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Abstract  
Objective: The main objective of this paper is to construct a distributed clustering 
algorithm based upon spatial data correlation among sensor nodes and perform data 
accuracy for each distributed cluster at their respective cluster head node. Design 
Procedure/Approach: We investigate that due to deployment of high density of sensor 
nodes in the sensor field, spatial data are highly correlated among sensor nodes in 
spatial domain. Based on high data correlation among sensor nodes, we propose a non 
-overlapping irregular distributed clustering algorithm with different sizes to collect 
most accurate or precise data at the cluster head node for each respective distributed 
cluster. To collect the most accurate data at the cluster head node for each distributed 
cluster in sensor field, we propose a Data accuracy model and compare the results with 
Information accuracy model. Finding: Simulation results shows that our propose Data 
accuracy model collects more accurate data and gives better performance than 
Information accuracy model at the cluster head node for each respective distributed 
cluster in our propose distributed clustering algorithm.Morover there exist a optimal 
cluster of sensor nodes which is adequate to perform approximately the same data 
accuracy achieve by a cluster. Practical Implementation: Measuring humidity and 
moisture content in an agricultural field, measuring temperature in physical 
environment. Inventive /Novel Idea: A distributed clustering algorithm is proposed 
based on spatial data correlation among sensor nodes with Data accuracy model. 
 
 Keywords: Spatial correlation, distributed clusters, data accuracy, wireless sensor 
networks. 

 
1.  Introduction 
Recent development of wireless technology and embedded system made a drastic 

improvement over wireless sensor networks. Due to ease of deployment and reliable cost, sensor 
networks are used in many applications to sense or collect the physical phenomenon of raw data for 
any event such as temperature, humidity, seismic event, fire, etc from the physical environment [1]. 
A small processing unit device called node captures the physical phenomenon of raw data from the 
physical environment. These nodes can process the raw data, communicate wirelessly among other 
nodes and finally transmits the collected raw data to the base station or sink node.  

Generally the physically sensed data collected by the sensor nodes are spatially correlated [2] 
in the sensor field. If the deployed density of sensor nodes increases, the spatially proximal sensor 
observations are highly correlated [3] in the sensor field. Since the sensor observations are highly 
correlated among sensor nodes, the sensor nodes form distributed clusters [4] in the sensor field to 
minimize data collection cost [5]. According to literature survey, LEACH [6] demonstrates a clear 
concept about distributed dynamic cluster formation according to priori probability. Each 
distributed cluster has respective Cluster Head (CH) [7] node which aggregates the data collected 
from all the sensor nodes in the cluster and finally transmits the processed data to the sink node. 
Moreover SEP [8] gives the cluster formation in the heterogeneous sensor networks. Literature [3, 
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9] shows the spatial correlation of observed data among sensor nodes to form distributed clusters. A 
grid based clustering method proposed in literature [10] shows a spatial correlation model for 
cluster formation. Basically this type of theoretical clustering model rarely happens in practical 
scenario in the sensor field. A disk-shaped circular cluster proposed in literature [11] shows 
grouping of nodes into disjoint set each managed by a designated CH node. However formation of 
disk shape cluster doesn’t really appears in original scenario. Most of the cases, cluster formation 
are irregular in shape and size the in spatial domain. In literature [4] authors proposed a distributed 
clustering algorithm with different shape and size based upon shortest distance among sensor nodes 
and CH nodes in spatial domain. Here in this paper, we propose a formation of distributed 
clustering algorithm based upon spatially correlated data among sensor nodes. Our propose model 
for distributed clustering algorithm which form irregular shape and size is much more practical than 
the previously proposed clustering algorithm in spatial domain. As the numbers of sensor nodes are 
more in the sensor field, the data correlation among the sensor nodes increases [3] and form 
distributed clusters for high density of sensor nodes in our clustering algorithm. Thus finally we 
form spatially correlated distributed irregular non overlapping clusters of different sizes with high 
density of sensor nodes in spatial domain. More over the size of each distributed cluster in our 
algorithm is based upon a threshold value given in data correlation model [4] in spatial domain. 

