ИЗУЧЕНИЕ ХАРАКТЕРИСТИК ПРОТОНОВ С МАКСИМАЛЬНЫМ КУМУЛЯТИВНЫМ ЧИСЛОМ И СОПРОВОЖДАЮЩИХ ИХ АДРОНОВ В ЯДРО-ЯДЕРНЫХ СОУДАРЕНИЯХ

Л. Н. Абесалашвили, Л. Т. Ахобадзе, В. Р. Гарсеванишвили, Т. Р. Джалагания, Ю.В. Тевзадзе Институт физики высоких энергий Тбилисского Государственного Университета им. Джавахишвили

Аннотация

В работе изучаются средние кинематические характеристики(скх) протонов с максимальным кумулятивным числом $n_k^{\max} u$ сопровождающих их протонов и Pi(muhyc)-мезонов в CTa, dC,CC- соударениях (при импульсе 4.2 AGeV/c) и PTaсоударениях при импульсе 10 GeV/c. Показано, что средние кинематические характеристики (импульсные, угловые распределения,...) протонов с максимальным значением n_k зависят только от $n_k^{\max} u$ не зависят от массовых чисел падающего ядра и ядра-мишени и от первычной энергии – имеет место насыщение, т. н. скейлинг. Можно сказать, что имеет место проявление единого механизма адронизации кварков и глюонов—гипотеза мягкого обесцвечивания- Нуроthesis of soft decoloration. Ключевые слова: ядро-ядерные соударения, адронизация кварков

Введение

При изучении адрон-ядерных, ядро-ядерных, лептон-ядерных (адронных) взаимодействий одной из интересных задач является выделение и изучение кумулятивных частиц и процессов. Оказалось, что кумулятивные частицы обладают рядом универсальных свойств, которые могут оказаться проявлением единого механизма адронизации кварков и глюонов гипотеза мягкого обесцвечивания [1, 2]. С помощью кумулятивного числа n_k возможно выделить так называемые существенно кумулятивные частицы $(n_k > 1)$ и изучить столкновения с многокварковыми системами (флуктонами) [3].

В настоящей работе изучены средние кинематические характеристики(скх) протонов с максимальным кумулятивным числом $-n_k^{\max}$ и сопровождающих их протонов (P^{ass}) и Pi(минус)- мезонов (Pi^{ass}) в разных областях фазового пространства, что позволяет получить важные сведения о механизме образования частить в этих выделенных областях и проводим сравнительный анализ средних кинематических характеристик.

Экспериментальный материал получен на двухметровой пропановой пузырьковой камере (PBC-500) Лаборатории Высоких Энергий Обьединенного Института Ядерных Исследований (Дубна). Камера облучалась пучками легких релятивитских ядер р, d, He, C, F, Mg в импульсом интервале в (2-10) AGeV/с. Методические вопросы, касающиеся обработки и анализа данных рассмотрены в работах [4-12].

Для изучения кумулятивных частиц и кумулятивных струй в лептон-ядерных, адронядерных, ядро-ядерных взаимодействиях используется кинематическая переменная -кумулятивное число, которое определяется следующим образом:

$$n_k = (E - P_{\parallel}) / m_N \tag{1}$$

E - энергия частицы, P_{\parallel} -продольний импульс в лабораторной системе, m_N -масса нуклона [13-15].

Зависимость средних кинематических характерист протонов и Pi(muhyc)мезонов от максимального кумулятивного числа n_k^{max}

Известно, что средние кинематические характеристики (скх) вторичных частиц, полученных в адрон-ядерных и ядро-ядерных соударениях зависят от массовых чисел падающего ядра и ядра-мишени, от степени центральности процесса, от кумулятивного числа n_k и первичной энергии [4-9,16].

Выясним как зависят скх (или распределения скх) вторичных адронов от n_k^{\max} - максимального кумулятивного числа протонов.

В таблицах 1-9 и Рис. 1-14 приведены средние кинематические характеристики(скх) протонов с максимальным кумулятивным числом n_k^{\max} и сопровождающих их протонов (P^{ass}) и Pi(минус)-мезонов (Pi^{ass}); или, приведены зависимости скх частиц (адронов) от n_k^{\max} .

