
GESJ: Computer Science and Telecommunications 2012|No.4(36) 
ISSN 1512-1232 

    35

AMIR SCHOOR’S ALGORITHM REVISITED FOR BERNOULLI AND 
GEOMETRIC DISTRIBUTION INPUTS 

 
Mita Pal, Soubhik Chakraborty and N.C. Mahanti 

 
Department of Applied Mathematics  

Birla Institute of Technology, Mesra, Ranchi-835215, India 
Email address of the corresponding author: soubhikc@yahoo.co.in (S. Chakraborty) 

 
Abstract 

This paper makes a comparative study between Bernoulli distribution inputs and 
Geometric distribution inputs in Amir Schoor’s matrix multiplication algorithm. For 
fixed order of the square matrices, the average number of multiplications is found to 
increase and decrease linearly with increasing probability of success for Bernoulli and 
Geometric inputs respectively. Given the opposite nature of these two probability 
distributions, the commonality of linearity confirms the robustness of the algorithm. 
 
Key words: Amir Schoor’s algorithm, Bernoulli distribution, Geometric distribution, 
sparse matrix, dense matrix  

1. Introduction 
Amir Schoor’s algorithm: Let A, B, and C be the pre-factor, post-factor and product matrices 

respectively. Amir Schoor’s algorithm states that for every non-zero a(i, k) , multiply the kth row of 
B by a(i, k) and add it to the ith  row of C. See also [1]. 
 
The pseudo code for the computational version only is as follows [2]: 
 
for i = 1 to n 
  for k = 1 to n 
     while(a(i,k) <> 0) 
        r = a(i, k) 
          for j = 1 to n 
              b(k, j) = b(k, j) * r 
          endfor 
              for j = 1 to n 
                c(i, j) = c(i, j) + b(k, j) 
              endfor 
      endwhile 
   endfor 
endfor 
 

In the present work, we build the product matrix with all zero entries before starting the 
algorithm. Also, we would be using the code with the post factor matrix as a fully dense matrix and 
the pre-factor matrix with expected density p which may or may not be dense. Hence Schoor’s 
original data structure (the ‘‘row-column-value’’ structure) normally used for sparse matrices need 
not be adhered to. Recall that a triangular matrix is dense (see [3]). Since the borderline between 
sparse and dense matrices is not well defined, we would agree to call the pre-factor matrix dense in 
which the fraction of zeroes is approximately equal to that in a triangular matrix. We generate a 
uniform U[0, 1] variate and if this falls between 0 and p, the pre-factor matrix element is made 1 
otherwise zero. Therefore the probability for an element of this matrix to be non zero is p and hence 
pn2  is the expected number of non-zero elements. Dividing by n2 we get the density as p. If a and b 
are the densities of pre and post factor matrices respectively, then the average case complexity is 

mailto:soubhikc@yahoo.co.in


GESJ: Computer Science and Telecommunications 2012|No.4(36) 
ISSN 1512-1232 

    36

O(abn3) for uniform inputs [1]. We find the result holding for non-uniform Bernoulli inputs also 
because with a=p, b=1 (post factor matrix fully dense) and fixed n, our simulation results are 
confirming an O(p) complexity. 
 

2. C++ code 
2.1 C++ code depicting Amir Schoor’s algorithm implemented with a pre-factor matrix 

generated from Bernoulli distribution with p as  0.2, 0.5 and 0.8.  The post factor matrix is fully 
dense (discrete uniform inputs with non zero elements). 

