They know that initial planning guidelines capture the
expertise and experience of many other people. Such guidelines are therefore considered credible
bases of estimates and instill some confidence in the stakeholders.

Project-independent planning advice is also risky. There is the risk that the guidelines may
be adopted blindly without being adapted to specific project circumstances. Two simple planning
guidelines should be considered when a project is being initiated or accessed.

Default distributions of effort and schedule by phase

Domain` Inception Elaboration Construction Transition
Effort 5% 20% 65% 10%
Schedule 10% 30% 50% 10%

An important point here is that this is cost allocation, not effort allocation. To avoid

misinterpretation, two explanations are necessary.

 The cost of different labor categories is inherent in these numbers. For example, the
management, requirements, and design elements tend to use more personnel who are senior
and more highly paid than the other elements use. If requirements and design together

GESJ: Computer Science and Telecommunications 2012|No.1(33)
ISSN 1512-1232

 23

consume 25% of the budget (employing people with an average salary of $100/hour), this
sum may represent half as many staff hours at the assessment element, which also accounts
for 25% of the budget but employs persons with an average salary of $50/hour.

 The cost of hardware and software assets that support the process automation and
development teams is also included in the environment.

Top Down Planning
The first is a forward-looking, top down approach. It starts with an understanding of the

general requirements and constrains, derives a macro-level budget and schedule, then decomposes
these elements into lower level budgets and intermediate milestones. From this perspective, the
following planning sequence would occur:

 The software project manager (and others) develops a characterization of the overall size,
process, environment, people and quality required for the project.

 A macro-level estimate of the total effort and schedule is developed using a software cost
estimation model.

 The software project manager partitions the estimate for the effort into a top-level WBS
using guidelines. The project manager also partitions the schedule into major milestones
dates and partitions the effort into a staffing profile, using guidelines. Now there is a
project-level plan. These sorts of estimates tend to ignore many detailed project-specific
parameters.

At this point subproject managers are given the responsibility for decomposing each of the
WBS elements into lower levels using their top-level allocation, staffing profile, and major
milestones dates as constraints.

The advantage is that the top managers, who are the most knowledgeable about the firm as a
whole, drive the development of the plan.

The software planning begins with a statement of the work to be performed and other
constraints and goals that define and bound the software project (those established by the practices
of the Requirements Management key process area). The software planning process includes steps
to estimate the size of the software work products and the resources needed, produce a schedule,
identify and assess software risks, and negotiate commitments. Iterating through these steps may be
necessary to establish the plan for the software project (i.e., the software development plan).

This plan provides the basis for performing and managing the software project's activities and
addresses the commitments to the software project's customer according to the resources,
constraints, and capabilities of the software project.

Bottom-up-Planning
The second perspective is a backward –looking , bottom-up-approach. This approach begins

by analyzing the micro-level budgets and schedules, then sum all these elements into the higher
level budgets and intermediate milestones. This approach tends to define and populate the WBS
from the lowest level upward. The following planning sequence would occur:

 The lowest level WBS elements are elaborated into detailed tasks, for which budgets and
schedules are estimated by the responsible. WBS element manager. These estimates tend to
incorporate the project-specific parameters in an exaggerated way.

 Estimates are combined and integrated into higher level budgets and milestones. The biases
of individual estimators need to be homogenized so that there is a consistent basis of
negotiation.

Comparisons are made with top-down budgets and schedule milestones. Gross differences are
assessed and adjustments are made in order to converge on agreement between the top-down and
the bottom-up-estimates.

GESJ: Computer Science and Telecommunications 2012|No.1(33)
ISSN 1512-1232

 24

The primary advantage is that the people closest to the operating system, customers, and
suppliers drive the development of the plan. The hierarchy of the planning process is from bottom
and the direction of movement of the game plan is upwards.

The following are to be born in mind:
 The software engineering group reviews the allocated requirements before they are

incorporated into the software project.
 The software engineering group uses the allocated requirements as the basis for software

plans, work products, and activities.
 Changes to the allocated requirements are reviewed and incorporated into the software

project.

That is in this type of planning, the modules are designed first and then it is been incorporated
in the main module.

Which is better top-down or bottom-up planning depends upon the goals

 Software estimates are documented for use in planning and tracking the software project.
 Software project activities and commitments are planned and documented.