Проанализируем поведение (зависимость) $\langle p_L^{\max}(n_k^{\max}) \rangle$ - среднего импульса протонов от n_k^{\max} -максимального кумулятивного числа : при $n_k^{\max} \leq 0.6$ значение среднего импульса протонов- $\langle p_L^{\max} \rangle$ резко уменьшается . При $0.6 < n_k^{\max} \leq 1.5$ распределение (или средние значения) выходят на плато, а затем начинают расти. Поведение функции $\langle p_L^{\max}(n_k^{\max}) \rangle$ для протонов одинаковое для РТа (10GeV/c), СС. dС и СТа (4.2AGeV/c) соударении – т. е. поведение не зависит ни от первичной энергии, ни от A_i и A_t; зависят только от n_k^{\max} -имеет место определённое насыщение –скейлинг (рис. 1,8; Табл. 1,4,7).

При $n_k^{\max} \ge l.5$ средние значения поперечного импульса $\langle p_{\perp}^{\max} \rangle$ - протонов начинают расти; а средние значения сопровождающих протонов - $\langle p_{\perp}^{ass} \rangle$ практически не меняются во всём интервале n_k^{\max} (рис. 2,9,10; Табл. 2,5,8).

Средний угол вылета $\langle \theta_L^{\max} \rangle$ в лаб. системе, p^{\max} - протонов растёт с ростом n_k^{\max} и когда $n_k^{\max} \geq l.5$ выходит на плато (или , незначительно уменьшается). p^{\max} протоны у которых $n_k^{\max} \geq l$ летят назад в лаб. системе- это существенно кумулятивные протоны, такие частицы рождаются при столкновений с малонуклонными системами (флуктонами) [3] (рис. 4,7). P^{ass} -сопровождающие протоны (все) летят вперёд в лаб. системе (рис. 5,11; Табл.2,5,8).

Существенно различаются Y_L -быстротные спектры P^{\max} протонов и P^{ass} сопровождающих протонов. Средние значения $\langle Y_L^{\max} \rangle$ протонов переходят из положительных в отрицательные значения-происходит резкое смещение средных быстрот в сторону фрагментации ядра мишени(Табл.1,2,4,5,7,8).

Что касается зависимости средных значении импульсов сопровождающих протонов- $\langle p_L^{ass}(n_k^{max}) \rangle$.Поведение функции $\langle p_L^{ass}(n_k^{max}) \rangle$ резко различается от поведение функции $\langle p_L^{max}(n_k^{max}) \rangle$ -они имеют различные механизмы рождения (рис. 1,3,6).

Угловые и импульсные распределения P^{ass} - сопровождающих протонов до $n_k^{\max} \le l$, совподают для A_iC и A_iTa - соударении ; а при $n_k^{\max} > l$ даёт о себе знать влияние ядерной средый – средний импульс сопровождающих протонов в A_iC соударениях больше, чем средний импульс A_iTa – соударениях, т. е. $\langle p_L^{ass}(A_iC) \rangle > \langle p_L^{ass}(A_iTa) \rangle$; а для угловых распределении – наоборот (рис. 3,5,6).

Средние кинематические характеристики (скх) сопровождающих мезонов - p_i^{ass} (минус) –мезонов не зависят , или мало зависят от A_i , A_t и первичной энергий (рис. 12,13,14; Табл. 3,6,9).

Зависимость скх p_i^{ass} - сопровождающих мезонов от A_i , A_t и первичной энергий отсутствует, они отличаются от подобных зависимостей p^{ass} протонов (и особенно от p^{max} - протонов). Всё это естественно так как p_i^{ass} -мезоны являются истинно рождёными частицами (в отличие от p^{ass} протонов).

Наши результаты находятся в согласии с выводом работы [2], где показано, что спектры кумулятивных частиц подобны для различных мишеней, падающих ядер и различных первичных энергий -- имеет место определенное масштабное поведение – скейлинг.

Такое поведение импульсных и угловых зависимостей от $n_k^{max}(\langle p_L^{max}(n_k^{max})\rangle,\langle p_L^{ass}(n_k^{max})\rangle,\langle \theta_L^{max}(n_k^{max})\rangle,\langle \theta_L^{ass}(n_k^{max})\rangle,\langle \theta_L^{ass}(n_k^{max})\rangle,\langle \theta_L^{ass}(n_k^{max})\rangle$ может быть следствием суммарного воздействия различных режимов поведения связанных с разными динамическими механизмами образования частиц. Эти механизмы могут поразному проявлять себя в различных областях фазового пространства (в различных областях n_k^{max}) и приводить к различному виду зависимостей импульсов, углов и быстрот от n_k^{max} [17].