In literature [12, 13, 14], authors proposed Information accuracy (distortion function) model 
where base station or sink node can estimate the information accuracy for observed data sensed by 
all the sensor nodes. These types of model are based on one hop communication where observed 
data are sensed by all the sensor nodes and directly transmit the observed data to the sink node. But 
in literature [4, 15] authors proposed two hop communication where observed data are transmitted 
to the sink node via intermediate node (CH node) where the sensor field is large. Again in this 
paper, we consider two hop communications for our distributed clustering algorithm based on 
spatial data correlation among sensor nodes in which observed data are transmitted to the sink node 
via CH node. From literature survey, it has been noted that estimated data collected from all the 
sensor nodes in a cluster are directly send to CH node for aggregation[24,25] without verifying the 
accuracy. Hence it is important to verify the estimated data before data aggregation at CH node and 
then send it to the sink node. For each distributed cluster, the data accuracy is verified using MMSE 
estimator [23] before data aggregation and then only transmits the most accurate data to the sink 
node. Thus verifying data accuracy at CH node before data aggregation for each distributed cluster 
may reduce communication overhead. It may possible that some of the sensor nodes in the 
distributed cluster get malicious [16] due to external physical environment .In such tropical 
situation sensor nodes can sense and read inaccurate data. These inaccurate data transmitted by 
malicious nodes may cause incorrect data aggregation at the CH node for respective clusters. Hence 
it is required to estimate and verify the data accuracy before data aggregation in the CH node for 
each distributed cluster to reduce data redundancy and power consumption. 

In this paper, we propose Data accuracy model where we use Minimum Mean Square Error 
(MMSE) estimation to perform data accuracy at the CH node before data aggregation [17] for each 
distributed cluster. Most of the work done [12, 18] till today is to perform MMSE estimation at each 
individual sensor nodes for the observed data before transmitting the estimated data at the CH1 node 
in a cluster. According to literature [18], once the estimated data is received at the CH node 
transmitted by all the sensor nodes in a cluster, averaging the estimated data at CH node and finally 
transmits the most accurate data to the sink node. However to the best understanding of authors, this 
is the first time to perform MMSE estimation only at the CH node for all the observed data sensed 
by all the sensor nodes in a cluster .In our Data accuracy model, calculating MMSE estimation only 
at the CH node for the observed data sensed by all the sensor nodes in a cluster can increase the data 
accuracy and reduce the communication overhead before data aggregation.  

Rest of the paper is given as follows. In section-2, we construct a data correlation model [4] 
among sensor nodes in spatial domain. Data correlation model shows the degree of correlation 

                                                 
1 According to literature [18] CH node is only a logical entity and can also be called as sink node depending upon applications. 
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coefficient for observed data among sensor nodes. The degree of correlation coefficient for 
observed data are measured by an assumed threshold value. If the correlation coefficients for 
observed data among sensor nodes are greater than the threshold value, observed data are spatially 
correlated among sensor nodes in spatial domain otherwise not. Ultimately from this threshold 
value, we get an approximated circular data correlation range among sensor nodes. The size of this 
approximated circular data correlation range depends upon the threshold value. The sensor nodes 
which fall with in this circular data correlation range, the spatial data among them are highly 
correlated in the spatial domain. Hence the correlation coefficients for observed data among these 
sensor nodes are greater than the threshold value. In section-3, we propose a distributed clustering 
algorithm based upon  spatial correlation for observed data among sensor nodes in the sensor field 
.It forms non over-lapping irregular shape and size of different distributed clusters in the spatial 
domain. Once the distributed clusters are formed in the sensor field, each cluster can perform the 
data accuracy at their respective CH node and transmit the most accurate data to the sink node 
which is discussed in section-4. We also construct a Data accuracy model and compare it with 
Information accuracy model with respect to data accuracy. In section 5, we perform the simulation 
and validation for our proposed distributed clustering algorithm and Data accuracy model. Finally 
we conclude our work in section 6. 

 
2.  Data Correlation Model in Spatial Domain 

In this section, we are interested to illustrate the spatial data correlation among sensor nodes  
and to sense or measure a tracing point [4]  for 

i
j i

S 1i = in a spatial domain. Tracing point is a 
reference value which we are interested to measure and sense in the spatial domain. For example 
tracing point has higher concentration of moisture content in an agricultural field. It has higher 
concentration of data with higher variation with respect to lower variation of data in the spatial 
domain. As the sensor node density increases, the spatial correlation of observed data ( , among 
the sensor nodes i  and  also increases in the spatial domain. The sensor nodes sense and measure 
the tracing point over a window frame of time interval  T to capture the continuous data sample 
with  Si={ si1 ,  si2, si3, ……..sin } and Sj={sj1 ,  sj2, sj3, ……..sjn} respectively. If the tracing point 
sensed and measured by the sensor nodes i and

)i jS S

j

j located near to each other, the data correlation is 
strong. The data correlation decreases as the sensor nodes i and are far apart from the tracing point. 
The sensor nodes and can compute the mean of continuous data sample over a window frame of 
time interval T. Thus the mean of continuous data sample sensed and measured by sensor nodes 

and

j

i j

i j are given as follows. 

