
GESJ: Computer Science and Telecommunications 2013|No.1(37)
ISSN 1512-1232

 24

An Efficient Algorithms for Generating Frequent Pattern Using
Logical Table With AND, OR Operation

Kamlesh Malpani1, P. R. Pal2

1PG Department of Computer Science, Shri Vaishnav Institute of Management

Indore, M.P. India, Email: malpani_k1@rediffmail.com

2Department of Computer Applications, Ajay Kumar Garg Engineering College
Ghaziabad, U.P. India, E-mail: prpal@rediffmail.com

Abstract:

Frequent Pattern Mining plays an essential role in many data mining tasks
that try to find interesting patterns from databases, such as association rules,
correlations, Market basket analysis is a useful method of discovering customer
purchasing patterns by extracting associations or co-occurrences in
transactional databases[1]. Information obtained from the analysis can be used
in marketing, sales, service, and operational strategies, In this paper, we propose a
new algorithm based Logical Operation (AND,OR). In this algorithms we are
using simple Logical operation (AND, OR) on data set containing items. We use
simple table to perform AND, OR operation to avoid joining and pruning. The
advantage of this new technique is fast operation on dataset containing items and
provides facilities to avoid unnecessary scans to the database

1 Introduction
Data mining is the process of extracting patterns from data. It is becoming as an

increasingly important tool to transform these data into information. Frequent itemsets mining
is a popular and important, first step in data mining for analyzing data sets across a
broad range of applications. It plays an essential role in many important data mining tasks.

Let I = { I1, I2, I3, …, Im} be a set of items. Let D be the transactional database,

where each transaction T is a set of items such that T I. Each transaction is associated with an

identifier TID[3]. A set of items is referred as itemset. An itemset that contains K items is a K-
itemset. The number of transactions in which a particular itemset exists gives the support or
frequency count or count of the itemset. If the support of an itemset I satisfies the minimum
support threshold, then the itemset I is a frequent itemset.

Classified based on the completeness of patterns to be mined, the levels of abstraction
involved in the rule set, the number of data dimensions involved in the rule, the types of values
handled in the rule, the kinds of rules to be mined, the kinds of patterns to be mined. The
classification of algorithms for frequent itemset mining is Apriori-like algorithms, frequent
pattern growth based algorithms It is impractical to generate the entire set of frequent itemsets
for the very large databases . There is much research on methods for generating all frequent
itemsets efficiently[3]. Most of these algorithms use a breadth-first approach, i.e. finding all k-
itemsets before considering (k+1) itemsets. The performance of all these algorithms gradually
degrades with dense datasets.

The main drawback of frequent itemsets is they are very large in number to compute
or store in computer. This leads to the introductions of closed frequent itemsets and
maximal frequent itemsets. An itemset X is closed in a data set S if there exists no proper
superitemset Y such that Y has the same support count as X in S. An itemset X is closed frequent
itemset in set S if X is closed and frequent in S. an itemset X is a maximal frequent

mailto:malpani_k1@rediffmail.com
mailto:prpal@rediffmail.com

GESJ: Computer Science and Telecommunications 2013|No.1(37)
ISSN 1512-1232

 25

itemset in set S if X is frequent and there exists no super-itemset Y such that X Y and Y
is frequent in.

S. Maximal frequent itemset mining is efficient in terms of time and space when
compared to frequent itemsets and closed frequent itemsets because both are subsets of
maximal frequent itemset. Some of the algorithms developed for mining maximal frequent

2 Apriori Algorithms
Apriori algorithm is an influential algorithm for mining frequent itemsets for Boolean

association rules. It uses a Level-wise search, where k-itemsets (Anitemset that contains k
items is a k- itemset) are used to explore (k+1)-itemsets, to mine frequent itemsets from
transactional database for Boolean association rules[4].

First, the set of frequent 1-itemsets is found. This set is denoted L1. L1 is used to find L2,
the frequent 2-itemsets, which is used to find L3, and so on, until no more frequent k-itemsets
can be found. The finding of each Lk requires one full scan of the database.