The Iteration Planning Process
Planning is concerned with defining the actual sequence of intermediate results. Planning the

content and schedule of the manor milestones and their intermediate iterations is probably the most
tangible form of the overall risk management plan. An evolutionary build up plan is important
because there are always adjustments in build content and schedule as early conjecture evolves into
well-understood project circumstances.

Engineering Stage Production Stage
Inception Elaboration Construction Transition

Feasibility Iterations Architecture Iterations User Iterations Product releases
 A generic build progression and general guidelines on the number of iterations in each phase

are described next. Iteration is used to mean a complete synchronization across the project,
with a well-orchestrated global assessment of the entire project baseline. Other micro-
iterations, such as monthly, weekly, or daily builds, are performed en route to these project-
level synchronization points.

The general guideline is that most projects will use between four and nine iterations. The
typical project would have the following six iterations profile.

 One iteration in inception: an architecture prototype
 Two iterations in elaboration: architecture prototype and architecture baseline.
 Two iterations in construction: alpha and beta releases.
 One iteration in transition: product release.

Project Planning:
Even though good planning is more dynamic in an iterative process, doing it accurately is far

easier. While executing iteration N of any phase, the software project manager must be monitoring
and controlling against a plan that was initiated in iteration N-1 and must be planning iteration N+.
The art of good project management is to make trade-offs in the current iteration plan and the next
iteration based on objective results in the current iteration and previous iterations. This concept
seems and is, overwhelming in early phases or in the project s that are pioneering iterative
development. But if the planning pump is printed successfully, the process becomes surprisingly
easy as the project progresses into the phases in which high-fidelity planning is necessary for
success. Aside from bad architectures and misunderstood requirements, inadequate planning (and
subsequent bad management) is one of the most common reasons for project failures. Conversely,

GESJ: Computer Science and Telecommunications 2012|No.1(33)
ISSN 1512-1232

 25

the success of every successful project can be attributed in part to good planning. Planning,
requirements and architecture are three attributes that needs to be highlighted. The end products
associated with these perspectives (a software development plan, requirements specifications, and
architecture description document) are not emphasized. On most successful projects, they are not
very important once they have been produced. They are rarely used by most performers on a to-day
basis, they are not very interesting to end users, and their paper representations are just the tip of the
iceberg with respect to working details underlie them. While planning document is not very useful
as an end item, the act of planning, is extremely important to project success. It provides a
framework and forcing functions for making decisions, ensures buy-in on the part of the
stakeholders and performers, and transforms subjective, generic process frameworks into objective
process. A project’s plan is a definition of how the project requirements will be transformed into a
product within the business constraints. It must be realistic , it must be current, it must be a team
product, it must be understood by the stakeholders, and it must be used.

3 TEAM EFFORTS
The Architecture of the team is recognized by the Project Organization and has to execute the

plans designed with the team. A Different set of activities is emphasized in each phase, as follows:

Inception team: An organization focused on planning, with enough support from other teams
to ensure that the plans represent a consensus of all perspectives.

Elaboration team: An architecture-focused organization in which the driving forces of the
project reside in the software architecture team and are supported by the software development and
software assessment team as necessary to achieve a stable architecture baseline.

Construction team: A fairly balanced organization in which most of the activity resides in
the software development and software assessment teams.

Transition team: a customer-focused organization in which usage feedback drives the
deployment activities.

4 PROJECT SCHEDULING
A schedule is a planning document, but it can be used effectively only if it is rich enough in

useful and accurate information. A schedule lacking sufficient information is no more than an
obnoxious administrative hurdle that does not contribute to the successful completion of the project.
The process of creating a schedule begins with the identification of tasks that must be completed in
order to finish the project. This step is primarily the responsibility of the Director since it is
intimately related to the architecture of the system as conceived by the Director. The basic unit of
scheduling is the task. Coding tasks involve development of a module and documentation tasks
involve development or editing of a chapter or section. To schedule a task requires specification of
at least three items: who is responsible for the task, when should work on the task begin, and when
is the completed task due. In many cases, these items require simple, arbitrary decisions and may be
decided by the Producer alone. Sometimes there is a "best" decision, if not a "right" one, and the
Producer must exercise good judgment. For example, it might make sense to assign all of the
modules for a particular small subsystem to the same person. It usually makes sense for the
documentation for a module to be written by the author of the code, though some effective
arguments can be made for avoiding this strategy. Sometimes there are more complex constraints
on how and when modules are developed that require cooperation in scheduling between the
Producer and Director. The Director understands relationships between modules that require
sequencing of activities. For example, "task A must be completed before task B begins" or "task A
may begin before task B ends" and so on. Such sequential dependencies can be used by the
Producer to determine the minimum time required to complete the project. The Producer and

GESJ: Computer Science and Telecommunications 2012|No.1(33)
ISSN 1512-1232

 26

Director must work together to develop a schedule that satisfies the fixed constraint of the time
available for the project.

