## THE STUDY OF CHARACTERISTICS OF CHARGED SECONDARY HADRONS IN CTA, HETA AND DTA-COLLISIONS IN HARD AND SOFT INTERACTIONS AT 4.2GEV/C

L. Akhobadze<sup>1</sup>, V. Garsevanishvili<sup>2</sup>, Yu. Tevzadze<sup>1</sup>

<sup>1</sup> Institute of High Energy Physics of I. Javakhishvili Tbilisi State University <sup>2</sup> A. Razmadze Mathematical Institute Tbilisi

### Abstract

Experimental data are obtained on the two meter propane bubble chamber (PBC-500) of the Laboratory of High Energies of JINR(Dubna). The chamber was exposed to P,d,He, C,F and Mg beams in the momentum range (2-10)AGeV/c. Three Ta-tantalum thin plates were placed in the chamber [1÷4]. Methodic problems of the experiment are considered in Refs [5-8].

### **Analisis of Experimental Data**

Our statistics consists of 2469 CTa, 1149 HeTa and 1475 dTa-interactions registered in the propane bubble chamber PBC-500. Thus, total number of collisions are:  $N_{ev}^{t}(CTa)=2469$ ,  $N_{ev}^{t}(HeTa)=1149$ ,  $N_{ev}^{t}(dTa)=1475$ . The total number of protons:  $N_{p}^{t}(CTa)=22447$ ,  $N_{p}^{t}(HeTa)=3320$  and  $N_{p}^{t}(dTa)=4231$ . Statistics at  $\pi^{-}$  -mesons is as follows:  $N_{\pi^{-}}^{t}(CTa)=5967$ ,  $N_{\pi^{-}}^{t}(HeTa)=1132$ ,  $N_{\pi^{-}}^{t}(dTa)=889$ . The statistics does not include so called evaporated (spectators of target nucleus) and stripping protons and  $\pi^{-}$ -mesons where momenta are poorly identified [8].

The separation of hard and soft processes can be performed by means at the so called cumulative number variable

$$n_k = \frac{(E - p_{\parallel})}{m_N}$$
(1)

E and  $p_{\parallel}$  are energy and longitudinal momentum of the particles in the laboratory frame,  $m_N^{\ is}$  the nucleon mass. So defined  $n_k$  finds its origin in the parton model and light front dynamics [9].  $n_k$  can be interpreted as a minimal mass of the target, which is necessary for the creation of the given particle,. If  $n_k \ge 1$ , the particle is called cumulative. In general  $n_k$  is called the order of cumulativity,. Particles with  $n_k \ge 1$  give information on the hard processes and on the role of nuclear medium in the formation of particle characteristics. Therefore the average characteristics of particles with  $n_k \ge 1$  and  $n_k < 1$  should considerably differ from each other.

#### The Dependence of Characteristics of Protons on the Comulative Number

The average value of cumulative number of created protons in CTa-collisions is  $\bar{n}_k(p) = (0.72 \pm 0.01)$  fig.1



fig.1 Distribution of secondary protons in CTa –collisions as a function of the cumulative number:  $\bullet$ -n<sub>p</sub>(t) for total statistics and  $\blacktriangle$ -n<sub>p</sub>(b) for protons moving in backward direction in the laboratory frame

Protons with  $n_k \ge 1$  are called cumulative. Such protons are 18% of total statistics. There average momentum  $\overline{P}_L$  is significantly smaller than average momentum of protons with  $n_k < 1$ , but the emission anile is considerably bigger than the emission angle of protons with  $n_k < 1$  ( $\overline{\theta}_L^0(n_k \ge 1) >> \overline{\theta}_L^0(n_k < 1)$ ).

The role at the heavy target in the production at the cumulative proton is much more pronounced than for noncumulative ones (Table 1,2,3)