Apriori property: All non-empty subsets of a frequent itemset must also be frequent.
It performs the following tasks:
1. Reducing the search space to avoid finding of each Lk requires one full scan of

the database
2. If an itemset I does not satisfy the minimum support threshold, min_sup, the I is

not frequent, that is, P (I) < min_sup
3. If an item A is added to the itemset I, then the resulting itemset (i.e., IUA)

cannot occur more frequently than I. Therefore, I UA is not frequent either, that is, P
(I UA) < min_sup.

A two step process is followed, consisting of join and prune actions[5].
1. The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1

with itself. This set of candidates is denoted Ck. The join, Lk-1 with Lk_1, is performed,
where members of Lk-1 are joinable if they have (k_2) items in common.

2. The prune step: Ck is a superset of Lk, that is, its members may or may not be frequent,
but all of the frequent k-itemsets are included in Ck. A scan of the database to determine
the count of each candidate in Ck would result in the determination of Lk (i.e., all candidates
having a count no less than the minimum support count are frequent by definition, and
therefore belong to Lk). Ck, however, can be huge, and so this could involve heavy
computation. To reduce the size of Ck, the Apriori property is used as follows. Any (k-1)-
itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence, if any (k-1)-
subset of a candidate k-itemset is not in Lk_1, then the candidate cannot be frequent either and so
can be removed from Ck. This subset testing can be done quickly by maintaining a hash tree of
all frequent itemsets[5].

2.1 Limitations

1. The algorithm is of low efficiency, such as firstly it needs to repeatedly scan the
database, which spends much in I/O.

2. Secondly, it create a large number of 2- candidate itemsets during outputting frequent 2-
itemsets.

3. Thirdly, it doesn’t cancel the useless itemsets during outputting frequent k-
itemsets.

2.2 Methods to Improve Apriori’s Efficiency
•Hash-based itemset counting: A k-itemset whose corresponding hashing

bucket count is below the threshold cannot be frequent.

GESJ: Computer Science and Telecommunications 2013|No.1(37)
ISSN 1512-1232

 26

•Transaction reduction: A transaction that does not contain any frequent k-itemsetis
useless in subsequent scans.

•Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least
one of the partitions of DB.

•Sampling: mining on a subset of given data, lower support threshold + a method to
determine the completeness.

•Dynamic itemset counting: add new candidate itemsets only when all of their subsets
are estimated to be frequent.

3 Proposed Algorithm
Our algorithm is an effective algorithm for mining association rules in large databases

.Like the Apriori algorithm, our algorithm mines association rules in two steps. In the first
step compute frequent itemsets using logic OR and AND operations. The Implemented
algorithm gains significant performance improvement over the Apriori algorithm.

3.1 Generation of Frequent Itemsets
The implemented algorithm generates frequent itemsets through evolutionary iterations

based on two tables, the item details table and the transaction table.

3.2 Transforming a transaction details into a logical Table
The Logical table with element values of „1 or „0 ,where items are present in the

transaction means 1 otherwise 0. Finally, a column vector Ck is utilized to store the reference
count of all frequent k-itemsets in the kth iteration.The reference count on a k-itemset can be
obtained by counting the number of l s in the corresponding row of logical table .

3.3 Generation of Frequent k-itemsets
Frequent k-itemsets can be generated through the following iteration:
Repeat
1. Read a pair of different rows from a logical table.
2. go to step 3 (i.e., until a new k-itemset has been found).
3. Performing AND operation on the two rows of Logical table, correspond to the rows of

step2.

The result shows that, which transactions contain this new k- itemset. And then counting
the number of 1 s in the result to get the reference count of this new k-itemset. If the count is
less than the number of transactions required by the minimum support, the new k-itemset
is discarded.

After the generation of frequent k-itemset, the logical table of the k-itemset and its
corresponding reference count vector are kept in frequent itemset table for generating
association rules.

