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Abstract 
There has been a resurgence of interest in the methods of “phase space quantum mechanics” 
consequent to the progress made in quantum computing and information processing because 
Gaussian quantum states, that are physically realizable in the laboratory, are particularly 
amenable to analysis in phase space. The premise of phase space quantum mechanics is the 
association of c-number functions in phase space that correspond to relevant operators in the 
Hilbert space of the quantum system. The formulation was pioneered by Weyl and hence, is 
referred to as the “Weyl correspondence”. In this paper, we present a systematic and 
comprehensive assimilation of the mathematical features of the “Weyl correspondence” that 
are relevant to the physicist. 

       .  
1. INTRODUCTION 
The phase space formulation of quantum mechanics has gained considerable importance in the last 
decade with the progress achieved in quantum computing and quantum information processing 
employing continuous variable methods, particularly so, when processing is contemplated in the 
Gaussian/coherent state representation. The phase space formalism relies on associating a 
correspondence between the operator representation of quantum mechanics in Hilbert space with a c-
number function/functional in phase space. Such a correspondence was initially identified by Weyl [1] 
through the Weyl transform and was soon thereafter applied by Wigner [2] to obtain corrections in 
classical statistical mechanics for quantum systems. While being useful in quantum information 
processing, the phase space formulation is extremely versatile, finding applications in statistical 
mechanics, nuclear physics, atomic and molecular physics, quantum optics, relativistic bound state 
problems and localized probability distributions. 
 
In Section 2 of this article, we reproduce some well known results on the Weyl correspondence to 
facilitate ease of referencc and continuity.  Section 3 looks at the physical implications of the Weyl 
correspondence whereas Section 4 examines the properties of the Weyl basis set. Section 5 sets up a 
comparative evaluation and studies the relationship between the Weyl basis and the Wigner basis. We 
shall be using the natural system of units in which 1c= =h  throughout this exposition.  
 
2. THE WEYL CORRESPONDENCE [3-9] 
 
For simplicity of exposition and to avoid proliferation of symbols, we shall consider the dynamics of a 
one-particle quantum system whose position and momentum eigenvectors satisfy the eigenvalue eqs.  
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q̂ =q q q ; p̂ =p p p         (1) 
 
The eigenvectors q , p  constitute a complete set and hence satisfy the closure relations 
 

d =∫ q q q I ; d =∫ q p p I        (2)    
 
The orthogonality of the eigenvectors mandates 
 

( )' 'δ= −q q q q ; (' δ= −p p p p )'       (3) 
 
Furthermore, the operators  and q̂ p̂  also satisfy the quantization conditions 
 

ˆ ˆ ˆ ˆ ˆ ˆ, , 0; , , 1,i j i j i j ijq q p p q p i i jδ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = ∀ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2,3.    (4)     
 
Using the resolution of identity motivated by the closure relations (2), we can expand an arbitrary 
operator Â  in the basis of the eigenvectors q , p  (that form a complete set) as 
 
ˆ ˆ' '' ' '' '' '' '' '' ' ' ' 'A d d d d A= ∫ p p q q q q p p p p q q  

( ) ( ) (31 2 , ,d d aπ= ∫ p q p q p q)Δ        (5) 
 
with 
    
( ) . ˆ, 1 2 1 2ia d e A≡ + −∫ q σp q σ p σ p σ ; ( ) ., 1 2id eΔ ≡ + −1 2∫ p τp q τ q τ q τ  (6) 

 
and the integration variables have been changed to 
 

' 1 2= −p p σ ; '' 1 2= +p p σ ; ' 1 2= −q q τ ; '' 1 2= +q q τ     (7) 
 
The function  constitutes the Weyl transform of the operator ( ,a p q) Â with respect to the operators 

 and associates a c-number function ˆ ˆ,q p ( ),a p q  with an arbitrary operator Â . 
 
Defining the trace of an operator  in the usual way as  Â
 

ˆTr A d A= ∫ p p pˆ          (8) 
 
 and using the completeness property of the eigenvectors p , we immediately obtain the identity 

( )ˆ ˆ' " " 'A Tr A=p p p p  since  

 

( ) ( )ˆ ˆ" ' " ' ' "Tr A d A A= =∫p p p p p p p p pˆ     (9) 
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We also have 
 

( ) ( )ˆ ˆ, ,Tr A d A⎡ ⎤Δ = Δ⎣ ⎦ ∫p q p p p q p . ˆ 1 2 1 2id d e A= + −∫ p τp τ p q τ q τ p  
( )ˆ . ˆ 1 2 1 2i pd d e A−= −∫ p τp τ p q τ q τ p−  

( ) ( ) ( )3 ˆ ˆ. 1 2 . ˆ1 2 i p i qd d d e e Aπ − − −= ∫ p τ q τ σp σ τ p p       (10) 

