ANALYSIS OF READY QUEUE PROCESSING TIME UNDER PPS-LS AND SRS-LS SCHEME IN MULTIPROCESSING ENVIRONMENT

${ }^{1}$ Diwakar Shukla, ${ }^{2}$ Anjali Jain,
${ }^{1}$ Deptt. of Statistics and Mathematics,Dr.H.S.Gour University, Sagar (M.P), 470003, INDIA
${ }^{2}$ Deptt. of Computer Sc. and Applications,Dr.H.S. Gour University, Sagar (M.P.), 470003, INDIA
${ }^{1}$ diwakarshukla@rediffmail.com, ²apscin30@yahoo.com

Abstract

In operating system, process sequencing is an open problem and solved by many scientists/authors suggesting different scheduling schemes. Every process needs a time span to be processed by the CPU. Lottery scheduling is one such scheme where the process selection is purely on random basis. The ready queue is used for processes to wait there until selected for processor. This paper considers the environment of many processors, a ready queue, lottery scheduling and presents an efficient method to predict about total time needed to process the entire ready queue if only few are processed in a specified time. Confidence internals are calculated based on PPS-LS and compared with SRS-LS. The PPS-LS found better over SRS-LS.

Keywords: Scheduling, Probability Proportional to Size Lottery Scheduling (PPS-LS), Bias, Variance, Confidence interval, Simple Random Sampling Lottery Scheduling (SRS-LS), Estimator, Sampling, Ready Queue.

1. INTRODUCTION

In multiprocessor and multi-user environment, in a fraction of second, many job requests arrive at the ready queue. Scheduler's role is to decide which of the process should be assigned to which processor at an instant of time. There are many CPU scheduling schemes exist in literature \{See [15], [17], [18]\} and Lottery scheduling is one of them whose algorithm is as under:
i. Allot token number to each of the process entering into the ready queue.
ii. Pickup a random number and search matching process token number to random number.
iii. The process which is matched to both numbers shall be assigned to processor by scheduler.
iv. Continue steps (i) (ii) and (iii) unless ready queue is vacated.

A modification in the Lottery scheduling procedure for n processors environment is to choose n random numbers at a time and perform n matching of tokens of processes. After matching, select n processes at a time randomly.

Carl et al. [1] discussed the proportional share resource management technique in lottery scheduling. David et al. [3] presented the specialization matching methodology in context to lottery scheduling. Raz et al. [4] presented procedure of deciding priorities among jobs by maintaining fairness in selection procedure.

Shukla et.al [7] picked up multiprocessor environment and lottery scheduling and discussed a procedure to obtain ready queue time estimate. The kind of prediction is important for backup management when sudden failure of power supply, machine disorder occur. Shukla et al [8] discussed similar problem but in grouped setup of ready queue using lottery scheduling. Shukla and Jain [5], [6] tackled Markov Chain based study of transition behaviors of scheduler in multilevel queue scheduling. Some other contributions are [9], [10], [11], [12], [13] and [14]. Sampling theory contains tools and techniques useful to estimate the unknown population parameter. The basis for this is information contained in a small sample which is a part of the whole \{See [2] and [16]\}.

One can think of utilizing additional information for ready queue processing time estimation. Suppose the size of each process is available in terms of bytes at the time of entering into the ready queue. This information could be a source of efficient estimation. Aim of present content is to
utilize this in the estimation of ready queue processing time under PPS-LS setup and multiprocessor environment by using size measure of the process.

2. PROBLEM DEFINITION

Let the size of coming $i^{\text {th }}$ process in the ready queue be $X_{i}(i=1,2, \ldots ., N)$ in terms of bytes, the total size being $X=\Sigma \AA$. We associate the random numbers 1 to X with the first unit, the unit with which this number is associated is selected. This gives the surety of selection of $\mathrm{i}^{\text {th }}$ unit in the ready queue or pool of processes with probability proportional to its size X_{i}. This procedure is repeated n times with replacement of the processes. The X_{i} is a size measure of processes based on bytes.