Заключение

Сравнительный анализ средних кинематических характеристик P^{\max} протонов с максимальним кумулятивным числом n_k^{\max} и сопровождающих их протонов- P^{ass} и p_i^{ass} - мезонов показал:

- 1. Поведение средних кинематических характеристик P^{\max} протонов не зависят от массових чисел ядра-мишени и падающего ядра и от первичной энергий. Наблюдается определенное насыщение, скейлинг. Поведение спектров зависят толко от максимального кумулятивного числа n_k^{\max} . Имеет место проявление единного механизма адронизаций кварков и глюонов--гипотеза мягкого обесцвечения Hypothesis of soft decoloration.
- 2. Поведение спектров *P*^{max} протонов и *P*^{ass}-сопровождающих протонов резко отличаются друг от друга имеют различные механизмы рождения.
- 3. Спектры p_i^{ass} сопровождающих мезонов существенно отличаются от подобных спектров P^{ass} протонов и (особенно) от спектров P^{max} протонов.
- 4. Наблюдающиеся различные режимы поведения скх *P*^{max} протонов и *P*^{ass} протонов и *p*_i^{ass} мезонов обусловлены, наверно, динамическими корелациями.

Таблица 1.

Таблица 2.

С Та - соударения (4.2 AGeV/c)

Средние кинематические характеристики протонов с n_k^{max} по импульсу (P_L), поперечному импульсу (P_{\perp}), углу вылета (Θ_L), быстроте (Y_L) в лабораторной системе, угловое распределение в с.ц.м. NN- нуклон- ($\cos \Theta_{NN}^{*}$).

	Р ^{тах} -протоны.						
N	n _k ^{max}	$< p_L > GeV/c$	$< p_{\perp} > GeV/c$	$<\theta_L^0>$	$< \cos \theta^*_{NN} >$	<yl></yl>	
1	0-0.2	3.119±0335	0.337±0.11	9.00±2.5	0.920±0.212	1.825±0.15	
2	0.2-0.4	2.085±0.120	0.471±0.09	12.67±2	0.424±0.072	1.356±0.08	
3	0.4-0.6	1.170±0.090	0.479 ± 0.10	23.07±2	-0.537±0.053	0.836 ± 0.07	
4	0.6-0.8	0.666±0.082	0.417±0.05	37.18±3	-0.850±0.064	0.443±0.06	
5	0.8-1.0	0.613±0.061	0.513±0.04	61.77±5	-0.881±0.055	0.481±0.03	
6	1.0-1.2	0.560 ± 0.060	0.528 ± 0.06	88.66±5	-0.918±0.065	0.047 ± 0.01	
7	1.2-1.4	0.468±0.036	0.349 ± 0.01	119.50±5	-0.964±0.063	-0.168±0.018	
8	1.4-1.6	0.580 ± 0.050	0.452 ± 0.01	134.10±5	-0.962 ± 0.080	-0.276 ± 0.03	
9	1.6-1.8	0.846±0.100	0.067 ± 0.10	125.40±8	-0.938±0.100	-0.293±0.04	
10	1.8-2.0	1.126±0.267	0.928±0.23	120.60±9	-0.914±0.150	-0.292±0.10	
11	2.0-2.2	1.422±0.210	1.106±0.40	113.40±8	-0.890±0.220	-0.259±0.12	
12	2.2-2.4	1.619±0.300	1.292±0.50	109.60±7	-0.883±0.331	-0.243±0.14	
13	2.4-2.6	$2.\overline{108\pm0.300}$	1.373±0.70	102.10 ± 10	-0.835±0.424	-0.156±0.07	

С Та - соударения (4.2 AGeV/c)

Спектры P^{ass} - протонов, сопровождающих протоны с n_k^{max} по импульсу (P_L^{ass}), поперечному импульсу (P_{\perp}^{ass}), углу вылета (Θ_{L}^{ass}), быстроте (Y_{L}^{ass}) в лабораторной системе, угловое распределение в NN – нуклон-нуклон- с.ц.м. (соз $\Theta_{NN}^{ass^*}$).