| interactions/       |                         |                               |                              |                                                   |                   |  |
|---------------------|-------------------------|-------------------------------|------------------------------|---------------------------------------------------|-------------------|--|
|                     | $\overline{p_L}(GeV/C)$ | $\overline{p_{\perp}}(GeV/C)$ | $\overline{\theta_L^0}$ grad | $\overline{\cos 	heta_{\scriptscriptstyle NN}^*}$ | $\overline{Y_L}$  |  |
| n <sub>k</sub> <0.3 | 2.990±0.065             | 0.437±0.015                   | 8.570±0.210                  | $0.808 \pm 0.050$                                 | 1.710±0.020       |  |
| $n_k \ge 0.3$       | 0.818±0.009             | $0.468 \pm 0.007$             | 51.99±0.40                   | -0.734±0.007                                      | 0.429±0.005       |  |
| n <sub>k</sub> <0.6 | 1.942±0.026             | $0.486 \pm 0.009$             | 17.99±0.40                   | 0.076±0.003                                       | 1.217±0.018       |  |
| $n_k \ge 0.6$       | $0.618 \pm 0.008$       | $0.457 {\pm} 0.007$           | 62.84±0.51                   | -0.883±0.011                                      | 0.244±0.002       |  |
| n <sub>k</sub> <0.8 | 1.399±0.015             | $0.452 \pm 0.007$             | 24.98±0.21                   | -0.32±0.005                                       | 0.891±0.011       |  |
| $n_k \ge 0.8$       | $0.578 \pm 0.010$       | 0.495±0.010                   | 81.98±1.20                   | -0.911±0.016                                      | $0.094 \pm 0.003$ |  |
| $n_k < 1$           | 1.202±0.012             | $0.460 \pm 0.006$             | 33.1±0.25                    | -0.456±0.007                                      | 0.736±0.008       |  |
| $n_k \ge 1$         | $0.588 \pm 0.015$       | $0.505 \pm 0.009$             | 105.1±1.5                    | -0.934±0.021                                      | -0.072±0.013      |  |

Dependence of the average characteristics of protons on the  $n_k$  cumulative number (CTa-interactions)

Table 1.

|                     | $\overline{p_L}(GeV/C)$ | $\overline{p_{\perp}}(GeV/C)$ | $\overline{\theta_L^0}$ grad | $\overline{\cos 	heta_{\scriptscriptstyle NN}^*}$ | $\overline{Y_L}$ |
|---------------------|-------------------------|-------------------------------|------------------------------|---------------------------------------------------|------------------|
| n <sub>k</sub> <0.3 | 2.261±0.043             | 0.349±0.037                   | 8.81±0.600                   | 0.755±0.060                                       | 1.52±0.100       |
| $n_k \ge 0.3$       | $0.960 \pm 0.020$       | 0.510±0.016                   | 42.63±0.71                   | $-0.642 \pm 0.018$                                | 0.572±0.017      |
| n <sub>k</sub> <0.6 | 1.463±0.043             | 0.434±0.025                   | 18.56±0.490                  | -0.153±0.010                                      | 1.375±0.025      |
| n <sub>k</sub> ≥0.6 | 0.739±0.027             | $0.550 \pm 0.021$             | 58.52±1.400                  | -0.834±0.031                                      | 0.318±0.015      |
| nk<0.8              | 1.234±0.0330            | 0.456±0.015                   | 25.100±0.560                 | $-0.368 \pm 0.030$                                | 1.325±0.0.025    |
| $n_k \ge 0.8$       | 0.693±0.0.035           | 0.597±0.032                   | $77.280 \pm 2.500$           | -0.877±0.051                                      | 0.149±0.013      |
| $n_k < 1$           | 1.134±0.025             | 0.475±0.015                   | 31.090±0.580                 | -0.453±0.014                                      | 0.758±0.021      |
| n <sub>k</sub> ≥1   | 0.716±0.042             | 0.637±0.051                   | 98.100±1.500                 | $-0.902 \pm 0.072$                                | -0.019±0.007     |

Dependence of the average characteristics of protons on the  $n_k$  cumulative number (HeTa-interactions)

Table 3.

Dependence of the average characteristics of protons on the  $n_k$  cumulative number (dTa-interactions)

|                     | $\overline{p_L}(GeV/C)$ | $\overline{p_{\perp}}(GeV/C)$ | $\overline{\theta_L^0}$ grad | $\overline{\cos 	heta_{NN}^*}$ | $\overline{Y_L}$  |
|---------------------|-------------------------|-------------------------------|------------------------------|--------------------------------|-------------------|
| n <sub>k</sub> <0.3 | 2.258±0.112             | 0.331±0.043                   | 8.41±0.56                    | 0.846±0.021                    | 1.522±0.124       |
| $n_k \ge 0.3$       | 0.698±0.017             | $0.400 \pm 0.012$             | 51.35±0.81                   | -0.798±0.041                   | 0.388±0.012       |
| n <sub>k</sub> <0.6 | 1.400±0.052             | 0.397±0.021                   | 17.91±0.120                  | -0.201±0.013                   | 1.014±0.045       |
| $n_k \ge 0.6$       | $0.550 {\pm} 0.020$     | 0.396±0.013                   | 60.891±1.10                  | -0.906±0.023                   | 0.235±0.019       |
| n <sub>k</sub> <0.8 | 0.971±0.027             | 0.371±0.017                   | 26.61±0.56                   | -0.561±0.010                   | $0.704 \pm 0.021$ |
| $n_k \ge 0.8$       | 0.513±0.021             | $0.434 \pm 0.020$             | 81.85±1.97                   | -0.927±0.032                   | $0.081 \pm 0.007$ |
| $n_k < 1$           | 0.846±0.021             | 0.388±0.012                   | 36.09±0.63                   | -0.658±0.008                   | 0.572±0.016       |
| $n_k \ge 1$         | 0.510±0.321             | $0.434 \pm 0.025$             | 108±2.5                      | -0.950±0.049                   | -0.105±0.013      |