Several specific goals should be met when creating a schedule. First, a good schedule will
create a reasonable (high) degree of parallelism at all stages of the project. Parallelism is one of the
keys to obtaining concentrated effort from the project team. At any point in the project, each team
member should be assigned several tasks. For example, a team member might be assigned to
document the module just completed and to write code for two new modules. This kind of parallel
assignment allows a team member to be productive at all times, even if one of the tasks hits a snag.
It also enhances morale since no one feels stuck with a particular scut job, and each individual has
some control over how to use working time. Many decisions are made by the boss or the Producer,
but decisions that need not be made by them to order the affairs of the team should be left to the
discretion of the individual team members. This usually includes where and when team members
work on their tasks. Another motivation for parallelism comes from the intertwined nature of your
fates. There are no winners on losing teams. Therefore, it is useless to shout, as the waves lap up the
mast, that the leak was in somebody else's part of the boat. By maintaining parallelism the Producer
ensures that everyone is contributing to the project goals and there is no wasted or idle time or
effort. A good, complete schedule will allow the Producer to identify the longest sequential chain of
tasks in the project. This longest chain is the "critical path" that determines how long the project is
actually going to take. Any slippage in the tasks on the critical path will directly affect the delivery
date of the product. Thus, identifying the critical path allows the team to pay close attention to the
tasks on that path. This is not to say that tasks not on the critical path are unimportant or can afford
to ignore deadlines; indeed, slippage in a task not on the critical path can cause a rippling of
schedule changes through the project, resulting in a change in the critical path. There exist computer
tools such as MacProject that can help to define a schedule, compute the critical path, keep up with
allowable slack times, and maintain task lists for team members. Such tools are available for use in
this course, but will not be discussed further in this text.

The third goal in scheduling is to include in the milestones a presentation of a prototype to the
client as early as possible. A prototype is an early version of the system that demonstrates the
architecture of the system Ñ mainly its user interface and control strategies Ñ without all of its
substance, such as error checking, speed, much of its functionality, its real production platform, and
so on. It is entirely appropriate to "fake up" a user interaction sequence using MacDraw or some
other tool and show the "storyboard" session to the client before any code is written. As code is
developed, it is appropriate to create a prototype in which one particular typical interaction works,
in a jury-rigged fashion, and no more. Prototyping is valuable to obtain feedback on the
architectural design from the client, to build morale in the team, and to prioritize further
development of the product.

The fourth goal for a schedule is to permit team members to obtain a global view of where the
effort is heading and how. The schedule is maintained by the Producer, but it should be available to
the whole team. Engineers do not work just for a paycheck. An engineer's motivation is to see his
product used; to see that what he is doing contributes to the whole. The public schedule can provide
this motivation concretely.

The fifth goal of a schedule is to document progress in the project. Marking milestones as
achieved and tasks as completed provides a sense of "closure" that is great for morale and fulfills
psychological needs to sense progress in a long project. Some project teams have taken great pride
in including a version of their master schedule in their final report with the dates of accomplishment
of milestones or task completions noted. Also, some projects have left in the final report the
schedule items that were abandoned to show how the project's goals evolved. One group's Producer
prepared this kind of display biweekly and distributed it to the team, client and Boss.

GESJ: Computer Science and Telecommunications 2012|No.1(33)
ISSN 1512-1232

 27

Initial and Final Project Schedule plans
A Project plan is to be scheduled at initial level and later it has to be monitored. Finally again

plan has to be delivered for checking the progress.

Document Responsible Phase
Problem defintion Customer Definition Phase
Requirements specification (with test cases
for each requirement)

Developer in cooperation
with customer Contract Phase

Project plan Developer Contract Phase

Design specification Developer Development
Phase

Test specification Developer Development
Phase

Acceptance document Developer Development
Phase

Project evaluation All -

Requirements on documents

Requirements on requirement
specification

Requirements must be numbered.
Requirements must be prioritized.
The document shall be understandible, i.e. contain all
nessesary explanations and background information.