N	max				o *	
14	n_k	$< p_L > GeV/c$	$< p_{\perp} > GeV/c$	$\langle \theta_L \rangle >$	$\langle \cos \theta^*_{NN} \rangle$	$< Y_L >$
1	0-0.2	3.857±0.500	0.371±0.121	5.45±1.0	0.942 ± 0.091	2.017±0.25
2	0.2-0.4	3.034±0.310	0.382 ± 0.061	7.56±0.7	0.816 ± 0.082	1.750±0.42
3	0.4-0.6	2.587±0.191	0.454 ± 0.05	11.85±0.8	$0.520 {\pm} 0.061$	1.532±0.10
4	0.6-0.8	1.976±0.110	0.464 ± 0.03	18.54±0.8	0.090 ± 0.014	1.205±0.04
5	0.8-1.0	1.535±0.052	0.454 ± 0.02	26.29±0.7	-0.223±0.051	0.940±0.03
6	1.0-1.2	1.193±0.036	0.452 ± 0.014	35.49±0.9	-0.462±0.051	0.717±0.03
7	1.2-1.4	1.0270.018	0.462±0.011	42.84±0.5	-0.577±0.014	0.466±0.01
8	1.4-1.6	0.9620.020	0.522 ± 0.011	48.23±0.6	-0.628±0.013	0.473±0.01
9	1.6-1.8	0.999±0.034	0.499±0.011	50.01±1.3	-0.614±0.014	0.521±0.02
10	1.8-2.0	0.948±0.050	0.481±0.011	49.20±2.0	-0.628±0.013	0.511±0.03
11	2.0-2.2	1.007 ± 0.070	$0.470 {\pm} 0.08$	45.55±2.2	-0.600±0.017	0.561±0.04
12	2.2-2.4	1.055±0.081	$0.556 {\pm} 0.04$	47.31±2.9	-0.603±0.018	0.549±0.06
13	2.4-2.6	0.964±0.143	0.515±0.05	45.07±4.0	-0.676±0.110	0.519±0.07
14	2.6-2.8	0.753±0.139	0.428±0.07	53.89±5.0	-0.737±0.153	0.385±0.08
15	2.8-3.0	0.959±0.218	0.460±0.08	53.89±6.0	-0.628±0.251	0.483±0.18

$$P^{ass}$$
-протоны

86

Таблица 3.

			P_i^{uss}	-мезоны		
N	n_k^{max}	$< p_L > GeV/c$	$< p_{\perp} > GeV/c >$	$< \theta_L >$	$<\cos\theta^{*}_{NN}>$	$< Y_L >$
1	0-0.2	0.721±0.150	0.207 ± 0.098	20.57±5.0	0.429±0.181	1.364±0.51
2	0.2-0.4	0.632±0.116	0.219±0.040	27.88±5.0	0.149 ± 0.041	1.133±0.18
3	0.4-0.6	0.654 ± 0.070	0.241±0.030	30.11±2.5	0.063±0.020	1.103±0.14
4	0.6-0.8	0.525±0.053	0.215±0.030	31.75±1.7	-0.057±0.014	1.032±0.06
5	0.8-1.0	0.548±0.038	0.227±0.014	31.50±1.6	-0.024±0.006	1.055±0.06
6	1.0-1.2	0.486±0.039	0.222±0.015	35.36±1.5	-0.157±0.017	0.967±0.05
7	1.2-1.4	0.443±0.019	0.212±0.010	37.46±0.93	-0.238±0.034	0.907±0.03
8	1.4-1.6	0.397±0.018	0.209±0.012	38.66 ± 0.08	-0.331±0.021	0.879±0.13
9	1.6-1.8	0.411±0.030	0.021±0.016	39.22±1.3	-0.302±0.022	0.844 ± 0.06
10	1.8-2.0	0.3890.035	0.212±0.261	41.22±2.1	-0.357±0.023	0.832±0.07
11	2.0-2.2	0.3260.062	0.195±0.021	44.35±3.5	-0.436±0.071	0.761±0.09
12	2.2-2.4	0.3980.084	0.215±0.027	43.50±4.0	-0.369±0.075	0.773±0.10
13	2.4-2.6	0.470±0.100	0.196±0.021	35.91±5.0	-0.313±0.095	0.894±0.13
14	2.6-2.8	0.310±0.140	0.173±0.131	44.75±6.0	-0.530±0.015	0.653±0.15

СТа-соударения (4.2 AGeV/c).

Спектры сопровождающих Piass (минус)-мезонов.

Таблица 4.

С С - соударения (4.2 AGeV/с).

Средние кинематические характеристики протонов с n_k^{max} по импульсу (P_L), поперечному импульсу (P_{\perp}), углу вылета (Θ_L), быстроте (Y_L) в лабораторной системе, угловое распределение в NN - c.ц.м. (сос Θ_{NN}^*).

