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Abstract:    

Frequent Pattern Mining plays an essential  role in many data mining tasks 
that try to find interesting patterns from databases, such as association rules, 
correlations, Market basket analysis is a useful method of discovering customer 
purchasing patterns   by   extracting    associations   or   co-occurrences   in 
transactional   databases[1].   Information   obtained   from   the analysis can be used 
in marketing, sales, service, and operational strategies,  In  this  paper,  we  propose  a  
new  algorithm  based Logical Operation (AND,OR). In this algorithms  we are 
using simple  Logical  operation  (AND,  OR)  on  data  set  containing items. We use 
simple table to  perform AND, OR operation to avoid joining and pruning. The 
advantage of this new technique is  fast   operation on dataset containing items and 
provides facilities to avoid unnecessary scans to the database 

 
1 Introduction 
Data mining is the process of extracting patterns  from data.  It  is  becoming  as  an  

increasingly   important  tool  to transform these data into information. Frequent itemsets mining 
is  a  popular  and  important,   first  step  in  data  mining  for analyzing data sets across a 
broad range of applications. It plays an essential role in many important data mining tasks. 

Let I = { I1, I2, I3, …, Im} be a set of items. Let D  be the transactional database, 

where each transaction T is a set of items such that T  I. Each transaction is associated with an 

identifier TID[3]. A set of items is referred as itemset. An itemset that contains K items is a K-
itemset. The number of transactions in which a particular itemset exists gives the support or 
frequency  count or count of the itemset. If the support of  an itemset I satisfies the minimum 
support threshold, then the itemset I is a frequent itemset. 

Classified based on the completeness of patterns to be mined, the levels of abstraction 
involved in the rule set, the number of data dimensions involved in the rule, the types of values 
handled in the rule, the kinds of rules to be mined, the kinds of patterns to be mined. The 
classification of algorithms for frequent itemset mining is Apriori-like algorithms, frequent 
pattern growth based algorithms  It is impractical to generate the entire set of frequent itemsets 
for the very large databases . There is much research on methods for generating all frequent 
itemsets efficiently[3]. Most of these algorithms use a breadth-first approach, i.e. finding all k-
itemsets  before considering (k+1) itemsets. The performance of all these algorithms gradually 
degrades with dense datasets. 

The main drawback of frequent itemsets is  they are very large in number to compute 
or store in  computer. This leads  to  the  introductions  of  closed   frequent  itemsets  and 
maximal frequent itemsets. An itemset X is closed in a data set S if there exists no proper 
superitemset Y such that Y has the same support count as X in S. An itemset X is closed frequent 
itemset in set S  if  X is closed and frequent in S. an itemset X is a maximal frequent 
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itemset in set S if X is frequent and  there exists no super-itemset Y such that X Y and Y 
is frequent in. 

S. Maximal frequent itemset mining is efficient in terms of time and  space  when  
compared  to  frequent  itemsets  and  closed frequent itemsets because both are subsets of 
maximal frequent itemset. Some of the algorithms developed for mining maximal frequent 

 
 
2 Apriori Algorithms  
Apriori algorithm is an influential algorithm for mining frequent itemsets  for  Boolean  

association  rules.  It  uses  a  Level-wise search, where k-itemsets (Anitemset that contains k 
items is a k- itemset) are used to explore  (k+1)-itemsets, to mine frequent itemsets  from  
transactional  database  for  Boolean  association rules[4]. 

First, the set of frequent 1-itemsets is found. This set is denoted L1. L1 is used to find L2, 
the frequent 2-itemsets, which is used to find L3, and so on, until no more frequent k-itemsets 
can be found. The finding of  each Lk requires one full scan of the database. 

Apriori property: All non-empty subsets of a frequent  itemset must also be frequent. 
It performs the following tasks: 
1.  Reducing  the  search  space  to  avoid  finding  of  each  Lk requires one full scan of 

the database 
2.  If  an  itemset  I  does  not  satisfy  the  minimum   support threshold, min_sup, the I is 

not frequent, that is, P (I) < min_sup 
3. If an item A is added to the itemset I, then the  resulting itemset  (i.e.,  IUA)  

cannot  occur  more   frequently  than  I. Therefore,  I  UA  is  not  frequent  either,  that  is,  P  
(I  UA)  < min_sup. 

A two step process is followed, consisting of join and prune actions[5]. 
1. The join step: To find Lk, a set of candidate  k-itemsets is generated by joining Lk-1 

with itself. This set of candidates is denoted  Ck. The join, Lk-1  with  Lk_1,  is performed,  
where members  of  Lk-1  are  joinable  if  they  have  (k_2)  items  in common. 