             1
1

n
Si ikkn

= ∑
=

S           and         1
1

n
S j jkkn

= ∑
=

S                                              (1) 

  
We compute the variance of continuous sample data captured by the sensor nodes i and j  in 

spatial domain. Variance is used to measure how far a set of continuous data sample of sensor nodes 
are spread out from each other. Thus the sensor nodes compute the variance of sample data as 
follows. 

        

           1 2( ) ( )
11

n
Var S S Si iikkn

= −∑
=−

   and  1 2( ) ( )
11

n
Var S S Sj jkkn

= −∑
=− j                             (2)                   

 
We compute the covariance of sample data for nodes i and j  which is given as  

  1
( , ) ( )( )

1( 1)

n
Cov S S S S S Si j i jik jkkn

= −∑
=−

−                                               (3) 

Covariance is defined as a measure of how much two variable of continuous sample data 
change together in a spatial domain for sensor nodes i and .We find the correlation coefficient j
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(
i jS Sρ ) for spatial correlation between sample data sensed by the sensor nodes i and  which 

is given as  
( , )i jS S j

                                                   
( )

( )
i j

Si j( )
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S Si j Var S Var

ρ =  

                            

1
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1( 1)
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= =
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(

S Sik

n n− −

⎡ ⎤
⎢ ⎥⎣ ⎦

                                  (4) 

 
Thus equation no. (4) shows the data correlation between the sample data among sensor nodes 

and  in the spatial domain. These spatially correlated data among sensor nodes and  can be 
modeled as Joint Gaussian Random Variables (JGRV) [12, 14] as follows: 
i j i j

[ ] 0E Si =  ,                         for i=1,2,…………..n     and j=1,2 ……..n [ ] 0E S j =

2[ ]Var Si iS
σ= ,           for i=1,2……….n    and j=1,2,……..n 2[ ]Var S j S

σ= j

]j

2[ , ] [ , ]Cov S S Corr S Si j i i jS
σ=  

2 2[ ] [ ] [ ] [Corr S S S S E S S Cov S Si i j i i j i j iS S
σ σ ρ= = =  

                                 
[ ] [ ]

( ) [ ] [ ], 2 2V

E S S Cov S Si j i jK d Corr S S S Si j i j i j
i iS S

ρ
σ σ

= = = =                                  (5) 

(.)VK

0d =

 is a correlation model [14]and the Euclidian distance between the sensor nodes and can be 
represented as for the sensed data . We assume the covariance function to be non-
negative and can decrease monotonically with distance ,with limiting value of 1 at 

 and of 0 at . We adopt power exponential model [19, 20] which is given as  

i j

, || ||i j i jd S S= −

d = ∞
, || ||i j i jd S S= −

                                   2
1

,
( / )( )PE

V i j
dK d e

θθ−=     for       ,                                   (6 ) 1 0θ > 2 (0, 2]θ >

where 1θ  is called range parameter which controls the relation between the distance among sensor 
nodes and the correlation coefficient. It also controls how fast the correlation decays with distance 
among the sensor nodes. 2θ  is called a smoothness or roughness parameter which controls 
geometrical properties of the random field. It contains exponential model for  and squared 
exponential model for 

2 1θ =

2θ 2= .From equations no. (5) and (6), we find the correlation coefficient of 
observed data  as well as ( ,S xi i )yi ( , )j j jS x y  among the sensor nodes andi j  using power 
exponential model as follows 

                                                         

2
,

1[ ]

i j

i j

d

S S e

θ

θ
ρ

⎛ ⎞
⎜ ⎟
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⎝ ⎠

−
=   .                                                               (7) 

We define a threshold τ  for 0 1τ< ≤ which determines whether the spatial data are correlated 
among the sensor nodes in the sensor field. Using the threshold value τ  , we show two properties 
for spatially correlated data among sensor nodes as follows: 

•   If [ ]i jS Sρ τ≥  , spatial data are strongly correlated among sensor nodes iand j  in the spatial 
domain. 