			P	-протоны.		
N	n_k^{max}	<p_gev c<="" p=""></p_gev>	$< p_{\perp} > GeV/c$	$< \theta_L^0 >$	$< \cos \theta^*_{NN} >$	<yl></yl>
1	0-0.2	3.189±0.066	0.346 ± 0.040	6.23±0.44	0.987±0.092	1.842±0.164
2	0.2-0.4	1.949±0.041	0.434 ± 0.021	12.30±0.35	0.969 ± 0.042	1.306±0.047
3	0.4-0.6	1.195±0.028	0.495±0.022	23.51±0.60	0.907±0.031	0.846 ± 0.038
4	0.6-0.8	0.758 ± 0.024	0.469 ± 0.020	37.21±1.00	0.784 ± 0.029	0.483±0.021
5	0.8-1.0	0.610±0.024	0.510±0.024	62.42±0.15	0.455±0.021	0.214±0.012
6	1.0-1.2	0.620 ± 0.030	0.565 ± 0.025	84.43±2.20	0.093±0.011	0.084 ± 0.009
7	1.2-1.4	0.673 ± 0.050	0.581±0.037	107.10 ± 4.00	-0.271±0.025	-0.668±0.011
8	1.4-1.6	0.709±0.091	0.575±0.11	123.50±6.00	-0.486±0.071	-0.202±0.041
9	1.6-1.8	0.790±0.195	0.581±0.110	132.90±7.00	-0.587±0.011	-0.312±0.094
10	1.8-2.0	1.618±0.440	1.144±0.150	104.50±2.02	-0.230±0.025	-0.100±0.041
11	2.0-2.5	1.695±0.450	1.579±0.200	102.30±2.54	-0.198 ± 0.030	-0.144±0.074

Р^{тах} -протоны.

ISSN 1512-1461

Таблица 5.

С С - соударения (4.2 AGeV/c).

Спектры P^{ass} - протонов, сопровождающих протоны с n_k^{max} по импульсу (P_L^{ass}), поперечному импульсу (P_{\perp}^{ass}), углу вылета (Θ_L^{ass}), быстроте (Y_L^{ass}) в лабораторной системе, угловое распределение в NN – с.ц.м. (соз Θ_{NN}^{ass}).

	Г -протоны.							
N	n_k^{max}	<p_>GeV/c</p_>	$< p_{\perp} > GeV/c$	$< \theta_L^0 >$	$< \cos \theta^*_{NN} >$	<yl></yl>		
1	0-0.2	4.067±0.270	0.402 ± 0.044	5.702±0.5	$0.980 {\pm} 0.081$	2.041±0.15		
2	0.2-0.4	3.093±0.073	0.397±0.029	7.625±0.17	0.979±0.032	1.749±0.09		
3	0.4-0.6	2.589 ± 0.062	0.437 ± 0.025	11.03±0.19	0.968±0.023	1.525±0.03		
4	0.6-0.8	2.257±0.039	0.463±0.015	15.35±0.21	0.945±0.021	1.344 ± 0.03		
5	0.8-1.0	2.063 ± 0.030	$0.468 {\pm} 0.009$	19.77±0.10	0.911±0.020	1.221±0.02		
6	1.0-1.2	1.838 ± 0.034	0.479±0.015	25.46±1.0	0.836 ± 0.033	1.077±0.02		
7	1.2-1.4	1.838 ± 0.050	0.479 ± 0.018	25.48±1.5	0.836 ± 0.032	1.077 ± 0.03		
8	1.4-1.6	1.806 ± 0.065	0.470 ± 0.025	25.00±1.7	0.834 ± 0.042	1.057±0.06		
9	1.6-1.8	1.918±0.010	0.434 ± 0.057	25.75±3.0	0.817±0.049	1.105 ± 0.11		
10	1.8-2.0	1.925±0.280	0.433±0.075	22.31±4.0	0.864±0.015	1.133±0.30		
11	2.0-2.5	1.659 ± 0.290	0.487 ± 0.100	27.09±5.0	0.820 ± 0.020	0.991±0.40		

Таблица 6.

CC - соударения (4.2 AGeV/c).

Спектры сопровождающих Piass (минус)-мезонов.