( ) ( ) ( )3 ˆ ˆ. . ˆ1 2 i p i qd d d e Aπ − + −⎡ ⎤⎣ ⎦= ∫ p τ q σp σ τ p p       (11) 
 
which gives us an expression for  that is symmetric in  as ( ,Δ p q) ,q p
 
( ) ( ) ( ) ( )3 ˆ ˆ. ., 1 2 i p i qd d eπ − + −⎡ ⎤⎣ ⎦Δ = ∫ p τ q σp q σ τ       (12)   

 
We have used the following identities (for a plane wavefunction):  
 

( )3 .1 2 ieπ= p qq p ; ˆ.1 2 1 2i pe−+ = −τq τ q τ ; [ ]1 2 ,A B A BA Be e e + +=   
 
in the respective steps leading to eq. (12).  
 
From eq. (10), we also obtain 
 

( ) ( ) ( ) ( )3 ˆ ˆ1 2 . .ˆ ˆ, 1 2 i p i qTr A d d d e e Aπ − − −⎡ ⎤Δ =⎣ ⎦ ∫ p σ τ q σp q p σ τ p p  
( )ˆ . ˆ 1 2 1 2i qd d e A−= −∫ q σp σ p p σ p σ p−  

. ˆ1 2 1 2 1 2 1 2id d e A= + − − −∫ q σp σ p σ p σ p σ p σ  

(. ˆ1 2 1 2 ,id e A a= + − =∫ q σσ p σ p σ p q)       (13) 
 
Furthermore, using the equivalent expression for the trace, ˆTr A d A= ˆ∫ q q q , we get   
 
( ) ( ) .ˆ ˆ, , 1 2 1 2ia Tr A d d e A⎡ ⎤= Δ = + −⎣ ⎦ ∫ p τp q p q q τ q q τ q τ q  

. ˆ1 2 1 2 1 2 1 2id d e A= − + − −∫ p τq τ q τ q τ q τ q τ  
. ˆ1 2 1 2id e A= − +∫ p ττ q τ q τ        (14) 

 
An alternative expression for  may be directly obtained from eq. (10) as ( ,Δ p q)
 
( ) ( ) ( ) ( )3 ˆ ˆ. 1 2 ., 1 2 i p i qd d e eπ − − −Δ = ∫ p τ q τ σp q σ τ ( ) ( ) (3 ˆ ˆ1 2 . .1 2 i p i qd d e eπ − − −= )∫ p σ τ q σσ τ  

( )ˆ . 1 2 1 2i qd e −= − −∫ q σσ p σ p σ . 1 2 1 2id e= − +∫ q σσ p σ p σ    (15) 
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Eq. (14) establishes the existence of a mapping that maps the set of operators in a Hilbert space upon a 
set of c-numbers, that are their respective Weyl transforms. The converse also holds, since, by virtue of 
eq. (5) and eq. (12), we obtain 
 

( ) ( ) ( ) ( )6 ˆ ˆ. .ˆ 1 2 , i p i qA d d d d a eπ − + −⎡⎣= ∫ p τ q σp q σ τ p q ⎤⎦      (16) 
 
An alternative expression for  may also be written as:  Â
 

( ) ( )ˆ ˆ. .ˆ , i p qA d d a e− += ∫ τ σσ τ σ τ%         (17) 
 
where  is the Fourier transform of  ( ,a σ τ% ) ( ),a p q  given by: 
 
( ) ( ) ( ) (6 . ., 1 2 , ia d d aπ += ∫ q σ p τσ τ p q p q% )e       (18) 

 
with the Fourier inverse 
 
( ) ( ) ( ). ., , ia d d a e− += ∫ q σ p τp q σ τ σ τ%        (19) 

 
We also obtain, from eq. (16) 
 

( ) ( ) ( ) ( )6 ˆ ˆ. .ˆ 1 2 , i p i qTrA Tr d d d d a eπ − + −⎡ ⎤⎣ ⎦⎡ ⎤= ⎣ ⎦∫ p τ q σp q σ τ p q  

( ) ( ) ( ) ( )6 ˆ ˆ1 2 . .1 2 , i p i qTr d d d d a e eπ − − −⎡ ⎤= ⎣ ⎦∫ p σ τ q σp q σ τ p q  

( ) ( ) ( )3 ˆ .1 2 , 1 2 1 2i qTr d d d a eπ −⎡ ⎤= − −⎣ ⎦∫ q σp q σ p q p σ p σ ( ),d d a= ∫ p q p q  (20)  

 
It immediately follows from eq. (20) that  
 

( ),Tr Δ⎡ ⎤⎣ ⎦p q 1=

)

         (21) 
 