•   If [ ]i jS Sρ τ< , spatial data are weakly correlated among sensor nodes iand j  in the spatial 
domain. 
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From equations no. (4 ), (6 ) and (7 ), we define the correlation coefficient  for the observed 
data using power exponential model among sensor nodes i and

[ i jS Sρ ]

j  where the data are strongly 
correlated in the spatial domain represented as follows 

                                                

2
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From equation no 8, we find the relation between the threshold values τ  and power exponential 
model represented as  

                                                                    

2

1

ijd

e

θ

θ
τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−
≥ , 

 

                                                          2
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  .                                                      (9) 

We compare the equation no (9) with the Euclidean distance among the coordinates of sensor nodes 
i and  as follows. j

                                                    .                                                    (10) 2 2( ) (ij i j i jd x x y y= − + −
 

From equations no (9) and (10), we get  
 

                                      2

2
2 2 2

1
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τ
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 .                                              (11) 

Comparing equation no. (11) with the equation of a circle , we get  
                                             2 2( ) ( )i j i jx x y y r− + − = .                                                    (12) 

 
From equations no. (11) and (12 ), we find the radius for range of circular data correlation area 
denoted as around a sensor node i  as a centre coordinate .  

r
( )cir i

                                                      2

2
2 2

1
1logr θθ
τ

⎛ ⎞⎛ ⎞≤ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
⎟

]

.                                                        (13) 

 
The sensor nodes which falls under , the observed data among sensor nodes iand are 

highly correlated in the spatial domain. The spatial data correlation  among sensor nodes 
and

j ( )cir i j

[ i jS Sρ

i j  with in are greater than the threshold value( )cir i τ . 
Equation no. (13), shows that the radius of circular data correlation area  depends 

upon the threshold value
r ( )cir i

τ , 1θ  and 2θ  in the spatial domain. We define two properties from equation 
no. (13) given as follows: 

•    For a fixed value of 1θ  and 2θ  , if the threshold τ  increases, the radius r of 
( )cir i decreases exponentially. 

•    Similarly with a fixed value of 1θ  and 2θ , if the radius r of ( )cir i increases, the size of 
( )cir i  also get increase and the average number of distributed clusters (discuss in section-

5) decreases exponentially in the sensor region. 
Hence we take an appropriate threshold value τ  to find the size of  where the observed 

data among sensor nodes are strongly correlated in the spatial domain. In the next section, we 
( )cir i
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propose a distributed clustering algorithm based upon data correlation among sensor nodes in each 
in the sensor field. ( )cir i

 
3.  Distributed Clustering Algorithm based on Spatial Data Correlation 
In this section, we propose a distributed clustering algorithm which forms non overlapping 

clusters of irregular shape and size in the sensor field. If the deployed sensor nodes increases in the 
sensor field, the spatial data correlation among the sensor nodes increases. Based upon the spatial 
data correlation among the sensor nodes for each in the sensor field, we construct the 
distributed clustering algorithm. 

( )cir i

 
Notations used in the clustering algorithm: 
 
M =
i =

Total number of sensor nodes in deployed sensor field  
 Represents each sensor node where i M∈  

( )id i
( )cir i

r
( )G i

max
max

min Si

[S Sρ

=Represents identification number of each sensor node  i
=Range of data correlation area which is approximated by a circular area around each sensor    

           node i  as centre  
=Radius of data correlation range area  ( )cir i

=A group of neighboring sensor nodes which is a subset of of node as centre  j ( )cir i i
( )NodeG i  =Maximum number of sensor nodes in  of  j ( )G i ( )cir i

( )DisG i =Maximum Euclidian distance between the farthest node  from node i  as a centre in  j
                      max ( )NodeG i

( )zeG i =Minimum size of  max ( )DisG i

]i j =Spatial data correlation coefficient between nodes i and  j

τ =
W =

Threshold value 
Set of  which doesn’t form cluster ( )id i

W = Set of  which form cluster  ( )id i
Distributed Clustering Algorithm 
Step 1: Start 
Step 2: Initially where for { }W M= ( )id i M∈ 1, 2, ...............i M=  and { }W = ∅  
Step 3: For each i , ( ) { : ( , ) , }G i j d i j r i j= ≤ ≠  where is the Euclidian distance between i  and  ( , )d i j j

Step 4: if ,then  is strongly correlated  and ( )G i ⊆ ( )cir i [ i jS Sρ ] [ ]i jS Sρ τ≥  
Step 5: Compute  for  of each sensor node i  ( )G i ( )cir i
Step 6: Check for ma  in each   in the sensor field x ( )NodeG i ( )cir i
                        If more than one same  in the sensor field  max ( )NodeG i
                        { 
                                Compute  for all  max ( )DisG i max ( )NodeG i
                                Compute among  min ( )SizeG i max ( )DisG i
                                 form the cluster among   with CH node as and add    min ( )SizeG i max ( )NodeG i i
                                each  in   ( )id i W   
                           } 
 