	Рі Авал-Мезоны						
N	n_k^{max}	$< p_L > GeV/c$	$< p_{\perp} > GeV/c$	$< \theta_L^0 >$	$< \cos \theta^*_{NN} >$	<yl></yl>	
1	0-0.2	0.667 ± 0.020	0.240 ± 0.009	34.53±0.61	0.744 ± 0.022	1.170 ± 0.028	
2	0.2-0.4	0.591±0.01	0.239±0.07	39.36±0.60	0.685±0.021	1.035±0.025	
3	0.4-0.6	0.588±0.021	0.249±0.010	40.36±0.65	0.681±0.020	1.007 ± 0.031	
4	0.6-0.8	0.605 ± 0.030	0.245±0.010	38.95±1.31	0.695±0.031	1.054 ± 0.035	
5	0.8-1.0	0.575 ± 0.050	0.241±0.030	40.62±1.40	0.671±0.043	1.001±0.040	
6	1.0-1.2	$0.585 {\pm} 0.070$	0.257 ± 0.040	41.88±3.00	0.658±0.021	0.989±0.111	
7	1.2-1.4	0.584±0.127	0.218±0.050	37.80±4.00	0.715±0.120	1.148±0.221	
8	1.4-1.6	0.481±0.220	0.230 ± 0.060	43.32±5.00	0.636±0.143	0.929 ± 0.340	
9	1.6-1.8	0.441±0.210	0.201±0.070	52.46±5.00	0.511±0.200	0.854 ± 0.350	
10	1.8-2.0	0.493±0.200	0.220±0.100	61.80 ± 6.00	0.447±0.251	0.873±0.100	
11	2.0-2.5	0.551±0.220	0.238 ± 0.060	51.92±5.00	0.497 ± 0.262	0.854 ± 0.360	

Таблица 7.

РТа - соударения (10 GeV/c).

Средние кинематические характеристики протонов с n_k^{max} по импульсу (P_L), поперечному импульсу (P_L), углу вылета (Θ_L), быстроте (Y_L) в лабораторной системе, угловое распределение в NN - c.ц.м. (соз Θ_{NN}^*).

			P	^{тах} -протоны.		
N	n_k^{max}	< p_2>GeV/c	$< p_{\perp} > GeV/c$	$< \theta_L^0 >$	$< \cos\theta_{NN}^{*} >$	<yl></yl>
1	0.0-0.2	3.090±0.412	0.310±0.143	5.00±0.51	0.929±0.355	1.841±0.061
2	0.2-0.4	1.817±0.213	0.415±0.120	12.86±0.60	0.317±0.053	1.267±0.300
3	0.4-0.6	1.076 ± 0.100	0.422 ± 0.101	22.14±0.80	-0.571±0.077	0.825 ± 0.092
4	0.6-0.8	0.751±0.050	0.442 ± 0.091	35.49±1.00	-0.815±0.082	0.482 ± 0.053
5	0.8-1.0	0.613±0.031	0.493±0.042	63.12±1.50	-0.887±0.066	0.236 ± 0.031
6	1.0-1.2	0.555 ± 0.044	0.521±0.072	88.67±1.80	-0.924±0.064	0.041±0.011
7	1.2-1.4	0.499±0.031	0.417±0.042	118.00 ± 2.00	-0.956±0.041	-0.153±0.021
8	1.4-1.6	$0.584 {\pm} 0.055$	0.416±0.052	133.00±3.00	-0.958±0.052	-0.279±0.041
9	1.6-1.8	0.821±0.141	0.629±0.110	129.10±3.50	-0.935±0.081	-0.308±0.051
10	1.8-2.0	1.260 ± 0.241	$0.650 {\pm} 0.018$	124.2±4.00	-0.896±0.140	-0.312±0.061
11	2.0-2.2	1.288±0.320	1.150±0.201	112.3±5.00	-0.920±0.160	-0.288±0.071
12	2.2-2.4	2.00 ± 0.400	1.620±0.231	105.00±6.00	-0.801±0.310	-0.083±0.041

Таблица 8.

Р Та - соударения (10 GeV/с).

Спектры P^{ass} - протонов, сопровождающих протоны с n_k^{max} по импульсу (P_L^{ass}), поперечному импульсу (P_{\perp}^{ass}), углу вылета (Θ_L^{ass}), быстроте (Y_L^{ass}) в лабораторной системе, угловое распределение в NN - c.ц.м. (соз $\Theta_{NN}^{ass^*}$).

