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Abstract 
Scheduling computations in multi-environment systems is a complex and 

challenging problem. Scarce resources must be multiplexed to service requests of 
varying importance. Lottery scheduling is a randomized mechanism that provides 
responsive control over the relative execution rates of computations.  But, once the 
tickets are allotted to the competing jobs, they are forced to move in the defined pattern. 
This paper introduces the concept of Multileveled queues with lottery scheduling which 
will provide options for further upgradation to the processes which are in execution. A 
Markov Chain model based study has been done to deal with transitions of processes 
into processor under this proposed scheme. A data model based simulation study is 
performed to analyze the result. 
 
Keywords: Markov Chain Model, Hybrid Lottery Multilevel Queue Scheduling, 
Transition Probability Matrix. 

 
1.0 INTRODUCTION 
A scheduling problem exists whenever there is a shared resource that needs to be arbitrated 

among multiple requesting entities. However, even though the problem is general, its solution may 
be very different depending on the specific context it is tailored on. The day by day increasing 
demand on web applications has created a lot of opening for further development of new scheduling 
techniques and also enhancements in the pre-existing schemes. The policy chosen to manage this 
multi-user, multitasking environment can have an enormous impact on throughput and response 
time. Accurate control over the quality of service provided to users and applications requires 
support for specifying relative computation rates. Such control is desirable across a wide spectrum 
of systems. 

Few general-purpose schemes even come close to supporting flexible, responsive control over 
service rates. They rely upon a simple notion of priority that does not provide the encapsulation and 
modularity properties required for the engineering of large software systems. There are several 
scheduling algorithms in literature that can be classified into conservative and non-conservative. 
The first ones transmit packets when there are any waiting in the queue, the server is never idle, and 
they have the lowest delays. The second ones are less efficient, since they cannot transmit packets, 
even if there are several waiting in the queue, and therefore they do not fully exploit the link 
capacity, and they also have real time restrictions in their implementation. One of the parameter to 
take into consideration in the fairness in which bandwidth is allocated to sessions, ideally being this 
allocating homogeneous between sessions, avoiding in this bursts and providing a better network 
performance. However, lottery scheduling is  a randomized mechanism that provides responsive 
control over the relative execution rates of computations and efficiently implements proportional-
share resource management, that means, the resource consumption rates of active computations are 
proportional to the relative shares that they are allocated. In spite of all these features, a lack in 
performance arises when we find a long calculative job like scientific applications and simulations 
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being hitched in between many less important small jobs are due to Hellerstein [1]. It is experienced 
that Resource management mechanism employed by a server-operating system should have several 
desirable properties like throughput and response time and many others. Existing fair share 
schedulers by Henry [2], Kay and Lauder [3] and microeconomic schedulers by Ferguson et al. [4] 
and Waldspurger et al [5], successfully address some of the problems with absolute priority 
schemes. Shukla et al. [6] has also worked on lottery scheduling for the estimation of ready queue 
estimation time. 

Some more work has been done in the area relating various scheduling operations and the 
stochastic modeling technique i.e. Markov chain model. Shukla and Jain [7] has developed a 
Markov chain model for the multilevel queue scheduler. Shukla, et al. [8,9,10] has highlighted the 
analogue between supportive divisible load scheduling and Markov chain model in linear daisy 
chain network and single level tree network. Markov chain based analysis has also been harvested 
in the field of networking by Shukla et al.  [11], Shukla and Thakur [12] and Shukla and Tiwari 
[13]. Some other contributions are due to Sullivan et al. [14], Evans et al. [15] and Petro und 
Milford [16]. 

However, the assumptions and overheads associated with these systems limit them to 
relatively coarse control over long-running computations. For those systems, we have proposed this 
concept of introducing multilevel queue with lottery scheduling scheme. The arrival of new jobs 
happens in waiting queue. The scheduler allots lottery tickets to the waiting jobs as per lottery 
scheduling. In our scheme, these tickets are related with the multileveled queues that are followed 
after it, highlighting the fact that to which queue which of the packet will move. A priority scheme 
has also been set in between the different queues of Multi level scheme. In the special case, if any 
of the specific queue with higher priority is empty, then the jobs in the less priority has the option to 
get upgraded. With this, they get a higher chance for being processed.    

  
 
2.0 2.0 GENERAL CLASS OF MULTI-LEVEL QUEUE   SCHEDULING 
A multilevel queue scheduling algorithm partitions the ready queue in several separate 

queues. Scheduling processes are permanently assigned to one queue, based on some property of 
the process, such as memory size, process priority or process type etc fig 2.1.  
 