                           else  
                            form the cluster with CH node and add each in max ( )NodeG i i ( )id i W   
Step 7: Repeat Step 6 until  and { }W = ∅ { }W M= where each ( )id i M∈ for all  where   1, 2..........i M=

            =   in the sensor field ( )G i ∩ ( )G j ∅
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Step 8: Stop 
 

We consider a rectangular sensor field where M sensor nodes are randomly deployed. We 
assume that every sensor nodes knows the position of the coordinates of all sensor nodes in the 
sensor field like MTE routing [6] to simplify the deployment topology. In the previous section, we 
clarify that for a threshold valueτ , we get the radius of for each sensor node i in the sensor 
field. Hence we fix a threshold value 

r ( )cir i
τ for which we get radius of an appropriate size of for 

each sensor node i  in the sensor region. This means that each sensor node i  perform the data 
correlation with the neighboring [26, 27] sensor nodes  to form within the data correlation 
range area .  is approximated by a circular area around the node i  with radius of data 
correlation range .  includes the node  itself as the centre of  and the neighboring nodes 

 which fall under the data correlation range of area with radius . Thus for data 
correlation among the sensor nodes and  with in  can be given as  

r

j

( )cir i

( )cir i

( )G i

( )cir i
( )cir i ( )r i

( )G i
ci

r i
j r ( )G i

i j ( )icir
 

                                       ,                                                (14) ( ) { : ( , ) , }G i j d i j r i j= ≤ ≠
 

where  is the Euclidian distance between sensor nodes i and . The spatial data correlation for 
of are partially or fully overlapped with  of  in the sensor field. Thus 

overlapping of many data correlation range area occurs in the sensor field. Overlapping of spatial 
data correlation for and can share the same correlated overlapping of data among 

and . Thus overlapping of same correlated data is like utilizing the same resource [4] 
among the and  in the data correlation range areas and . Hence it increases the 
data redundancy among and . Hence a distributed clustering algorithm is proposed to 
overcome the overlapping problem of spatially correlated data among and . Thus the 
distributed clustering formation consists of the following phases: 

( , )d i j
( )cir i

(G j
G i

j

cir

)

( )G i

( )G i

( )G j ( )j

i ci

( )cir i

( )G j
cir

( )jcir

(cir

)
( ) (cir ( )jr

G i
( )i )j

( ) ( )G j

 
Phase-I: 
Each sensor node i  has its node identification number  for where( )id i { }W M= ( )id i M∈ , 

 and 1, 2, ...............i M= { }W = ∅ . For each sensor node ,i ( )id i M∈ which participate to form cluster in 
later phase, leaves from the array W and add to an arrayW .W  is an array which signifies that each 
sensor node  of  participate to form cluster. i ( )id i

 
Phase-II: 
Each sensor node  computes  with in the data correlation range area  with radius  

and satisfies the equation no. (14). 
i ( )G i ( )cir i r

 
Phase-III: 
Check for each sensor node i  having  of in the sensor field which forms 

the first cluster in the sensor region. Sensor node i form the CH node of in   
.Hence forms the cluster in ci  leaves from the array W and added to array

max ( )NodeG i

( )i

( )cir i
max ( )NodeG i ( )cir i

max ( )NodeG i r W . 
 

Phase-IV: 
If there are more than one same of in the sensor field, then there is a big 

question that which forms the cluster. This problem can be resolve in two steps: 
max ( )NodeG i ( )cir i

max ( )NodeG i

• Firstly we compute for all of ( )cir i in the sensor field.                         max ( )DisG i max ( )NodeG i
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• Secondly we find the among for all of ( )cir i in the 
sensor field. We calculate ( )SizeG i among ( )DisG i because the data correlation 
among closer nodes for  are strong to form cluster.  

min ( )SizeG i
min

min ( )SizeG i

max ( )DisG i
max

max ( )NodeG i

Hence forms the cluster among max  with sensor node as CH node and 
add each id in array

min ( )SizeG i
( )

( )DisG i i
i W . 

 
Phase-V: 
Repeat Phases-III & IV until  and { }W = ∅ { }W M= where ( )id i M∈ for all .  1, 2..........i M=

Finally all the sensor nodes participate to form non overlapping distributed clusters 
with =   in the sensor field. ( )G i ∩ ( )G j ∅

 
Therefore we construct a non overlapping distributed clustering algorithm in this section 

based upon spatial data correlation among sensor nodes in the sensor field. In the next section we 
are interested to find the data accuracy estimation for each distributed cluster and send the most 
accurate data to the sink node. 