3. ESTIMATION OF READY QUEUE PROCESSING TIME

(A)PPS-LS scheme with replacement

Consider a pool of N processes and let X_{i} be size value of the process Pi where ($\mathrm{i}=1 \ldots \mathrm{~N}$). Suppose ($\mathrm{c}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} / \mathrm{X}$) be the chance that $\mathrm{i}^{\text {th }}$ process the process c_{i} is selected in processor such that $\sum_{i}^{N} c_{i}=1$.

The Y be processing time as main variable .Let n independent choice be made with replacement method and the value of y_{i} for each selected process is observed. Take y_{i} (time), c_{i} (chance) be the size and chance of selection of the $\mathrm{i}^{\text {th }}$ process in the sample. It can be seen that random variate $\left(\frac{y_{i}}{c_{i}}\right)(\mathrm{i}=1 \ldots \mathrm{~N})$ are independent and identically distributed. If $\mathrm{c}_{\mathrm{i}}=1 / \mathrm{N}$ it gives rise to a simple random sample. Consider estimator $\hat{Y}_{p p s}=\frac{1}{n} \sum_{i}^{n}\left(\frac{y_{i}}{c_{i}}\right)$ which is unbiased estimator of the ready queue processing time total Y.

Sampling variance

We define $Z_{i}=Y_{i} / \mathrm{Nc}_{\mathrm{i}}$ and $\mathrm{z}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} / \mathrm{Nc}_{\mathrm{i}}$. The Z_{i} denotes values of processes in ready queue and z_{i} relates to value in sample n assigned to n processors ($n<N$).

$$
\begin{aligned}
= & \frac{1}{n} \sum_{i}^{N} \varphi_{i}\left(\frac{x}{q_{1}}-V\right)^{2} \\
& \operatorname{cov}\left(\frac{x}{\varepsilon_{i}} \frac{y_{i}}{c_{i}}\right)
\end{aligned}
$$

The variance of estimator is inversely proportional to the sample size n as in simple random sampling, wr. An unbiased estimator of population mean is, \bar{Y} is given by

$$
\hat{f}_{p p s}=\frac{1}{n_{N} \mathbb{N}} \sum_{i}^{2}\left(\frac{q}{\rho}\right) \text { with its sampliug vatiance. }
$$

In PPS-LS sampling wr,

$$
\begin{gathered}
V\left(\rho_{p g n}\right)=\frac{1}{n(n-1)} \sum_{i}^{n}\left(\frac{y_{1}}{q_{1}}-\rho_{p p z}\right)^{2} \\
z_{i}\left(=\frac{y_{i}}{c_{i}}\right), i=1,2 \ldots \ldots \ldots \ldots . \ldots
\end{gathered}
$$

independent unbiased estimator of Y having the same variance. In PPS-LS sampling, wr an unbiased estimator of $v\left(\hat{\bar{Y}}_{p p s}\right)$ is given by

$$
s^{2}=\sum_{i}^{n}\left(\frac{z_{1}-\bar{z}}{n-1}\right)^{2}
$$

where is unbiased estimator of with the usual meaning.

$$
\begin{aligned}
& \nabla\left(f_{y N}\right)=\frac{1}{n} \sum_{1}^{y} c_{i}\left(\frac{y_{z}}{N c_{i}}-\bar{F}\right)^{2} \\
& v\left(f_{p p s}\right)=v(j)=\frac{1}{n^{2}} \sum^{n} v\left(\sigma_{p}\right) \\
& \because E\left(\gamma_{p p 2}\right)=E(\bar{z})=\sum_{i}^{n} \frac{1}{n} E\left(z_{i}\right)=Y \\
& v\left(\gamma_{p m}\right)=\frac{1}{n} \sum_{1}^{n} c_{1}\left(\frac{Y}{c_{1}}-V\right)^{2} \\
& =\frac{1}{n(n-1)}\left[\sum_{i}^{n}\left(\frac{y_{i}}{c_{i}}\right)^{2}-n \hat{Y}_{p p s}^{2}\right]
\end{aligned}
$$