 

 

 

 

 

 

 

 

 

Shukla and Jain [7] has vital contribution in the field of modelling of multi-level queue 
scheduling algorithm and also for other scheduling algorithms. They have taken into account a class 
of multilevel queue scheduling schemes with the assumption of random jumps of scheduler and a 
rest state along with keen interest on comparative study of different schemes. 

The basic idea behind multilevel queue is that in the corresponding system there are several 
queues, each has a level which corresponds to a level of priority, each level has its own scheduler, 
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there is one main scheduler which handles the scheduler for each queue. 
So, suppose: 

Queue 1: High Priority, Shortest Job First 
Queue 2: Medium Priority, Round-Robin  
Queue 3: Low Priority, Round Robin  

Then overall queues could be a priority queue so the problem with this is that once a job is put 
on a queue, it must remain there until it completes. This could create some problems with CPU 
hogging and starvation. If a very long job is put on Q1, it could hog all of the time given to Queue 
1, preventing the other jobs from running. This is bad because jobs in Q1 are high priority. 

 
 
3.0 3.0 LOTTERY SCHEDULING SCHEME  
Lottery scheduling is a randomized resource allocation mechanism. Resource rights are 

represented by lottery tickets. Each allocation is determined by holding a lottery; the resource is 
granted to the client with the winning ticket (Waldspurger and Weihl). 

This effectively allocates resources to competing clients in proportion to the number of tickets 
that they hold. Since any client with a non-zero number of tickets will eventually win a lottery, the 
conventional problem of starvation does not exist. The lottery mechanism also operates fairly when 
the number of clients or tickets varies dynamically. For each allocation, every client is given a fair 
chance of winning proportional to its share of the total number of tickets. Since any changes to 
relative ticket allocations are immediately reflected in the next allocation decision, lottery 
scheduling is extremely responsive. Scheduling by lottery is probabilistically fair. Meaning by that, 
all the processes in the waiting queue have the equal chance for getting being processed. The 
expected allocation of resources to clients is proportional to the number of tickets that they hold. 
Since the scheduling algorithm is randomized, the actual allocated proportions are not guaranteed to 
match the expected proportions exactly. However, the disparity between them decreases as the 
number of allocations increases. David Petrou and John W. Milford has studied dynamic ticket 
adjustments that influence scheduling order while preserving CPU utilization targets and they have 
achieve throughput and responsiveness nearly equal to the other specific scheduler like FreeBSD 
schedulers [18]. Recent work from Sullivan et al. introduces application-specific “negotiators” that 
enable automatic ticket exchanges between processes desiring different resource allocations [19]. 

A straightforward way to implement a centralized lottery scheduler is to randomly select a 
winning ticket, and then search a list of clients to locate the client holding that ticket. This requires a 
random number generation to traverse a client list of length n, accumulating a running ticket sum 
until it reaches the winning value. An example list-based lottery is presented in Figure 3.1.  
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However, Hybrid lottery scheduling heuristically identifies and rewards interactive processes 
by how much of their allocated CPU time they consume. However, some interactive processes, such 
as those that render graphics, also consume moderate amounts of CPU.  Evans et al. suggest several 
methods based on past user action and window manager cooperation for an operating system to 
recognize interactive [17]. Working on the same line, we are proposing a hybrid of lottery with 
Multilevel queue scheduling scheme so that we could incorporate the randomization of lottery with 
the assured performance of other. Here, we are developing this model with the help of some 
assumptions that is being discussed.  

 
3.1 ASSUMPTIONS OF THE MODEL 
Considering a Multilevel queue scheduling scheme with three queues Q2, Q3 and Q4 as active 

queue for processing the jobs. These queues are differentiated from each other on the basis of  
priority, preference, timestamps weight or any of such basic characteristic features which somehow 
or the other , effect the overall performance of the system. All these queues are getting input from 
proposed weighting queue denoted as W. this is the queue where new arrival of the processes takes 
place. This weighting queue allots a randomized lottery tickets are allotted to each of the upcoming 
processes. These lottery tickets decide the allocation of that particular job to a specific queue for 
execution. Here, the concept of quantum is also taken into consideration which is specified as a 
small pre-defined slot of time given for processing to the expecting processes in the various queues. 
Symbol n denotes the nth quantum allotted by the scheduler to a process for execution (n = 1, 2, 
3……). The assumptions of the model are: 

1. All the new processes will arrive only at the queue W, which is denoted as waiting queue. 
2. The scheduler has a random movement over the queues. 
3. The swapping between the queues takes place on the basis of their specified quantum. 
4. The scheduler starts processing of any queue Qi with probability Pri (i=1,2,3….), then 

picks up the first process of that queue and allots a quantum for processing. 
5. Processes remains with the processor until the quantum is over. If it completes within that, 

then gets out of that Qi. 
6. Within quantum, if a process did not completes, it moves to the waiting queue where 

scheduler assigns a new lottery ticket to the remaining process as a fresh packet which will 
further guide it to its completion. 