It is seen that at  $n_k \ge 0.6$  the form of the momentum distribution changes considerably(fig.2). The production mechanisms also changes. The following growth of  $n_k$  don't leads to the essentially change of average momentum  $-\overline{P}_L$ , but average emission angle  $\overline{\theta}_L$  is considerable change (Table 1,2,3).

This is mentioned also in Ref [10].

When the value of the cumulative number decreases the average momentum of the produced proton increases and the average emission angle decreases. When the value of the cumulative -0

number increases the average momentum of the produced proton decreases and  $\overline{\theta}_{L}^{0}$  increases (Table 1,2,3).

The same tendency is observed for protons produced in HeTa and dTa-collisions (Table 2 and 3).

<u>It can be said that the</u> value  $n_k \approx 0.6$  is the threshold, where the regime of production changes and consequently the characteristics of produced particles considerably change. It can be explained

as follows: at  $\geq 0.6$  the incoming nucleons interact with many nucleons (clusters, fluctons, multi quark states) on the target nucleus(fig.2)



fig 2. Momentum distributions of protons produced in CTa-interactions;  $n_k \!\!\geq\!\! 0.6~(\bullet)$  and  $n_k \!\!\leq\!\! 0.6~(\blacktriangle)$ 

It is know from experimental data that the growth of the number of produced particles the average value of the momentum  $\overline{P}_L$  decreases and the emission angle increases. This effect is not observed in CTa-interactions for cumulative protons  $(n_k \ge 1)$ . The growth of the number of cumulative protons from one to six does not cause the decrease of  $\overline{P}_L$  and increase of  $\overline{\theta}_L$ , the weak increase of  $\overline{P}_L$  and weak decrease of  $\overline{\theta}_L$  take place. The statistics does not allow more strong conclusion. The average momentum changes from  $(0.524 \pm 0.041)$ GeV/c (when the number of cumulative protons in the event  $N_p(n_k \ge 1)=1$ ) to  $(0.621 \pm 0.040)$ GeV/c (When  $N_p(n_k \ge 1)=6$ ). This means that kinematical characteristics weakly depend on the number of cumulative protons  $N_p$ .

For the study of production mechanism in nucleus- nucleus interactions we compare characteristics of particles produced in  $A_iA_t$  and NN-interactions. We also study the properties of backward moving particles ( $\theta_L > 90^0$ ) in the laboratory frame and perform the model analysis.

It turned out that only 12% of the total number of protons moves backward in the laboratory frame. The average value of cumulative number is  $1.32\pm0.03$  and all protons are cumulative ( $n_k \ge 1$ ). The average momentum of these protons is significantly smaller than the same average number for total statistics  $\overline{P}_L(t)$ .

The average value of the emission angle  $\overline{\theta}_L$  is ~ 2.5 times bigger than the same number for total statistics. (Table 4.)



Fig. 3. The momentum distributions of produced protons in CTa-collisions. ( $\bullet$ -p(t),  $\blacktriangle$ -p(b)).

The temperature of backward moving protons is significantly smaller than the inclusive temperature,  $T_p^b(n_k \ge 1) = (73 \pm 1)Mev$ ,  $T_p(t) = (188 \pm 2)Mev$ . The temperature is extracted from the formula:

$$\frac{dN}{dp_{\perp}} = Ap_{\perp}(m_{\perp}T)^{\frac{1}{2}} \exp(-\frac{m_{\perp}}{T})$$
(2)

where,  $p_{\perp}$  is the transverse momentum,  $m_{\perp} = \sqrt{p_{\perp}^2 + m^2}$ , transverse mass, T-temperature.

Table 4.