So, an unbiased estimator of $V\left(\hat{\bar{Y}}_{p p s}\right)$ is given by

$$
\begin{aligned}
& v\left(\hat{f}_{p m}\right)=\frac{1}{n(n n-1)} \sum^{2}\left(\frac{n}{r q}-\hat{\gamma}_{p p s}\right)^{2} \\
& =\frac{1}{n(n-1) N}\left[\sum^{n}\left(\frac{x}{c_{2}}\right)^{2}-n \hat{p}_{p n}\right]
\end{aligned}
$$

The confidence interval for mean in PPS-LS is

$$
\frac{\mathrm{T}_{\mathrm{pz}}}{\mathrm{~N}}-\frac{1}{\mathrm{~N}} \sqrt{\mathrm{~V}\left(\mathcal{Y}_{\mathrm{p}}\right.}, \quad \frac{\mathrm{T}_{\mathrm{pm}}}{\mathrm{x}}+\frac{1}{\mathrm{~N}} \sqrt{\mathrm{~V} \rho_{\mathrm{p}}}
$$

(B) SRS-LS scheme

Consider $\quad c_{i}=$ for all then we get SRS-LS set-up as $\quad z_{i}=$ and $\quad z_{i}=$ with process sample mean

$$
\begin{gathered}
\bar{y}=\frac{1}{n} \sum_{=1}^{n} x \text { Alse whole ready queue mean a square is } s^{2} \\
=\frac{1}{n-1} \sum_{=i}^{n}(\mathrm{n}-\bar{y})^{2}
\end{gathered}
$$

The \bar{y} denotes mean time of sample processes in the n processors at a time.This generates confidence interval for SRS-LS for mean $\left[\bar{y}-3 \sqrt{p(\bar{y})}, \bar{y}+3 \sqrt{V(G)}\right.$ where $V(\bar{y})=\frac{N-n}{N n}$.

Note that when confidence interval length is high, the estimation procedure is less efficient. This comparative methodology is adopted here in this content.

4. NUMERICAL DATA

Consider 30 processes in ready queue at a time whose size measure X is also given in terms of bytes. If we assume that all the processes are processed completely in the ready queue, the CPU burst time Y is mentioned against them. The table 1 presents computation of size measure probability.

Table 1: Processes parameters in ready queue.

Process Number	Process		$\mathrm{c}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} / \mathbf{X}$	PPS-LS	SRS-LS
	$\operatorname{Size}\left(\mathrm{X}_{\mathrm{i}}\right)$ Parameter	$\begin{gathered} \text { CPU } \\ \text { Burst } \\ \text { Time }\left(\mathbf{Y}_{\mathbf{i}}\right) \end{gathered}$		$\left(\mathbf{Y}_{i} / \mathrm{Nc}_{\mathrm{i}}{ }^{\text {) }}\right.$	$\mathbf{Y i} /\left(\mathrm{Nc}_{\mathrm{i}}\right)$
1	210	30	0.01974	50.66	30.03
2	897	20	0.08434	7.9	20.02
3	312	112	0.02933	127.29	112.11
4	171	40	0.01608	82.92	40.04
5	461	59	0.04334	45.38	59.06
6	290	60	0.02727	73.34	60.06
7	379	30	0.03563	28.07	30.03
8	220	43	0.02068	69.31	43.04
9	470	101	0.04419	76.19	101.1
10	636	69	0.0598	38.46	69.07
11	455	138	0.04278	107.53	138.14
12	682	43	0.06412	22.35	43.04
13	952	109	0.08951	40.59	109.11
14	574	26	0.05397	16.06	26.03
15	536	74	0.05039	48.95	74.07
16	416	89	0.03911	75.85	89.09
17	788	123	0.07409	55.34	123.12
18	902	67	0.08481	26.33	67.07
19	623	58	0.05857	33.01	58.06
20	563	84	0.05293	52.9	84.08
21	111	143	0.01044	44.7	14.01
22	341	29	0.03206	30.15	29.03
23	775	147	0.07287	21.5	47.05
24	913	94	0.08584	36.5	94.09
25	745	131	0.07005	62.34	131.13
26	130	79	0.01222	215.49	79.08
27	877	46	0.08246	18.59	46.05
28	927	59	0.08716	22.56	59.06
29	424	72	0.03986	60.21	72.07
30	356	22	0.03347	21.91	22.02

The table 2 presents the allotment of range of random numbers and table $3,4,5$ and 6 are for sample information in terms of size measure based probability. Note the true value of total is 1968 and entire mean is 65.6.