2. The prune step: Ck is a superset of Lk, that is, its members may or may not be frequent, 
but all of the  frequent k-itemsets are included in Ck. A scan of the  database to determine 
the count of each candidate in Ck would result in the determination of  Lk  (i.e.,  all  candidates  
having  a  count  no  less  than  the minimum support count are frequent by definition, and 
therefore belong to Lk). Ck, however, can be huge, and so this  could involve  heavy  
computation.  To  reduce  the  size  of  Ck,  the Apriori property is used as follows. Any (k-1)-
itemset that is not frequent cannot be a subset of a  frequent k-itemset. Hence, if any (k-1)-
subset of a candidate k-itemset is not in Lk_1, then the candidate cannot be frequent either and so 
can be removed from Ck. This subset testing can be done quickly by maintaining a hash tree of 
all frequent itemsets[5]. 

 
2.1 Limitations 

1. The algorithm is of low efficiency, such as firstly it needs to repeatedly scan the 
database, which spends much in I/O. 

2. Secondly, it create a large number of 2- candidate  itemsets during outputting frequent 2- 
itemsets. 

3.   Thirdly,   it  doesn’t   cancel   the  useless  itemsets   during outputting frequent k- 
itemsets. 

 
2.2 Methods to Improve Apriori’s Efficiency 
•Hash-based itemset counting: A k-itemset whose corresponding  hashing  

bucket  count  is  below  the  threshold cannot be frequent. 
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•Transaction reduction: A transaction that does not contain any frequent k-itemsetis 
useless in subsequent scans. 

•Partitioning: Any itemset that is potentially frequent  in  DB must be frequent in at least 
one of the partitions of DB. 

•Sampling:  mining  on  a  subset  of given  data,  lower  support threshold + a method to 
determine the completeness. 

•Dynamic itemset counting: add new candidate  itemsets  only when all of their subsets 
are estimated to be frequent. 

 
 
3 Proposed Algorithm 
Our algorithm is an effective algorithm for mining  association rules  in  large  databases  

.Like  the   Apriori   algorithm,  our algorithm mines association rules in two steps. In the first 
step compute frequent itemsets using logic OR and AND operations. The   Implemented   
algorithm   gains   significant   performance improvement over the Apriori algorithm. 

 
3.1 Generation of Frequent Itemsets 
The implemented algorithm generates frequent itemsets through evolutionary iterations 

based on two tables, the item details table and the transaction table. 
 
3.2 Transforming a transaction details into a logical Table  
The Logical table   with element values of „1    or  „0   ,where items are present in the 

transaction means 1 otherwise 0. Finally, a column vector Ck is utilized to store the reference 
count of all frequent k-itemsets in the kth iteration.The reference count on a k-itemset can be 
obtained by counting the number of l  s in the corresponding row of logical  table . 

 
3.3 Generation of Frequent k-itemsets 
Frequent  k-itemsets  can  be  generated  through  the  following iteration: 
Repeat 
1. Read a pair of different rows from a logical table. 
2. go to step 3 (i.e., until a new k-itemset has been found). 
3. Performing AND operation on the two rows of Logical table, correspond to the rows of 

step2. 

The result shows that, which transactions contain this  new k- itemset. And then counting 
the number of 1  s in the result to get the reference count of this new  k-itemset. If the count is 
less than  the  number  of  transactions  required  by  the  minimum support, the new k-itemset 
is discarded. 

After the generation of frequent k-itemset, the logical  table of the k-itemset and its 
corresponding reference count  vector are kept in frequent itemset table for generating 
association rules. 

 
 
 
 
 
4 llustrative example 
4.1 Ariori Algorithms 
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Item Set

I1,I2 
I1,I3 
I1,I4 
I1,I5 
I2,I3 
I2,I4 
I2,I5 
I3,I4 
I3,I5 
I4,I5 

Item Set Sup_ Count 
I1 6 
I2 7 
I3 6 
I4 2 
I5 2 

Item Set Sup_Count 
I1,I2 4 
I1,I3 4 
I1,I4 1 
I1,I5 2 
I2,I3 4 
I2,I4 2 
I2,I5 2 
I3,I4 0 
I3,I5 1 
I4,I5 0 Item Set Sup_ Count 