Average characteristics of backward moving protons p<sup>b</sup> and inclusive protons p(t) in CTainteractions

| $\overline{P_L^b}(GeV/C)$ | $\overline{P_{\perp}^{b}}(GeV/C)$ | $\overline{	heta_L^b}$ grad | $\overline{\cos 	heta_{_{N\!N}}^{*}}^{b}$ | $\overline{Y_L}^b$  |
|---------------------------|-----------------------------------|-----------------------------|-------------------------------------------|---------------------|
| $0.440 \pm 0.015$         | 0.366±0.013                       | 119±2                       | -0.975±0.026                              | -0.192±0.008        |
| $\overline{P_L}(t)GeV/C)$ | $\overline{P_{\perp}}(t)(GeV/C)$  | $\overline{	heta_L^0}(t)$   | $\overline{\cos\theta_{NN}^*}(t)$         | $\overline{Y_L}(t)$ |
| $1.144 \pm 0.010$         | $0.457 \pm 0.050$                 | 46.32±0.30                  | -0.500±0.006                              | $0.624 \pm 0.007$   |

#### The dependence of characteristics of $\pi^{-}$ mesons on the cumulative number $n_{k}$

We have studied the dependence average characteristics of cumulative number  $n_{k\ of}$  protons(Tables 1-3).

The same characteristics have been studied for  $\pi^-$ -mesons. Their average momentum practically does not depend on  $n_k$ . The average emission angle  $\overline{\theta}_L$ , and average rapidity  $\overline{Y}_L$ -significantly depend on  $n_k$ .  $\pi^-$ -mesons are mainly produced in target fragmentation region. DCM-Dubna cascade model satisfactory describes characteristics of  $\pi^-$ -mesons for  $n_k < 0.3$ ; but deviate from the data on  $\pi^-$ -mesons production on NN-interaction, for  $n_k < 0.3$ .

Characteristics of  $\pi^-$ -mesons produced in CTa-nucleus-nucleus interactions and characteristics of  $\pi^-$ -mesons in NN-interactions considerably differ, for  $n_k \ge 0.3$ . This means that the role of nuclear medium in the formation of particle characteristics is significant (Table 5).

Table 5.

The dependence of average characteristics of  $\pi^-$ -mesons on  $n_k$  for  $A_iA_t$  and NN-interactions and cascade model results for CTa-interactions

| inter | ractions            | $\overline{p_L}(GeV/C)$ | $\overline{p_{\perp}}(GeV/C)$ | $\overline{	heta_L^0}$ grad | $\overline{Y_L}$ | $\overline{\cos 	heta_{NN}^{*}}$ |
|-------|---------------------|-------------------------|-------------------------------|-----------------------------|------------------|----------------------------------|
| СТа   | n <sub>c</sub> <0.3 | $0.468 \pm 0.015$       | $0.196 \pm 0.007$             | 42±1.2                      | 0.95±0.019       | -0.141±0.012                     |
|       | n <sub>c</sub> ≥0.3 | $0.434 \pm 0.010$       | $0.344 \pm 0.025$             | 104±2.5                     | -0.172±0.016     | -0.802±0.010                     |
| NN    | n <sub>c</sub> <0.3 | $0.610 \pm 0.010$       | 0.223±0.002                   | 32.49±0.57                  | 1.25±0.01        |                                  |
|       | n <sub>c</sub> ≥0.3 | 0.370±0.010             | 0.310±0.010                   | 93.48±1.75                  | 0.99±0.02        |                                  |
| DCM   | n <sub>c</sub> <0.3 | 0.500                   | 0.203                         | 41.34                       | 1.01             |                                  |
| (CTa) | n <sub>c</sub> ≥0.3 | 0.340                   | 0.290                         | 100.50                      | -0.10            |                                  |

Table 6

Average characteristics of  $\pi^-$ -mesons in  $A_iA_t$  and NN-interactions for backward moving  $\pi^-$ -mesons  $\pi^-(b)$  in the laboratory frame

| A <sub>i</sub> A <sub>t</sub> - interactions |                    | $\overline{p_L}(GeV/C)$ | $\overline{p_{\perp}}(GeV/C)$ | $\overline{\theta_L^0}$ grad | $\overline{Y_L}$  |
|----------------------------------------------|--------------------|-------------------------|-------------------------------|------------------------------|-------------------|
|                                              | $\pi^{-}(t)$       | 0.458±0.01              | 0.212±0.006                   | 50.80±0.65                   | 0.809±0.01        |
| СТа                                          | π <sup>-</sup> (b) | 0.189±0.014             | 0.157±0.016                   | 120±3                        | -                 |
|                                              |                    |                         |                               |                              | $0.386 \pm 0.024$ |
| НеТа                                         | $\pi^{-}(t)$       | 0.475±0.025             | 0.218±0.015                   | 49.59±0.50                   | 0.846±0.031       |
|                                              | π <sup>-</sup> (b) | 0.197±0.020             | 0.151±0.019                   | 123±4                        | -0.419±0.06       |
| dTa                                          | $\pi^{-}(t)$       | 0.438±0.020             | 0.214±0.017                   | 51.21±1.1                    | $0.800 \pm 0.04$  |
|                                              | π <sup>-</sup> (b) | 0.177±0.035             | 0.144±0.030                   | 122±4                        | $-0.403\pm0.04$   |
| DCM(CTa)                                     | π <sup>-</sup> (t) | 0.470±0.01              | 0.225±0.004                   | 51.59±0.6                    | 0.79±0.02         |
| NN                                           | π <sup>-</sup> (t) | 0.571±0.004             | 0.238±0.001                   | 41.96±1.15                   | 1.062±0.007       |