 
4.  Distributed Cluster-based Data Accuracy Model  

In the previous section, we develop a non-overlapping distributed clustering algorithm with 
irregular shape and size in the sensor field based upon data correlation among sensor nodes. We 
assume each distributed cluster can sense and measure a single tracing point of same event and 
perform the data accuracy for the measured data at the CH node for the respective cluster. Finally 
CH node of each distributed cluster transmits the most accurate data to the sink node in the sensor 
region. Each distributed cluster has different set of sensor nodes to perform the data accuracy. The 
data accuracy is perform to verify the estimated data received at the CH node from all the sensor 
nodes for a cluster are most accurate and doesn’t contain any redundant data in it. It may reduce the 
communication overhead.  

For the simplest analysis of our propose Data accuracy model, we choose a single cluster 
of M sensor nodes.  Cluster with M sensor nodes can sense a single tracing point and check the data 
accuracy at the CH node before data aggregation and then transmit the most accurate data to the 
sink node. Here we demonstrate the mathematical analysis of data accuracy for a single cluster 
with M  sensor nodes. Each sensor node i can observe and measure the physically sensed data  for 
the tracing point value  with observation noise  for the cluster. Therefore the observation done 
by the sensor node i in a cluster is illustrated as  

Si
S in

                                      x s ni i= + i        where i M∈ .                                              (15) 
The sensor node i sense the observation sample data ix  and transmits ix  to the CH node 

sharing wireless Additive White Gaussian Noise(AWGN) channel [12 ,21 ] where  is 
independent of each other and modeled as Gaussian Random Variable of zero mean and variance 

in

2
nσ . Thus the observation sample data ix  passes through AWGN channel to the CH node for the 

cluster which reconstructs estimation  of the tracing point . The CH node receive all Ŝ S
M observation sample for the cluster given by  
 

                                                              X AZ N= + ,                                                                  (16) 
where X is a 1M ×  data vector for observation done by M sensor nodes in a cluster , Z is a 

random vector for physically sensed data  for i(1 )M+ 1× iS M∈ including the point event where 
we estimate for N 

S

(0, )ZC  , A is a known (1 )M M× +  matrix and is a N 1M ×  noise vector for the 
observed data of M sensor nodes  with  N (0, )ZC .The random vector Z with zero mean and 
covariance N (0, )ZC  can be shown as follows : 
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Thus the covariance matrix is  
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In ZC  matrix, =1MR × ,iS Sρ  gives the correlation coefficient between  , S  respectively and iS

M MB × = ,iS S j
ρ  gives the correlation coefficient between  , iS jS  respectively. Now the power 

exponential model [19, 20] can be used for correlation model to show the relation between  and  

as well as  and . Thus we get = 

iS S

iS jS ,iS Sρ ( ) 2
/, 1dS ie

θ
θ− and ( /, 1S i ) 2

 d

S Si j
e

θ
θ

ρ
−= in the covariance matrix ZC . 

CH node collects all the observations from M sensor nodes in the cluster to find the estimate 
of   from . If the observed data Ŝ ˆ

iS X can be modeled by Bayesian Linear Model [22 ] for all sensor 
nodes in cluster , the MMSE estimator to estimate the tracing point at the CH node in a cluster is 
given as : 
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The measurement of performance for the MMSE estimator at the CH node for the cluster is 

given as the error with mean zero and covariance matrix illustrated as ˆ(S S∈= −

]ˆ ˆ[( )( )TE Z Z Z Z− −  
2 1( )T T

Z Z Z N M MC C A AC A I ACσ −
×= − + Z = 

                                     
12

2 2
2
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σ σ

σ

−

×= − +
⎛ ⎞⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎟ B(R ).                                      (19) 

From equation no.(18), we get the estimation of tracing point at the CH node in a cluster given 
as  

ˆ( )S
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We find the distortion factor between  and to perform data accuracy at the CH node for a 
cluster. From equation no (19), we get the distortion factor as  

S Ŝ

                                                              2[( ) ]D E S S= −  

                                                   
12

2 2
2

T N
S S M M
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D R B I
σ

σ σ
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We normalize the distortion factor and calculated the data accuracy for M sensor nodes for a 
cluster as  
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                                                                ( ) T
AD M R β=                                                       (22) 

( )AD M calculated at the CH node for each distributed cluster is performed before data 
aggregation and finally send the most appropriate data to the sink node. Hence the purpose of 
verifying the data accuracy at CH node for each distributed cluster is to confirm that the 
most accurate data transmitted by 

( )AD M

M sensor node can aggregate rather than aggregating all the 
redundant data at the CH node. Once we perform the estimation to calculate the data accuracy 

TR β at the CH node for each distributed cluster, the most precise data get aggregated and finally 
send to the sink node. 