N	n_k^{max}	<p_pgev c<="" p=""></p_pgev>	$< p_{\perp} > GeV/c$	$\langle \Theta_L^0 \rangle$	$<\cos\theta^*_{NN}>$	<yl></yl>
1	0.0-0.2	4.351±0.500	0.310±0.122	4.42±1.23	0.954±0.35	1.841±0.551
2	0.2-0.4	3.629±0.300	0.384 ± 0.091	6.93±0.71	0.832±0.11	1.889±0.201
3	0.4-0.6	2.180±0.215	0.388 ± 0.082	12.14±0.82	0.301±0.02	1.371±0.122
4	0.6-0.8	1.763±0.102	0.435 ± 0.073	18.60±0.93	-0.0816±0.01	1.107 ± 0.082
5	0.8-1.0	1.226 ± 0.081	0.405 ± 0.041	29.81±0.73	-0.441±0.06	0.773±0.071
6	1.0-1.2	1.001±0.091	0.428 ± 0.032	38.19±0.85	-0.583±0.03	0.612 ± 0.082
7	1.2-1.4	0.868 ± 0.042	0.429 ± 0.022	46.68±0.51	-0.689 ± 0.03	0.489±0.021
8	1.4-1.6	$0.790 {\pm} 0.031$	0.417 ± 0.015	51.97±1.11	-0.738±0.04	0.422 ± 0.031
9	1.6-1.8	0.767 ± 0.044	0.401±0.062	56.28±1.31	-0.767±0.04	0.379±0.041
10	1.8-2.0	0.640 ± 0.075	0.395 ± 0.053	59.35±2.21	-0.820±0.05	0.305 ± 0.071
11	2.0-2.2	0.681±0.096	0.428±0.086	61.70±3.23	-0.805±0.06	0.298±0.130
12	2.2-2.4	0.700±0.0212	0.377±0.072	55.45±4.41	-0.751±0.07	0.361±0.153

Таблица 9.

				P_i^{uss} -мезоны		
N	n_k^{max}	<p_sev c<="" p=""></p_sev>	$< p_{\perp} > GeV/c$	$< \theta_L^0 >$	$< \cos \theta^*_{NN} >$	<yl></yl>
1	0.0-0.2	0.783 ± 0.100	0.275±0.65	36.45±6.00	0.095 ± 0.052	1.090 ± 0.351
2	0.2-0.4	0.883 ± 0.082	0.324 ± 0.053	36.82±3.01	0.109 ± 0.027	1.240 ± 0.142
3	0.4-0.6	0.767 ± 0.075	0.262±0.041	38.85±4.09	0.096±0.021	1.212±0.121
4	0.6-0.8	0.606±0.513	0.260 ± 0.033	45.53±4.10	-0.105±0.014	0.963±0.100
5	0.8-1.0	0.623±0.045	0.273±0.027	45.16±3.09	-0.101±0.011	0.967±0.091
6	1.0-1.2	$0.584 {\pm} 0.046$	0.264 ± 0.026	45.67±2.23	-0.138±0.012	0.928 ± 0.062
7	1.2-1.4	0.527 ± 0.047	0.255±0.024	51.55±2.43	-0.244±0.012	0.804 ± 0.052
8	1.4-1.6	0.480 ± 0.048	0.241±0.051	52.14±2.21	-0.293±0.012	0.751±0.083
9	1.6-1.8	0.450 ± 0.071	0.259±0.061	51.26±3.51	-0.323±0.063	0.734±0.091
10	1.8-2.0	0.347±0.110	0.254 ± 0.072	49.86±5.09	-0.230±0.91	0.824±0.182
11	2.0-2.2	0.338±0.111	0.209 ± 0.083	68.40±7.33	-0.406±0.191	0.469 ± 0.200
12	2.2-2.4	0.237±0.122	0.181±0.095	84.6±8.54	-0.681±0.301	0.551±0.252

Р Та - соударения (10 GeV/с).

Спектры сопровождающих P_i^{ass}(минус)-мезонов.

Рис. 1. Зависимость средних импульсов Р^{тах}-протонов от $n_k^{\ max}$ и сопровождающих протонов-Разз (в Labсистеме). СТа-углерод-танталовое соударение -● (Р^{тах}; 4.2AGeV/с), □-(Pass; 4.2AGeV/c); СС-углерод--▲ (P^{max}; углеродное соударение 4.2 A GeV/c);РТа-протон-танталовое соударение - Δ (P^{max}; 10GeV/c).

Рис. 2. Зависимость средних поперечных импульсов P^{max} -протонов от n_k^{max} . СТа-углерод-танталовое соударение -• (4.2AGeV/c) ; СС-углерод-углеродное соударение -• (4.2AGeV/c); РТа-протон-танталовое соударение - Δ (10GeV/c).

Рис. 3. Зависимость средних импульсов P^{ass} -сопровождающих протонов (в Labсистеме) от n_k^{max} . СТа-соударения (4.2AGeV/c)- \Box , РТа- соударения (10 GeV/c)- \clubsuit , СС- соударения (4.2AGeV/c)- \Diamond .