4 llustrative example
4.1 Ariori Algorithms

GESJ: Computer Science and Telecommunications 2013|No.1(37)
ISSN 1512-1232

 27

Item Set

I1,I2
I1,I3
I1,I4
I1,I5
I2,I3
I2,I4
I2,I5
I3,I4
I3,I5
I4,I5

Item Set Sup_ Count
I1 6
I2 7
I3 6
I4 2
I5 2

Item Set Sup_Count
I1,I2 4
I1,I3 4
I1,I4 1
I1,I5 2
I2,I3 4
I2,I4 2
I2,I5 2
I3,I4 0
I3,I5 1
I4,I5 0 Item Set Sup_ Count

I1 6
I2 7
I3 6
I4 2
I5 2

Item Set Sup_Count
I1,I2 4
I1,I3 4
I1,I5 2
I2,I3 4
I2,I4 2
I2,I5 2

TID List of Items

T100 I1,I2,I5
T200 I2,I4
T300 I2,I3
T400 I1,I2,I4
T500 I1,I3
T600 I2,I3
T700 I1,I3
T800 I1,I2,I3,I5
T900 I1, I2,I3

Table 1 Table with 1 item
 set and support count

 Table 4 Table with 2 item set

 Table 2 Table with 1 item set
 and minimum support
 count

 Table 5 Table with 2item
 set and support count

Table 3

Table 6 Table with 2 itemset and
 minimum support count

 Table 7 with frequent item set

4.2 Proposed Algorithms

Itemset
I1,I2,I3
I1,I2,I5

GESJ: Computer Science and Telecommunications 2013|No.1(37)
ISSN 1512-1232

 28

Two
Item
set

I1,
I2

I1,
I3

I1,
I5

I2,
I3

I2,
I4

I2
,

I5
I1 1 1 1 0 0 0
I2 1 0 0 1 1 1
I3 0 1 0 1 0 0
I4 0 0 0 0 1 0
I5 0 0 1 0 0 1

T100 1 0 1 0 0 1
T200 0 0 0 0 1 0
T300 0 0 0 1 0 0
T400 1 0 0 0 1 0
T500 0 1 0 0 0 0
T600 0 0 0 1 0 0
T700 0 1 0 0 0 0
T800 1 1 1 1 0 1
T900 1 1 0 1 0 0
Sup

count
4 4 2 4 2 2

Items
I1 I2 I3 I4 I5

I1 1 0 0 0 0
I2 0 1 0 0 0
I3 0 0 1 0 0
I4 0 0 0 1 0
I5 0 0 0 0 1

T100 1 1 0 0 1
T200 0 1 0 1 0
T300 0 1 1 0 0
T400 1 1 0 1 0
T500 1 0 1 0 0
T600 0 1 1 0 0
T700 1 0 1 0 0
T800 1 1 1 0 1
T900 1 1 1 0 0

Support
Count

6 7 6 2 2

Three item set I1,I2,I3 I1,I2,I5
I1 1 1
I2 1 1
I3 1 0
I4 0 0
I5 0 1

T100 0 1
T200 0 0
T300 0 0
T400 0 0
T500 0 0
T600 0 0
T700 0 0
T800 1 1
T900 1 0

Sup Count 2 2

Table containing transactions

TID List of Items
T100 I1,I2,I5
T200 I2,I4
T300 I2,I3
T400 I1,I2,I4
T500 I1,I3
T600 I2,I3
T700 I1,I3
T800 I1,I2,I3,I5
T900 I1, I2,I3

Table 8

 Table 10 Table with 2 Itemset
 with support count

Table 9 Table with item present
 or absent in transaction Table 11 Table with frequent itemset

 Also with their support count

5 Comparison with graph
In order to show the performance of the proposed algorithm, we conducted an experiment

GESJ: Computer Science and Telecommunications 2013|No.1(37)
ISSN 1512-1232

 29

using the Apriori algorithm and proposed algorithm. The algorithms were implemented in
Dot Net and tested on a Windows XP platform. The test database are taken from easyday
shopping mall The number of items N is set to 50; D is the number of transactions; T is the
averages size of transactions, and I is the average size of the maximum frequent itemsets. Graph
show results for different numbers of minimum supports. The results show that the
performance of our algorithm is much better than that of the Apriori algorithm. This is because
the greater the minimum support, the more less candidate itemsets the Apriori algorithm has
to determine, and also the Apriori algorithm join and pruning processes take more time to
execute. However, and it spends less time calculating k- supports with the logical item table .