The information accuracy model proposed in literature [18] shows that at first each sensor 
nodes  can calculate the MMSE estimate for observed data and then transmits the estimated data 

 to the CH node i.e. in order to find . Finally averaging all at the CH node for the cluster 
for 

i ˆ
iS

ŜŜi Ŝi
ˆ
iS

M sensor nodes to get .But in Data accuracy model  , at first we collect all the observed 
data from 

Ŝ ( )AD M

M sensor nodes and then only perform the MMSE estimation at the CH node for each 
distributed cluster. It is better to perform the MMSE estimation only at the CH node rather than 
performing the MMSE estimation at individual nodes and then averaging it at the CH node for 
distributed cluster. We perform the MMSE at the CH node as it is the only central authority for each 
distributed cluster and it knows the activities of cluster members. 

 
 

5.  Simulation and Validation  
Data correlation model discussed in section-2, shows that the spatial correlation for observed 

data (  and ) among sensor nodes i and . Spatial correlations for observed data are strong when 

it is greater than some threshold value

Si S j j

τ . So we fixed a threshold value τ  for 0 1τ< ≤ . Above this 
threshold value τ  , spatial data are strongly correlated among sensor nodes and . Depending 
upon the threshold value 

i j
τ  ,we get a radius for each sensor node i to perform data correlation 

with neighboring node ,approximated by a circular data correlation range area  around each 
node i . This means with in the range of for node i  with data correlation radius of r  , data are 
strongly correlated with other nodes .  So in the first simulation setup, we clarify the relation 
between 

r
j ( )cir i

( )r ici
j

τ  and r . In the Fig. 1(a), we plot the relation between threshold values τ  and the 
corresponding size of data correlation radius r  for node i  of . If the threshold value (cir )i τ  
increases for 0 1τ< ≤  with 1θ =70 and 2θ =1, the radius of  decreases exponentially. In Fig. r (i)cir
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1(b), we show the sizes of data correlation radius for node  of   and the average number of 
clusters based on spatial correlation for threshold values 

r i ( )cir i
τ =0.5. If of  increases, the size of 

 increases for 
r ( )cir i

( )cir i 1θ =70, 2θ =1 and the average number of distributed clusters  based on spatial 
correlation (discussed in section -3) decreases exponentially. 

In the second simulation set up, we have a sensor field of 2 2m m×  grid based sensor topology 
with CH node on one of the corner edge and a fixed tracing point located in the center as given in 
Fig .2 according to literature [18]. We deployed thirty four sensor nodes and a CH node which 
forms a cluster in grid based sensor topology. We are interested to demonstrate the data accuracy 
with respect to the number of sensor nodes. We set the same sensor field topology (Fig.2) as given 
in literature [18] where the position of sensing nodes are located at point (6,2),(8,4),(6,4),(4,4) and 
the tracing point at (6,4). For these four jointly sensing nodes, the information accuracy ( )I M in 
literature [18] is 0.7469 and our result for data accuracy is 0.7545. This shows our propose 
Data accuracy model  give more accurate data than the Information accuracy model

( )A MD

(AD )M ( )I M  
proposed in literature [18] for the same sensor nodes with same topology. Moreover, if we 
introduce a fifth sensing node located at (10, 4), the information accuracy ( )I M

( )M

 is 0.7462. This 
clarifies that introduce of a fifth node which is far away from the tracing point dominates its 
observation results and decreases the information accuracy. But in our Data accuracy model 

,the introduce of fifth node may increase the data accuracy of 0.7665. Hence introduce of a 
new sensor nodes in the sensor field increase data accuracy in our propose . Fig.3 shows that 
the results for data accuracy  is always greater than information accuracy 

(AD M )

AD

( )AD M ( )I M  as we keep 
increasing the number of sensor nodes for 1θ =70 and 2θ =1. Thus our propose Data accuracy model 
give more accurate data and better performance than the Information accuracy model with respect 
to number of sensor nodes in a cluster. 
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Moreover, if we continuously increase the number of sensor nodes in the sensor field, the data 
accuracy remains approximately same. Fig. 3 shows fifteen to twenty sensor nodes are sufficient to 
perform the same data accuracy level which we achieve for thirty four sensor nodes. Hence we can 
reduce the number of sensor nodes in a cluster with respect to data accuracy. It is unnecessary to 
deploy thirty four sensor nodes beyond this upper bound because fifteen to twenty sensor nodes are 
sufficient to give approximately the same data accuracy level achieve in the cluster. Hence fifteen to 
twenty sensor nodes perform the data accuracy at the CH node for the cluster and transmit the 
accurate data to the sink node. Thus fifteen to twenty sensor nodes (optimal cluster) perform the 
communication process and rest of the sensor nodes goes to sleep mode in the cluster .Reducing the 
number of sensor nodes to fifteen to twenty sensor nodes instead of  deploying thirty four sensor 
nodes  can reduce communication overhead as well as energy consumption in a cluster.             
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In the third simulation setup, we have fixed number of sensor nodes ( 4M = ), which forms a 