Table 2: Interval Random Number Association

Process Number	Size($\mathbf{x}_{\mathbf{i}}$) Parameter	Cumulative Size Totals	Random Numbers Associated
$\mathbf{1}$	210	210	$0-210$
$\mathbf{2}$	897	1107	$210-1107$
$\mathbf{3}$	312	1419	$1107-1419$
$\mathbf{4}$	171	1590	$1419-1590$
$\mathbf{5}$	461	2051	$1590-2051$
$\mathbf{6}$	290	2341	$2051-2341$
$\mathbf{7}$	379	2720	$2341-2720$
$\mathbf{8}$	220	2940	$2720-2940$
$\mathbf{9}$	470	3410	$2940-3410$
$\mathbf{1 0}$	636	4046	$3410-4046$
$\mathbf{1 1}$	455	4501	$4046-4501$
$\mathbf{1 2}$	682	5183	$4501-5183$
$\mathbf{1 3}$	952	6135	$5183-6135$
$\mathbf{1 4}$	574	6709	$6135-6709$
$\mathbf{1 5}$	536	7245	$6709-7245$
$\mathbf{1 6}$	416	7661	$7245-7661$
$\mathbf{1 7}$	788	8449	$7661-8449$
$\mathbf{1 8}$	902	9351	$8449-9351$
$\mathbf{1 9}$	623	9974	$9351-9974$
$\mathbf{2 0}$	563	10537	$9974-10537$
$\mathbf{2 1}$	111	10648	$10537-10648$
$\mathbf{2 2}$	341	10989	$10648-10989$
$\mathbf{2 3}$	775	11764	$10989-11764$
$\mathbf{2 4}$	913	12677	$11764-12677$
$\mathbf{2 5}$	745	13422	$12677-13422$
$\mathbf{2 6}$	130	13552	$13422-13552$
$\mathbf{2 7}$	877	14429	$13552-14429$
$\mathbf{2 8}$	927	15356	$14429-15356$
$\mathbf{2 9}$	424	15780	$15356-15780$
$\mathbf{3 0}$	356	16136	$15780-16136$
$\mathbf{2 5}$			

Table 3: Sampled processes ($\mathrm{n}=8$)
Sample No. Sampled Processes

$\mathbf{1}$	P_{30}	P_{17}	P_{6}	P_{25}	P_{15}
$\mathbf{2}$	P_{8}	P_{4}	P_{18}	P_{25}	P_{28}
$\mathbf{3}$	P_{20}	P_{4}	P_{11}	P_{1}	P_{22}
$\mathbf{4}$	P_{12}	P_{22}	P_{4}	P_{16}	P_{24}
$\mathbf{5}$	P_{3}	P_{6}	P_{7}	P_{18}	P_{12}
$\mathbf{6}$	P_{27}	P_{19}	P_{13}	P_{2}	P_{6}
$\mathbf{7}$	P_{24}	P_{16}	P_{8}	P_{5}	P_{19}
$\mathbf{8}$	P_{4}	P_{12}	P_{15}	P_{16}	P_{29}
$\mathbf{Y}_{\mathbf{i}}$	Sampled Processes CPU Burst Time				

burst time for

	Factor				
$\mathbf{1}$	22	123	60	131	74
$\mathbf{2}$	43	40	67	131	59
$\mathbf{3}$	84	40	138	30	29
$\mathbf{4}$	43	29	40	89	94
$\mathbf{5}$	112	60	33	67	43
$\mathbf{6}$	46	58	109	20	60
$\mathbf{7}$	94	89	43	59	58
$\mathbf{8}$	40	43	74	89	72

Table 5: Size measure of sampled process ($\mathrm{n}=\mathrm{8}$)

