
GESJ: Physics 2011 | No.2(6) 
ISSN 1512-1461 

 

48 

UDC: Condensed matter physics, Solid state physics 
           Theoretical Condensed Matter Physics 
 

VARIATION OF ENERGY WITH ANISOTROPY CONSTANTS OF 
FERROMAGNETIC THIN FILMS WITH FOUR LAYERS 

P. Samarasekara 
Department of Physics, University of Peradeniya, Peradeniya, Sri Lanka 

 
Abstract 
The second and fourth order anisotropy dependence of ferromagnetic thin films 
with four layers has been investigated using Heisenberg Hamiltonian with second 
order perturbation. According to energy plots, the sc(001) ferromagnetic films with 
four layers indicate energetically preferred directions for certain values of second 
and fourth order anisotropy constants, which are characteristics of magnetic 
materials These angles corresponding to energy minimums provide the easy 
directions of those magnetic materials. When the fourth order anisotropy is given by 

ω

)4(
mD =5.3, the easy direction makes 0.6 and 2.73 radians with perpendicular line 

drawn to film plane. If the second order anisotropy is given by 
ω

)2(
mD =3.8, the easy 

direction of film makes 0.72 radians with film normal. 
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1. Introduction: 
           Exchange anisotropy has been extensively investigated in recent past, because of the difficulties 
of understanding the behavior of exchange anisotropy and its applications in magnetic sensors and 
media technology 2. Ferromagnetic films are thoroughly studied nowadays, due to their potential 
applications in magnetic memory devices and microwave devices. Earlier Bloch spin wave theory has 
been applied to study magnetic properties of ferromagnetic thin films 3. Although the magnetization of 
some thin films is oriented in the plane of the film due to dipole interaction, the out of plane orientation 
is preferred at the surface due to the broken symmetry of uniaxial anisotropy energy. Previously two 
dimensional Heisenberg model has been used to explain the magnetic anisotropy in the presence of 
dipole interaction 4. Ising model has been used to study magnetic properties of ferromagnetic thin films 
with alternating super layers 5.      
        For the first time the variation of magnetic energy of a ferromagnetic film with four layers under 
the influence of demagnetization factor and stress induced anisotropy has been widely studied in this 
report. The energy of non-oriented ultra-thin ferromagnetic films with two and three layers has been 
calculated using Heisenberg Hamiltonian with second order perturbation, under the effect of limited 
number of energy parameters 6. The properties of perfectly oriented thick ferromagnetic films have 
been investigated by classical Heisenberg model 7. The variation of energy with angle and number of 
layers has been studied for thick films up to 10000 layers. The total magnetic energy has been 
calculated using two different methods depending on discrete and continuous variation of number of 
layers. For bcc(001) lattice, the easy and hard directions calculated using both methods were exactly 
same. Easy and hard directions for bcc(001) lattice are θ=450 and 1350, respectively 7.  
 
2. Model and discussion: 
Following equation represents the Heisenberg Hamiltonian of any ferromagnetic film 6, 7.   
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In this 2-D model, the spin was assumed to be in y-z plane, and the x component of the spin was 
considered to be zero. The angle (θ) has been measured with respect to the perpendicular line drawn to 
the film plane, which is the z axis of the coordinate system. The y-axis lies in the plane of the film. 
Since two spins (Sm and Sn) must be taken into account in determinations of exchange interaction and 
dipole interactions, the azimuthal angles of Sm and Sn were taken as θm and θn, respectively. When 
there is a small perturbation of angles, the azimuthal angles of spins can be given as mm εθθ +=  and 

nn εθθ += . After substituting these new angles in above equation, the cosine and sine terms can be 
expanded up to the second order of εm and εn. The third and higher order terms of εm and εn are 
neglected in this second order perturbation method. Because the average value of εm (or εn) is assumed 

to be zero with constraint , the first order term of energy can be written as E(ε)=∑
=

=
N

m
m

1
0ε εα

rr. . In 

addition, the energy term with second order perturbation of ε and energy term without ε are taken as 

εε
rr

..
2
1 C  and E0, respectively.  