single cluster to sense and measure a single tracing point. We place four sensor nodes in a deployed 
circular cluster and set a tracing point at the central co-ordinate of deployed circular cluster as 
shown in Fig.4 (a). Since we have fixed number of sensor nodes, we vary the distance from 

×
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Fig. 2 . Wireless sensor network topology:  means sensor node ,  means CH 
node , ×means tracing point

Fig.3. Number of sensor nodes versus data
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M number of sensor nodes from the tracing point  in a deployed circular topology. As we increase 
the radius of the deployed circular cluster with same proportion from the tracing point S  as a 
centre, data accuracy decreases for the value 

S

1θ =70 and 2θ =1. We compare our results from the 
results derived in literature [18] and conclude that as the radius of the deployed circular cluster 
increases with same proportion ,our Data accuracy model always show better performance 
than Information accuracy model

( )A MD

( )I M with decreasing data accuracy as given in Fig.4(b).  
In the fourth simulation set up, we have deployed thirty sensor nodes randomly in a sensor 

field of 100 based sensor topology. Each sensor node i  has a data correlation radius = 
23.5432 of for an assumed threshold value 

100m×
( )cir i

m r
τ = 0.5. The neighboring sensor nodes j which 

falls under the circular data correlation range around each node i as a centre, the spatial 
observed data (  and 

(i)cir

iS jS

0.5

) are strongly correlated among them for which it is greater than  equal to 
a threshold value(τ = ).Using this data correlation radius of each sensor node i for ,we 
have developed a distributed clustering algorithm based on spatial data correlation among sensor 
nodes and 

r (r i)ci

i j as discuss in section-3. The sensor nodes form distributed non-overlapping clusters 
with irregular shape and size. Each distributed cluster can sense and measure a single tracing point 
located randomly with in the cluster. In a practical scenario, signal and noise variance of observed 
data changes with different location in the sensor field. For example the temperature variation 
changes from place to place in a tropical dense forest. Thus we adopt slightly different signal and 
noise variance of observed data for each distributed cluster in the sensor field. Once each distributed 
cluster can measure the observed data for tracing point , it calculates the data accuracy at the CH 
node for the respective cluster and finally transmits the most appropriate data to the sink node. 
Table.1 shows the comparison between Information accuracy model

S

( )I M  and Data accuracy model 
( )D MA  with respect to data accuracy for our proposed distributed clustering algorithm for each 

cluster. Each distributed cluster has its associate nodes along with a CH node where the data 
accuracy is performed. From Table.1, we can conclude that the result for our ( )D MA  gives more 
degree of data accuracy than ( )I M implemented in our clustering algorithm for each distributed 
cluster. 
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Cluster 
Number 

Cluster head 
Node ID 

Associated Nodes ID in 
Cluster 

Information 
Accuracy 

( )I M  

Data 
Accuracy 

( )D MA  
1 29 1,3,5,9,14,23,24,25,30 0.8909 0.9748 

2 7 4,12,19,20 0.8701 0.9462 

3 26 6,8,15,16 0.8393 0.9541 

4 13 2.10.21.22 0.8509 0.9660 

5 11 18,27,28 0.9095 0.9701 

6 17 - 0.9476 0.9476 

 
 
 

6.   Conclusions 
We conclude in this paper that a non overlapping distributed clustering algorithm based upon 

data correlation among sensor nodes is proposed which reduces the data redundancy in the wireless 
sensor networks. We perform data accuracy for each distributed cluster at their respective CH node 
based on spatial correlation of data which shows that our propose Data accuracy model collects 
more accurate data and give better performance than Information accuracy model. Moreover our 
simulation results shows there exist an optimal cluster which is sufficient to perform approximately 
the same data accuracy level achieve by a cluster. In a cluster, the optimal cluster can perform the 
data accuracy at the CH node and rest of the sensor nodes goes in sleep mode. Thus it may reduce 
the communication overhead, energy consumption and increase the life time of distributed sensor 
networks. 
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