$\mathbf{X}_{\mathbf{i}}$	Sampled Processes Weight Factor				
$\mathbf{1}$	356	788	290	745	536
$\mathbf{2}$	220	902	745	171	927
$\mathbf{3}$	563	171	455	210	341
$\mathbf{4}$	682	171	341	913	416
$\mathbf{5}$	312	290	379	902	682
$\mathbf{6}$	877	623	952	879	290
$\mathbf{7}$	913	416	220	561	623
$\mathbf{8}$	171	682	536	416	424

Table 6: The selection probability based on size measure

$\mathbf{c}_{\mathbf{i}}$	Selection Chances of Sampled Processes				
$\mathbf{1}$	0.03347	0.07409	0.02727	0.07005	0.05039
$\mathbf{2}$	0.02068	0.01608	0.08481	0.07005	0.08716
$\mathbf{3}$	0.05293	0.01608	0.04278	0.01974	0.03206
$\mathbf{4}$	0.06412	0.03206	0.01608	0.03911	0.08584
$\mathbf{5}$	0.02933	0.02727	0.03563	0.08481	0.06412
$\mathbf{6}$	0.08246	0.05857	0.08951	0.08434	0.02727
$\mathbf{7}$	0.08584	0.03911	0.02068	0.04334	0.05857
$\mathbf{8}$	0.01608	0.06412	0.05039	0.03911	0.03986

5. RESULT AND DISCUSSION

In light of table 7 the mean, variance, confidence interval show that PPS-LS means are closer to true value than SRS-LS. The confidence intervals generated by PPS-LS are smaller than generated by SRS-LS. The estimator efficiently estimates the ready queue processing time.

Table 7: Computation of Sample Mean and Confidence Interval for ULS and PPS Scheduling Scheme

Random Samples	Sampled Process $(\mathbf{k}=\mathbf{5})$	Mean		Variance	Confidence Intervals	
$\mathbf{1}$	$\mathrm{P}_{30}, \mathrm{P}_{17}, \mathrm{P}_{6}, \mathrm{P}_{25}, \mathrm{P}_{15}$	52.37	82.08	$(30.44-74.31)$	$(21.16-143)$	
$\mathbf{2}$	$\mathrm{P}_{8}, \mathrm{P}_{4}, \mathrm{P}_{18}, \mathrm{P}_{25}, \mathrm{P}_{28}$	61.02	65.26	$(49.16-72.88)$	$(115.53-109.98)$	
$\mathbf{3}$	$\mathrm{P}_{20}, \mathrm{P}_{4}, P_{11}, \mathrm{P}_{1}, \mathrm{P}_{22}$	61.15	64.26	$(47.43-74.87)$	$(1.16-127.36)$	
$\mathbf{4}$	$P_{12}, \mathrm{P}_{22}, \mathrm{P}_{4}, \mathrm{P}_{16}, \mathrm{P}_{24}$	85.34	56.05	$(50.68-120.0)$	$(20.7-91.4)$	
$\mathbf{5}$	$\mathrm{P}_{3}, \mathrm{P}_{6}, \mathrm{P}_{7}, \mathrm{P}_{18}, \mathrm{P}_{12}$	55.47	62.46	$(35.25-75.68)$	$(20.42-104.42)$	
$\mathbf{6}$	$\mathrm{P}_{27}, \mathrm{P}_{19}, \mathrm{P}_{13}, \mathrm{P}_{2}, \mathrm{P}_{6}$	34.69	58.6	$(1.09-68.29)$	$(15.13-102.07)$	
$\mathbf{7}$	$\mathrm{P}_{24}, \mathrm{P}_{16}, \mathrm{P}_{8}, \mathrm{P}_{5}, \mathrm{P}_{19}$	52	68.66	$(25.91-78.09)$	$(39.23-98.09)$	
$\mathbf{8}$	$\mathrm{P}_{4}, \mathrm{P}_{12}, \mathrm{P}_{15}, \mathrm{P}_{16}, \mathrm{P}_{29}$	58.05	63	$(59.51-66.48)$	$(53.53-73.46)$	

6. CONCLUSION

The content of this paper suggests an estimation technique for obtaining sampled based estimate of total time required for processing for the ready queue. When we consider size measure of processes as additional information we get better estimate of processing time. This estimate is useful when sudden breakdown of system occurs and system manager needs time valuation to vacate the entire ready holding the ready processes. The estimate helps for disaster and backup management of CPU system. The proposed methodology PPS-LS is efficient than SRS-LS due to incorporation of additional information in the form of size measure of processes in ready queue.