7. State Q1 and Q5 are denoted as waiting state and end state. 
8. Q5 that is specified as end state is an absorbing state. 
9. Similar to the behavior of the Multilevel queue, quantum allotment procedure, within Qi , 

by the scheduler continue until Qi is empty. The scheduler jumps from any state to any 
other state at the end of a quantum. 

 
3.2 MARKOV CHAIN MODEL 

Let ( ){ }1, ≥nX n  be a Markov chain where ( )nX  denotes the state of the scheduler at the  
quantum of time. The state space for

thn
( )nX  is { }54321 ,,,, QQQQQ  where scheduler X moves 

stochastically over these in different quantum. Predefined initial selection probabilities of states are: 
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Let sij(i,j=1,2,3,4,5) be the transition probabilities of scheduler over five proposed states then 

unit-step transition probability matrix for ( )nX  is  
( ) ( )[ ] jiQXQXPs j

n
i

n
ij +=== − ,/ 1 ;  
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3.3 SPECIFICATIONS FOR THE PROPOSED MODEL 
a Up gradation of the processes in the lower order queues if thee upper order queues are 

empty. This will further provide a way to harness the availability of a resource that is rarely 
available.  

b A new process only enters at W. 
c Transition may take place from W to D but not the other way. That will actually signify the 

condition when the provided timestamp is exhausted or, in case of system failure or sudden 
shut down. 

              
 

Now, again for this restricted state, Let sij(i,j=1,2,3,4,5) be the transition probabilities of 
scheduler over five proposed states then unit-step transition probability matrix for ( )nX  is  
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and . 10 ≤≤ ijs

The state probabilities, after first quantum can be obtained by a simple relationship: 
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Similarly, the state probabilities after the second quantum could be obtained by simple relationship: 
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Remark 3.3.1 In the similar fashion, for n quantum, the generalized expression:  
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4.0 NUMERICAL ILLUSTRATIONS USING DATA SET CREATED WITH THE 
HELP OF MATHEMATICAL MODEL 

The basic and scientific approach for data analysis related to state transition probabilities is 
managed by a data model with two parameters α and d. The i stands for number of queues. 
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5.2 Case II with α=0.12 
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5.3 Case III with α=0.14 
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5.4 Case IV with α=0.16 
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               Graph for α=0.16 and d=0.006   Graph for α=0.16 and d=0.008 
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5.5 Case V with α=0.18 
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6.0 DISCUSSION ON GRAPHS 

It is remarkably clear in all the graphs that the line depicting End state is above the rest of all 
states that indicates the smooth and continuous termination of the processes within this proposed 
system. Secondly, the starting point of the End state is initially showing a great deal of difference 
then the rest of the states but it is gradually coming down. In condition IV of the case III, it is 
showing unification with other lines. That means, as the system proceeds, the process completion 
starts with the initiation of the system too. One more difference could be observed that the gradual 
segregation of all the four states with increasing value of α and d in the beginning but, as the 
number of quantum increases, they again show a consolidation. It proves that all the queues other 
then the absorbing state show similar pattern at higher quantum. Even the waiting queue is showing 
the similar pattern. That means, this hybrid system of multi level queue and lottery queue is adding 
the concept of lottery packets without adversely affecting the effectiveness of the system. Other 
then that, however it is also proposing a chance of appraisal in case of empty processing queue there 
by, providing means to harness or we can say, better utilize a rare resource that is, processor time.  

 
7.0 CONCLUDING REMARKS 

With the help of data calculated on the given assumptions and the graphs obtained on them, it 
is coming into notice that this proposed hybrid lottery multilevel queue scheduling scheme is 
having all the features of the randomized nature of the lottery scheduling whereas, on the other 
hand, it is also harnessing the unbiased characteristic feature of the multilevel queue scheduling 
also. Both these features of this new system are coming into light without affecting the overall 
performance of the system. Principle technique used by this system is a dynamic ticket adjustments 
that influence scheduling order while preserving CPU utilization targets. 

 
8.0 FUTURE WORK 
All the data used here are derived according to the behavioral nature of this proposed system. 

It further requires the applied data values for authentication. On the basis of the proposed 
assumptions, a scheduler can be designed and these data are further investigated for future use. 
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