fig. 4. Momentum distributions of  $\pi^-$ -mesons produced in CTa- interactions. (•- $\pi^-$ (t)-total statistics;  $\blacktriangle$ - $\pi^-$ (b)-backward mesons).

It is seen from the Table 6 that characteristics of  $\pi^-$ -mesons in A<sub>i</sub>A<sub>t</sub> and NN-interactions considerable differ, which is caused by the intranuclear rescatterings. The cascade model describes

rather well experimental data. Backward moving  $\pi^-$ -mesons in the laboratory frame have different characteristics as compared to ( $\pi^-$  (t)- mesons. (Fig. 4).

The average value of the cumulative number for backward moving  $\pi^-$  -mesons  $\overline{n_k}(b) = 0.34 \pm 0.03$  is considerably different as compared to the same number for inclusive  $\pi^-$  -mesons .  $\overline{n_k}(t) = 0.16 \pm 0.02$ . This means that in the production of  $\pi^-$  (b)-mesons participate more nucleons than in the formation of  $\pi^-$  (t)-mesons. Temperatures of  $n^-$ (b) and  $\pi^-$  (t)-mesons also considerably differ:  $T_n(b)=(52\pm1)MeV$ ,  $T_n(t)=(78\pm1)MeV$ .

# Conclusions

- 1. DCM- Dubna cascade model describes rather well average characteristics of  $\pi^-$  (t)mesons but deviates from the data for  $\pi^-$  (b)-mesons. This is caused by the fact that  $\pi^-$  (b)-mesons are produced in the target fragmentation region and the corresponding average cumulative numbers considerably differ:  $\overline{n_k}(t) = 0.16 \pm 0.01$ ,  $\overline{n_k}(b) = 0.34 \pm 0.03$ .
- 2. Kinematic characteristics of protons in the regions  $n_k < 0.3$  and  $n_k \ge 0.3$  considerably differ, but when  $n_k \ge 0.6$  momentum characteristics change very weak
- 3. The contribution real cumulative protons with  $n_k(p) \ge 1$  to the total statistics approximately 18% and 60% of them are backward moving –jets in the laboratory frame.
- 4. There are practically no cumulative  $\pi^{-}$  mesons at our energy;
- 5. Backward moving protons and  $\pi^-$  mesons have average momenta smaller than inclusive protons and  $\pi^-$  (t)- mesons and emission angles bigger than inclusive ones;
- 6. Average temperatures of  $p^{b}$  and  $\pi^{b}$  are considerably smaller than the inclusive temperatures:

 $\overline{T}(p^b) = 73 \pm 1)MeV, \qquad \overline{T}(\pi^b) = (52 \pm 1)MeV$ 

## References

- 1. N. Angelov at al. 1-12424, Dubna, 1979;
- 2. E. O Abdrahmanov. et al. JINR, E1-11517, Dubna, 1978;
- 3. N. S. Grigalashvili, Yu.V.Tevzadze et al. Sov. J. Nucl. Phys., 1988, V. 48, p. 476;
- 4. G. N. Agakishiev et al. JINR R1-86-370, Dubna, 1986;
- 5. G. N. Agakishiev et al. Sov. J. Nucl. Phys. , 1987, v. 45, p., 1373;
- 6. G. N. Agakishiev et al. JINR, E1-84-448, Dubna, 1984; V. G. Grishin et al. , JINR, R1-86-639, Dubna, 1986;
- 7. L.Chkhaidze et al. Z. Phys. Particles and Fields, ,1998, v. 54, 179;
- 8. Anoshin et al. Sov. J. Nucl. Phys. , 1982, v. 36, p. 409;
- 9. Ts. Baatar,...Yu. Tevzadze et al. Sov. J. Nucl. Phys., 1982, v. 36, p. 431;
- 10. M. Baldin JINR, E-80-545, Dubna, 1980.

Article received: 2011-05-02