REFERENCES

[1] Carl A. Waldspurger and William E. Weihl: Lottery Scheduling a flexible proportional-share resource management, Proceedings of the $1^{\text {st }}$ USENIX Symposium on Operating Systems Design and Implementation (OSDI),pp.1-11, 1994.
[2] Cochran, W.G: Sampling Technique, Wiley Eastern Publication, New Delhi 2005.
[3] David Petrou, Garth A. Gibson and John W. Milford: Implementing Lottery Scheduling: Matching the specializations in Traditional Schedulers, Proceedings of the USENIX Annual Technical Conference USA, pp.66-80, 1999.
[4] Raz, D., B. Itzahak and H. Levy: Classes, Priorities and Fairness in Queuing Systems, Research report, Rutgers University, 2004.
[5] Shukla, D. and Jain, Saurabh. : A Markov chain model for multilevel queue scheduler in operating system, Proceedings of International Conference on Mathematics and Computer Science, ICMCS-07, pp. 522-526, 2007.
[6] Shukla, D. and Jain, Saurabh: Deadlock state study in security based multilevel queue scheduling scheme in operating system, Proceedings of National Conference on Network Security and Management, NCNSM-07, pp. 166-175, 2007.
[7] Shukla,D., Jain, Anjali and Choduary Amita: Estimation of ready queue processing time under SL scheduling scheme in multiprocessor environment, International Journal of Computer Science and Secucity (IJCSS),4(1) pp. 74-81, 2010.
[8] Shukla,D., Jain, Anjali and Choduary Amita: Estimation of ready queue processing time under Usual Group Lottery Scheduling(GLS) in Multiprocessor Environment, International Journal of Computer and Applications(IJCA),Vol 8 no. 14 pp. 39-45, 2010.
[9] Shukla, D., Thakur, S. and Deshmukh, A.K.: State Probability Analysis of Internet Traffic Sharing in Computer Network, Int. Jour. Advanced Networking and Applications, Vol.1, Issue 2, pp 90-95, 2009.
[10] Shukla D., Tiwari, Virendra Kumar, Thakur, S. and Tiwari, Mohan: A comparison of Methods for Internet Sharing in Computer Network, International Journal of Advanced Networking, Vol. 1, issue 3, 164-169, 2009.
[11] Shukla, D. Ojha, Sweta and Jain Saurabh: Analysis of multilevel queue with effect of data model approach Proceedings of National Conference on Research and Development Trends in ICT (12-13 Feb.), pp. 245-251, 2010.
[12] Shukla, D., Singhai, Rahul, Gadewar, Surendra, Jain, Saurabh, Ojha, Sweta and Mishra, P.P.: A stochastic model approach for reaching probabilities pf message flow in space division switches, International Journal of Computer Network (IJCN), vol (2), issue 2, pp. 140-150, 2010.
[13] Shukla, D., Ojha, Shweta and Jain, Saurabh: Performance evaluation of general class of multilevel queue scheduling scheme, GESJ: Computer Science and Telecommunication, 3(26), 99-121, 2010.
[14] Shukla D., Ojha, Shweta and Jain, Saurabh: Data model approach and Markov Chain based analysis of multilevel queue scheduling, Journal of Applied Computer Science and Mathematics, 8(4), pp 50-56, 2010.
[15] Silberschatz, A. and Galvin, P.: Operating System Concepts, Ed.5, John Wiley and Sons (Asia), Inc. 1999.
[16] Singh, Daroga and Choudhary F.S.: Theory and Analysis of Sample Survey and Designs, Wiley Eastern Limited, New Delhi, 1986.
[17] Stalling, W.: Operating Systems, Ed.5, Pearson Education, Singapore, Indian Edition, New Delhi, 2004.
[18] Tanenbaum, A.: Operating system, Ed. 8, Prentice Hall of India, New Delhi, 2000.