Рис . 4. Зависимость средних углов рассеяния (в Lab- системе) P^{max} - протонов от n_k^{max} . СТа- соударения(4.2AGeV/c)- \bullet ; СС- соударения(4.2AGeV/c)- \blacktriangle ; РТа- соударения(10 GeV/c)- \blacktriangle .

Рис.5 . Зависимость средних углов рассеяния (в Lab- системе) P^{ass} - сопровождающих протонов от n_k^{max} . СТа-соударения(4.2AGeV/c)-- '. СС-соударуния(4.2AGeV/c)- \Diamond .РТа-соударения(10GeV/c)- \clubsuit .

Рис.6. Зависимость средних импульсов P^{ass} -сопровождающих протонов от n_k^{max} . СТа-соударения(4.2AGeV/c)- \Box ; dC-соударения(4.2AGeV/c)- *****.

Рис. 7. Зависимость $<\theta_L>$ -средних углов рассеяния (в Lab- системе) Р^{max} - протонов от n_k^{max} . СТа-соударение (4.2AGeV/c)-•, dC –соударения(4. 2AGeV/c) - Δ .

Рис. 9. Распределение $<P_{\perp}>$ средних поперечных импульсов P^{\max} - протонов (\blacktriangle) и P^{ass} сопровождающих протонов (\bullet) от n_k^{\max} . СТа - соударения (4.2 AGeV/c).

Рис. 8. Зависимость средних импульсов P^{max} -протонов от n_k^{max} . СТа-соударения (4.2AGeV/c)- • , dC-соударения (4.2AGeV/c)- Δ .

Рис. 10. РТа-соударения при 10GeV/с. Распределение $\langle P_{\perp} \rangle$ - средних поперечных импульсов Р^{max} - протонов (**0**) и (Р^{ass})- сопровождающих протонов - (•), от n_k^{max} .

Рис.11. РТа – соударения. Распределение $<\theta_L>$ - средных углов рассеяния P^{\max} -протонов (**0**) и сопровождающих протонов - P^{ass} (•).

рис.12 Распределение $<P_L>$ -средних импульсов P_i^{ass} -сопровождающих мезонов в лаб. системе. СТа - (4.2 AGeV/c)-о. СС- (4.2AGeV/c)- (\blacktriangle). РТа- (10GeV/c)- (\bullet).

Литература

- 1. Baldin A. M. et. al., JINR, P1-83-483, Dubna, 1983.
- 2. Bondarev V. K. et. al., JINR, P1-2000-94, Dubna, 2000.
- 3. Leksin C. A. et. al., JETP, 1957, 32, 445; Blokhintsev P. I. JETF, 1957, 32, 1295; Armutlijski ,..., Yu. Tevzadze et. al., Yad. Fiz. 1982, **49**, 182.
- 4. Angelov N. et. al., JINR, 1-12424, Dubna, 1979.
- 5. Abdrakhmanov E. O.,..., Yu. V. Tevzadze et. al., JINR, E1-11517, Dubna, 1978; Yad. Fiz. 1978, **28**, 1304.
- 6. Grigalashvili N. S.,..., Yu. V. Tevzadze et. al., Yad. Fiz. 1988, 48, 476.
- 7. Agakishiev G. N. et. al., Communications JINR, P1-86-370, Dubna, 1986; P1-89-488, Dubna, 1989.
- 8. Agakishiev G. N. et. al., JINR, E1-84-448, Dubna, 1984; Grishin V. G. et. al., JINR, E1-86-639, Dubna, 1986.
- 9. Agakishiev G. N. et. al., Yad. Fiz. 1987, 45, 1373.
- 10. Gadzicki M. et. al., Z. Phys, 1995, C65, 215.
- 11. Lu J. J. et. al., Phys. Rev. Lett., 1981, 46, 898.
- 12. Chkaidze L. V. et. al., Phys. Part. And Fields, 1988, 54, 179.
- 13. Stavinski V. S., Physics of Elementary Particles and Atomic Nuclei, 1979, 10, 950.
- 14. Baldin A. M. et. al., JINR, E-80-545, Dubna, 1980.
- 15. Anoshin A. I. et. al., Yad. Fiz. 1982, 36, 409.
- 16. L. Akhobadze, V. Garsevanishvili, Yu. Tevzadze. Georgian Electronic Scientific Journal Physics 2011/N1(5), p. 97.
- 17. Koutsidi N. |K. . . . Tevzadze Yu. V. Journal of Nuclear Physics, 1977, v. 26, p.326.

Работа выполнена при финансовой поддержке Национального Научного Фонда Грузии им. Шота Руставели (грант ННФГ/ST08-418).

Article received: 2011-11-26