I1 6 
I2 7 
I3 6 
I4 2 
I5 2 

Item Set Sup_Count 
I1,I2 4 
I1,I3 4 
I1,I5 2 
I2,I3 4 
I2,I4 2 
I2,I5 2 

TID List of  Items 

T100 I1,I2,I5 
T200 I2,I4 
T300 I2,I3 
T400 I1,I2,I4 
T500 I1,I3 
T600 I2,I3 
T700 I1,I3 
T800 I1,I2,I3,I5 
T900 I1, I2,I3 

 

Table 1       Table with 1 item 
     set and support count 

 

            Table 4     Table with 2 item set 
 

 
 
 
 
 
 
 
 
 
 
 

     Table 2     Table with 1 item set  
                      and minimum support  
                      count 

 
 
 
 
 

                                                                                                      Table 5       Table with 2item    
                                                                                                                            set and support count  

         
 
 
 
 

Table 3 
 
 
 
 
 
 
 

Table 6             Table with 2 itemset and  
                          minimum support count 

 
 

 
 

   
 

                                                          Table 7 with frequent item set 
 
 
4.2 Proposed Algorithms 

 

Itemset
I1,I2,I3 
I1,I2,I5 
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Two 
Item 
set

I1, 
I2 

I1, 
I3 

I1, 
I5 

I2, 
I3 

I2, 
I4 

I2 
, 

I5 
I1 1 1 1 0 0 0 
I2 1 0 0 1 1 1 
I3 0 1 0 1 0 0 
I4 0 0 0 0 1 0 
I5 0 0 1 0 0 1 

T100 1 0 1 0 0 1 
T200 0 0 0 0 1 0 
T300 0 0 0 1 0 0 
T400 1 0 0 0 1 0 
T500 0 1 0 0 0 0 
T600 0 0 0 1 0 0 
T700 0 1 0 0 0 0 
T800 1 1 1 1 0 1 
T900 1 1 0 1 0 0 
Sup 

count
4 4 2 4 2 2 

Items  
I1 I2 I3 I4 I5 

I1 1 0 0 0 0 
I2 0 1 0 0 0 
I3 0 0 1 0 0 
I4 0 0 0 1 0 
I5 0 0 0 0 1 

T100 1 1 0 0 1 
T200 0 1 0 1 0 
T300 0 1 1 0 0 
T400 1 1 0 1 0 
T500 1 0 1 0 0 
T600 0 1 1 0 0 
T700 1 0 1 0 0 
T800 1 1 1 0 1 
T900 1 1 1 0 0 

Support 
Count 

6 7 6 2 2 

Three item set I1,I2,I3 I1,I2,I5 
I1 1 1 
I2 1 1 
I3 1 0 
I4 0 0 
I5 0 1 

T100 0 1 
T200 0 0 
T300 0 0 
T400 0 0 
T500 0 0 
T600 0 0 
T700 0 0 
T800 1 1 
T900 1 0 

Sup Count 2 2 

Table containing transactions 
 
 

TID List of  Items 
T100 I1,I2,I5 
T200 I2,I4 
T300 I2,I3 
T400 I1,I2,I4 
T500 I1,I3 
T600 I2,I3 
T700 I1,I3 
T800 I1,I2,I3,I5 
T900 I1, I2,I3 

 
Table 8                 
 

 
 
 
 
                                                                                         Table 10         Table with 2 Itemset             
                                                                                                     with support count                 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9   Table with item present  
                or absent in transaction                                      Table 11     Table with frequent itemset 

                    Also with their support count 
 
 
 
 
 
 
 
 
 
 

5 Comparison with graph 
In order to show the performance of the proposed algorithm, we conducted  an  experiment  
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using  the   Apriori  algorithm  and proposed algorithm. The  algorithms were implemented in 
Dot Net and tested on a Windows XP platform. The test database are taken from easyday 
shopping mall The number of items N is set to 50; D is the number of transactions; T is the 
averages size of transactions, and I is the average size of the maximum frequent itemsets. Graph 
show  results for different numbers of minimum supports.   The   results   show   that   the   
performance   of   our algorithm is much better than that of the Apriori algorithm.  This is  because  
the  greater  the  minimum  support,  the  more  less candidate  itemsets the Apriori algorithm has 
to determine, and also the Apriori algorithm  join and pruning processes take more time to 
execute. However, and it spends less time calculating k- supports with the logical item table . 
 

 
 
 
6 Conclusions 
The  most  common  application  of  association  rule  mining  is market basket analysis. 

In this paper, An Efficient  algorithm for mining association rules using Logical Table based 
approach is proposed. The main features of  this algorithm are that it only scans  the  
transaction   database  once,  it  does  not  produce candidate itemsets, and In addition, it 
stores all transaction data in  bits, so it needs less memory space and can be applied  to 
mining large databases 
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