6 Conclusions
The most common application of association rule mining is market basket analysis.

In this paper, An Efficient algorithm for mining association rules using Logical Table based
approach is proposed. The main features of this algorithm are that it only scans the
transaction database once, it does not produce candidate itemsets, and In addition, it
stores all transaction data in bits, so it needs less memory space and can be applied to
mining large databases

References

1. Frequent Itemset Generation Using Hashing-Quadratic Probing Technique by M.

Krishnamurthy European Journal of Scientific ResearchISSN 1450-216X Vol.50 No.4
(2011), pp. 523-532

2. Improved Association Mining Algorithm for Large Dataset Tannu Arora1, Rahul Yadav 2
IJCEM International Journal of Computational Engineering & Management, Vol. 13, July
2011 ISSN (Online): 2230-7893 www.IJCEM.org

3. A Fast Algorithm for Mining Multilevel Association Rule Based on Boolean Matrix
1Pratima Gautam 2 K. R. Pardasani (IJCSE) International Journal on Computer
Science and Engineering Vol. 02, No. 03, 2010, 746-752

4. Proposing an Efficient Method for Frequent Pattern Mining Vaibhav Kant Singh, Vijay
Shah, Yogendra Kumar Jain, Anupam Shukla, A.S. Thoke, Vinay Kumar Singh,
Chhaya Dule, Vivek Parganiha

5. An Efficient Data Mining Approach on Compressed Transactions Jia-Yu Dai, Don-Lin
Yang, Jungpin Wu, and Ming-Chuan Hung PROCEEDINGS OF WORLD
ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOLUME 30,
JULY 2008, ISSN 1307-688433

6. An Improved Apriori-based Algorithm for Association Rules Mining Huan Wu, Zhigang
Lu, Lin Pan, Rongsheng Xu Wenbao Jiang 2009 Sixth International Conference on Fuzzy
Systems and Knowledge Discovery

http://www.ijcem.org/

GESJ: Computer Science and Telecommunications 2013|No.1(37)
ISSN 1512-1232

 30

7. An Algorithm for Frequent Pattern Mining Based On Apriori Goswami D.N.*, Chaturvedi
Anshu. **Raghuvanshi C.S.*** (IJCSE) International Journal on Computer Science and
Engineering Vol. 02, No. 04, 2010, 942-947

8. An Efficient Algorithm for Mining Of frequent items using incremental model Prof.
Dr.Prashant Patnaik Mr. Sanjay Padhi

9. Mining Dynamic Databases using Probability-Based Incremental Association Rule
Discovery Algorithm by Ratchadaporn Amornchewin Journal of Universal Computer
Science, vol. 15, no. 12 (2009), 2409-2428 submitted: 15/12/08, accepted: 25/6/09,
appeared: 28/6/09 NJ.UCS

10. DARM: Decremental Association Rules Mining Ahmed Taha1, Mohamed Taha1, Hamed
Nassar2, Tarek F. Applications, 2011, 3, 181-189 doi:10.4236/jilsa.2011.33019,
Published Online August 2011 (http://www.SciRP.org/journal/jilsa)

11. GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets KARAM
GOUDA karam g@hotmail.com Data Mining and Knowledge Discovery, 11, 1–20,
2005 _c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.
Department of Mathematics, Faculty of Science, Benha, Egypt, MOHAMMED J. ZAK

12. Mining Positive and Negative Association Rules: An Approach for Confined Rules
Maria-Luiza Antonie Osmar R.Za¨ıane Department of Computing Science, University of
Alberta

13. An incremental algorithm for frequent pattern mining based on bit-sequence by Wuzhou
Dong, Juan Yi, Haitao He, Jiadong Ren

14. algorithm for mining time varying frequent itemsets d.sujatha1, prof.b.l.deekshatulu2
Journal of Theoretical and Applied Information Technology © 2005 - 2009 JATIT. All
rights reserved.

15. Mining Dynamic Databases using Probability-Based Incremental Association Rule
Discovery Algorithm Ratchadaporn Amornchewin Journal of Universal Computer
Science, vol.15, no.12 (2009), 2409-2428 submitted: 15/12/08, accepted: 25/6/09,
appeared: 28/6/09, NJ.UCS Comparison

Article received: 2012-06-04

http://www.scirp.org/journal/jilsa
mailto:%20g@hotmail.com%20D