 
 
#include <conio.h> 
#include <iostream.h> 
#include <math.h> 
#include <stdlib.h> 
#include <iomanip.h> //defines setw() 
 
void main() 
{ 
clrscr(); 
randomize(); 
int n,s; 
unsigned long int t; 
float p=0.8,r,x; 
cout<<"Enter n"; 
cin>>n; 
float d=(float)(n+1)/(2*n); 
 
int **a,**b,**c; 
a=new int *[n]; 
b=new int *[n]; 
c=new int *[n]; 
 
 
for(int i=0;i<n;i++) 
{ 
  *(a+i)=new int [n]; 
  *(b+i)=new int [n]; 
  *(c+i)=new int [n]; 
  if(!(a+i) && !(b+i) && !(c+i)) 
  { 
     cout<<i<<"insufficient memory..."; 
     exit(1); 
  } 
} 
 
for(i=0;i<n;i++)   //pre-factor matrix generation 
{ 
  for(int j=0;j<n;j++) 
  { 
       r=(float)rand()/RAND_MAX; 
 
 
       if(r<p) 



GESJ: Computer Science and Telecommunications 2012|No.4(36) 
ISSN 1512-1232 

    37

 
  *(*(a+i)+j)=1; 
       else 
  *(*(a+i)+j)=0; 
  } 
} 
 
for( i=0;i<n;i++)   //post-factor matrix generation 
{ 
  for(int j=0;j<n;j++) 
  { 
 
  int r1=rand(); 
  
      *(*(b+i)+j)=r1; 
  } 
} 
for( i=0;i<n;i++)   //initialization of element of resultant matrix with zero elements 
{ 
  for(int j=0;j<n;j++) 
  { 
    *(*(c+i)+j)=0; 
  } 
} 
 
//Amir schoor's algorithm begins 
t=0; 
for( i=0;i<n;i++) 
{ 
  for(int k=0;k<n;k++) 
  { 
 
     if (*(*(a+i)+k)!=0) 
     { 
 x=*(*(a+i)+k); 
 for(int j=0;j<n;j++) 
 { 
    *(*(b+k)+j)=*(*(b+k)+j)+x; 
    t=t+1; 
 } 
 for(j=0;j<n;j++) 
 { 
    *(*(c+i)+j)=*(*(c+i)+j)+(*(*(b+k)+j)); 
 } 
     } 
  } 
} 
cout<<"t="<<t; 
delete a; 
delete b; 
delete c; 
getch(); 
} 
 



GESJ: Computer Science and Telecommunications 2012|No.4(36) 
ISSN 1512-1232 

    38

2.2  C++ code depicting Amir Schoor’s algorithm (we are only showing how the pre-factor 
matrix is generated) implemented with a pre-factor matrix generated from Geometric distribution 
with p as  0.2, 0.5 and 0.8.  The post factor matrix is fully dense (discrete uniform inputs with non 
zero elements). 

for(i=0;i<n;i++)   //pre-factor matrix generation 
{ 
  for(int j=0;j<n;j++) 
  { 
       r=(float)rand()/RAND_MAX; 
       *(*(a+i)+j)= log(r)/(log1-p)    ; 
  } 
} 

 
 

3. Experimental Results 
 
Table - 3.1   gives average (mean) number of multiplication t and standard deviation s (average taken 

over 100 trials) for different values of the arguments p for fixed order 100x100 of the square matrices for 
Bernoulli distribution inputs.  

Table – 3.1 Mean number of multiplication t (averaged over 100 trials) and standard deviation s 
with varying p for Bernoulli distribution 

               p                      
mean  no. of 

multiplications t     standard deviation s 
 
 
 
 
 
 
 
 
 
 
 

             0.1 127550 2216.06 
             0.2 223750 2696.38 
             0.3 320350 2441.41 
             0.4 420560 5973.14 
             0.5 516840 3070.24 
             0.6 609280 4389.72 
             0.7 706350 4268.55 
             0.8 804460 4193.33 
             0.9 904950 7729.33 



GESJ: Computer Science and Telecommunications 2012|No.4(36) 
ISSN 1512-1232 

    39

 

Fig. 1 Graph for p versus mean no of multiplication for Bernoulli distribution 
 

Table - 3.2   gives average number of multiplication t and standard deviation (average taken 
over 100 trials) for different values of the arguments p for fixed order 100x100 of the square 
matrices for Geometric distribution inputs. 
 