Requirements on project plan It must contain a plan regarding calendar time.
It must contain a plan regarding man-hours.
A description of the different tasks/actions/phases (e.g. what
shall be done in the "beta test phase").
A description of who in the group does what (who is project
leader, in charge of testing, etc.).

Requirements on design
specification

It must be understandable, i.e. one should be able to
implement the system from it.
It must contain an architectural description.
It must contain a class diagram.

Requirements on test
specification

For every test case:
Name of the test case
Which testdata that should be used
Expected result
Outcome of the test case

Requirements on acceptance
test specification

It should include:
The test cases from the requirement specification
The test cases form the test specification
Any test cases given by the customer

Requirements on project
evaluation

Report on used resources
What in the project (not the course) has gone as planned
What in the project hasn't gone as planned
Other experiences from the project

GESJ: Computer Science and Telecommunications 2012|No.1(33)
ISSN 1512-1232

 28

5 CONCLUSION
The purpose of the Planning stage is to analyze the project in terms of work breakdown, cost,

resources, and timing. At the end of this stage all team members should be clear on the sub tasks
and deliverables with the project, the time constraints they are working too and the roles and
responsibilities that are expected from them. Software Project Planning involves developing
estimates for the work to be performed, establishing the necessary commitments, and defining the
plan to perform the work. Project management includes developing a project plan, which includes
defining and confirming the project goals and objectives, identifying tasks and how goals will be
achieved, quantifying the resources needed, and determining budgets and timelines for completion.
It also includes managing the implementation of the project plan, along with operating regular
'controls' to ensure that there is accurate and objective information on 'performance' relative to the
plan, and the mechanisms to implement recovery actions where necessary.

6 REFERENCES

1) F. L. Harrison, Dennis Lock (2004). Advanced project management: a structured approach .
Gower Publishing, Ltd., 2004. ISBN 0566078228. p.34.

2) Stellman, Andrew; Greene, Jennifer (2005). Applied Software Project Management.
O'Reilly Media. ISBN 978-0-596-00948-9.

3) Albert Hamilton (2004). Handbook of Project Management Procedures. TTL Publishing,
Ltd. ISBN 07277-3258-7.

4) Roger S. Pressman, Software engineering : A practitioner’s approach, MCGraw-Hill
publication, 1997, ed.4

5) David I. Cleland, Roland Gareis (2006). Global project management handbook. McGraw-
Hill Professional, 2006. ISBN 0071460454. Pp.1-4.

6) Martin Stevens (2002). Project Management Pathways. Association for Project
Management. APM Publishing Limited, 2002.

7) Morgen Witzel (2003). Fifty key figures in management . Routledge, 2003. ISBN
0415369770. Pp. 96-101.

8) Bjarne Kousholt (2007). Project Management –. Theory and practice.. Nyt Teknisk Forlag.
ISBN 8757126038. p.59.

9) Edward Kit, Software testing in the real world, Addison-Wesley publications, 2000, ed.1
10) Ian Sommerville, Software engineering, Addison-Wesley publications, 1996, ed.5
11) Pankaj Jalote, An integrated approach to software engineering, Narosa publications, 1997,

ed. 2
12) Shari Lawrence Peleeger, software engineering theory and practice, Pearson education,

2001, ed. 2
13) Richard Fairly, Software engineering concepts, McGraw-Hill Inc.,1985
14) Myers, Glenford J. (1979). The Art of Software Testing. John Wiley and Sons. p. 145-146.

ISBN 0-471-04328-1.
15) Barry W. Boehm, Software Engineering Economics, Prentice-Hall Inc., 1981.
16) Dustin, Elfriede (2002). Effective Software Testing. Addison Wesley. p. 3. ISBN 0-20179-

429-2.
17) Carlo Ghezzi et al : Fundamentals of Software Engineering (Fifth edition) PHI 1991.

Article received: 2011-01-16

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-471-04328-1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-20179-429-2
http://en.wikipedia.org/wiki/Special:BookSources/0-20179-429-2

	Keywords: Risk Matrix (RM), Work Breakdown Structure (WBS).
	The Iteration Planning Process