The stress induced anisotropy appearing in above equation is given by 8, 9, 10, 11 
E= -(3λσsin2φ)/2= -Kusin2φ 
Here φ is the angle between the stress (σ) and the direction of spin, λ is the isotropic magnetostriction 
coefficient, and Ku=3λσ/2.   
Here σ=E(αf- αs)ΔT/(1- ν), where E, αf, αs, ΔT and ν are the Young’s modulus of the film, thermal 
expansion coefficient of film, thermal expansion coefficient of substrate, difference between deposition 
(or annealing) temperature and Poisson ratio of film, respectively.  
For the Heisenberg Hamiltonian given in above equation, total energy can be obtained as following 1. 
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Here J, nmZ − , ω, nm−Φ , θ,  m, n and N are  spin exchange interaction, 
number of nearest spin neighbors, strength of long range dipole interaction, constants for partial 
summation of dipole interaction, azimuthal angle of spin, second and fourth order anisotropy constants, 
in plane and out of plane applied magnetic fields, demagnetization factor, stress induced anisotropy 
constant, spin plane indices and total number of layers in film, respectively. When the stress applies 
normal to the film plane, the angle between mth spin and the stress is θm. E0 is the energy of the 
oriented thin ferromagnetic film. V, μ and μ0 are the volume of the sample, the magnetic moment value 
of electron spin and the permeability of free space, respectively. 

,,,,,, )4()2(
sdoutinmm KNHHDD

For most ferromagnetic films, 022 =Φ= ≥≥ δδZ . If the anisotropy constants do not vary within the film, 
then Dm

(2) or Dm
(4) is a constant for any layer. 

From equation number 1, the matrix elements of matrix C can be given as following. 
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When the difference between two indices (m, n) is 1 or -1,  

C12=C23=C34=C21=C32= C43= 
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From equation 2, θωθθ 2)4()2(
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Therefore, C11=C44,  C22=C33,  C21=C12=C23=C32=C34=C43 
But C13, C14, C24, C31, C41 and C42 are constants, and they do not depend on angle (θ). Therefore, theses 
constants do not change physical properties, and they will be assumed to be zero for the convenience.  
C13=C14=C24=C31=C41=C42=0 
Under some special conditions 6, C+ is the standard inverse of matrix C, given by matrix 

element
C

cofactorC
C nm

mn
det

=+ . For the convenience, the following matrix elements C+
mn will be given in 

terms of C11, C22 and C12 only.  
Determinant of 4x4 matrix= det C = (C11C22-C12
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Total energy=E(θ)=E0-α1
2(C11

++C14
+)-2α1α2(C12

++C13
+)-α2

2(C22
++C23

+)          (3) 
For sc(001) lattice, Z0=4, Z1=1, Z2=0, Φ0=9.0336, Φ1= -0.3275 and Φ2=0 1.  
First simulation will be performed for  
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Because the equations of matrix elements (Cmn) were given earlier, elements of inverse matrix (Cmn
+) 

can be found from above equations. Then the total energy can be determined from equation number 3. 

The 3-D plot of energy versus 
ω

)4(
mD  and angle is given in figure 1. According to this graph, the energy  
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Figure 1. 3-D plot of energy versus 
ω

)4(
mD  and angle, for sc(001) lattice with four layers 

 
 
is a minimum at certain values of angles and fourth order anisotropy. The graph between angle and 

energy was drawn in order to determine easy direction corresponding to 
ω

)4(
mD

=5.3, as shown in figure 

2. Energy is a minimum at 0.6 and 2.73 radians.  
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3-D plot of 

energy versus angle and 
ω
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 is given in figure 3. At 
ω

)2(
mD =3.8, energy minimum can be observed. 

The angles of easy directions corresponding to this energy minimum can be found from figure 4. The 
energy is a minimum at 0.72 radians. 

 

Figure 3. 3-D plot of energy versus angle and 
ω

)2(
mD , for sc(001) lattice with four layers 
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                           Figure 4. Graph between energy and angle at 
ω

)2(
mD =3.8    

3. Conclusion: 
            3-D plots indicate that the sc(001) ferromagnetic films with four layers can be easily oriented in 
certain directions for certain values of second and fourth order anisotropy constants. Because the 
anisotropy constants mostly depend on the magnetic material, these angles corresponding to energy 
minimums provide the easy direction of magnetization only for the parameters given in this report. If 

the fourth order anisotropy is given by 
ω

)4(
mD

=5.3, then energy is minimum at 0.6 and 2.73 radians. 

Under the influence of second order anisotropy 
ω

)2(
mD =3.8, the film can be easily oriented along 

direction of 0.72 radians. Because it is difficult to find experimental values of 
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