Table – 3.2 Mean number of multiplication t (averaged over 100 trials) and standard deviation s 
with varying p for Geometric distribution p mean  no. of multiplications t       standard deviation s 

 
             0.1 904300 2989.65 
             0.2 808830 3121.23 
             0.3 711720 7183.70 
             0.4 617380 4696.34 
             0.5 519210 4744.56 
             0.6 422680 3829.83 
             0.7 327110 3195.13 
             0.8 231930 4068.18 
             0.9 136460 3799.53 

 
 
 

 

Fig. 2: Graph for p versus no of multiplication for Geometric distribution 
 



GESJ: Computer Science and Telecommunications 2012|No.4(36) 
ISSN 1512-1232 

    40

4. Discussion  
 

It is easy to see that the number of multiplications increases linearly with p for fixed n for 
Bernoulli distribution inputs (fig. 1) while the same decreases linearly with p for fixed n for 
Geometric distribution inputs (fig. 2). We already know that Bernoulli distribution is opposite to 
Geometric distribution [4]. Bernoulli distribution is the special case of Binomial distribution for a 
single trial and Geometric distribution is the special case of Negative Binomial distribution when 
we want just one success and that Binomial distribution is opposite to Negative Binomial 
distribution because, in Binomial distribution, the number of trials is fixed and the number of 
successes is a random variable whereas in Negative Binomial distribution, reverse is the case. In 
Geometric distribution, if p is increased, we are more likely to get the desired success earlier so that 
the random variable giving the number of failures preceding the first success will decrease. In fact, 
the probability for this random variable to take zero value is exactly p. Hence increasing p increases 
the sparseness of the pre-factor matrix resulting in lesser multiplications. For the Bernoulli case, the 
random variable takes 0 value with probability 1-p and 1 with probability p. Hence if p is increased, 
the sparseness of the pre-factor matrix decreases resulting in more multiplications.  As a final 
comment, given the opposite nature of these two probability distributions, the commonality of 
linearity confirms the robustness of the algorithm. 

 5. Conclusion 
We have made a comparative study between Bernoulli distribution inputs and Geometric 

distribution inputs in Amir Schoor’s matrix multiplication algorithm with the post factor matrix 
fully dense and with the density of the pre factor matrix depending on the probability p of success in 
Bernoulli and Geometric distributions. For fixed order n of the nxn square matrices, the mean 
number of multiplications is found to increase and decrease (as expected) linearly with increasing 
probability of success for Bernoulli and Geometric inputs respectively. Given the opposite nature of 
these two probability distributions, the commonality of linearity confirms the robustness of the 
algorithm so far as the operation multiplication is concerned. However, in [2] it is shown that if we 
work directly on program run time, a polynomial of degree two suffices to explain the average 
complexity because comparisons, which are n2 in number (see the pseudo code in section 1), 
dominate over multiplication, an eye opener to the fact that there must be an alternative science that 
weighs computing operations rather than counting them, and further taking time of an operation as 
its corresponding weight, there should be a mixing of operations of different type conceptually into 
a bound which we agree to call a statistical bound [5]. 
 
 

References 
1. A.Schoor, Fast Algorithm for Sparse Matrix Multiplication, Information Processing 

Letters 15, No.2, 1982, 87–89 
2. S. Sahni, Data Structure and Algorithms in C++, Tata McGraw Hill, 2000. 
3. S. Chakraborty and S. K. Sourabh, On why an algorithmic time complexity measure can 

be system invariant rather than system independent, Applied Mathematics and 
Computation 190 (1), 2007, 195–204 

4. S. Ross, A First Course in Probability, Pearson Edu., 2006 
5. S. Chakraborty, S. K. Sourabh, A Computer Experiment Oriented Approach to 

Algorithmic  Complexity, Lambert Academic Publishing, 2010  
 

____________________________ 
Article received: 2011-03-03  

 
 
 