Further, the Weyl transform of is obtained from eq. (6) as: ( ,Δ p q
 

( ) ( )., 1 2 ', 'i
W d eδ ≡ + Δ −∫ q σp q σ p σ p q p σ1 2  

. '. 1 2 ' 1 2 ' 1 2 1 2i id d e e= + + −∫ q σ p τσ τ p σ q τ q τ p σ−

)'−

 
( ) ( ) ( ) ( ) (3' . ' . 2 'i id d e e π δ δ− −= = −∫ q q σ p p τσ τ q q p p      (22) 

 
We also have 
 

( ) ( ) ( ) ( ) ( ) ( )3 ˆ ˆ1 2 . .', ' . , 1 2 ', 'i p i qTr d d d e eπ − − −Δ Δ = Δ⎡ ⎤⎣ ⎦ ∫ p σ τ q σp q p q p σ τ p p q p  
( ) ( )ˆ . ', ' 1 2 1 2i qd d e −= Δ − −∫ q σp σ p p q p σ p σ p  
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( ). 1 2 ', ' 1 2 1 2 1 2id d e= + Δ − − −∫ q σp σ p σ p q p σ p σ p σ  

( ). 1 2 ', ' 1 2id e= + Δ −∫ q σσ p σ p q p σ  
. '. 1 2 ' 1 2 ' 1 2 1 2i id d e e= + + −∫ q σ p τσ τ p σ q τ q τ p σ−  
. '. '. .i i i id d e e e e− −= ∫ q σ p τ q σ p τσ τ  

( ) ( ) ( ) ( ) (3' . ' . 1 2 ' 'i id d e e π δ δ− −= = −∫ q q σ p p τσ τ p p q q )−      (23) 
 
Furthermore, 
 

( ),d d Δ∫ p q p q . 1 2 1 2id d d e= +∫ p τp q τ q τ q τ−  

( ) ( )3 ˆ .1 2 i pd d eπ −= ∫ p τp τ 1d= ∫ p p p =

−

ˆ ˆ

      (24) 
\ 
and  
 

( ) ( ), ,d d a b∫ p q p q p q  

( ) ( ) ( ) ( )ˆ ˆ, ,A A B B A A B B A B A Bd d d d Tr A Tr B δ δ⎡ ⎤ ⎡ ⎤= Δ Δ −⎣ ⎦⎣ ⎦∫ p q p q p q p q p p q q  

( ) ( )ˆ ˆ, ,A A A A A Ad d Tr A Tr B TrAB⎡ ⎤ ⎡ ⎤= Δ Δ =⎣ ⎦⎣ ⎦∫ p q p q p q     (25) 

 
The composition law for the Weyl transform of a product of operators is obtained by considering a 
product of operators  and letting ˆ ˆ ˆC AB= ( ),c p q  be the corresponding Weyl transform. Then, we have 
 

( )
( ) ( )

( ) ( ) ( )
, ,ˆ ˆ ˆ,

, , ,
A A B B A A A A

B B B B

d d d d a
c Tr C Tr AB Tr

b

⎡ ⎤Δ
⎡ ⎤ ⎡ ⎤= Δ = Δ = ⎢ ⎥⎣ ⎦ ⎣ ⎦ Δ Δ⎢ ⎥⎣ ⎦

⌠
⎮
⌡

p q p q p q p q
p q

p q p q p q
 

( ) ( ) ( ) ( ) ( ), , , , ,A A B B A A B B A A B Bd d d d a b Tr= Δ Δ Δ⎡ ⎤⎣ ⎦∫ p q p q p q p q p q p q p q   (26) 
 
Now,  
 

( ) ( ) (, , ,A A B BTr Δ Δ Δ⎡ ⎤⎣ ⎦p q p q p q)  

( ) ( ) ( )1 1 1, , ,A A B Bd= Δ Δ Δ∫ q q p q p q p q q  

( ) ( ) ( )1 2 3 1 2 2 3 3 1, ,A A B Bd d d= Δ Δ Δ∫ q q q q p q q q p q q q p q q,  
 
Also ( ) .

1 2 1, 1 2i
A A A Ad eΔ = − 21 2∫ p τq p q q τ q q + τ q τ q  

.
1 21 2 1 2i

A Ad e= − +∫ q σσ q p σ p σ q ( ) ( ) ( ) 23 1 2 . 1 2 ..1 2 A AAid e e eπ − += ∫ 1i p σ q i p σ qq σσ  

( ) ( ) ( )( )1 21 23 1 21 2 Aiid e eπ − +⎡ ⎤− ⎣ ⎦∫ q q q .σq q .p= σ ( )( ) ( )1 2
1 2- 1 2 i

A eδ −= +⎡ ⎤⎣ ⎦
q q .pq q q   (27) 

 
Making use of (27) and similar expressions for ( )2 3,B BΔq p q q  and ( )3 ,Δq p q q1  we obtain  



GESJ: Physics 2012 | No.2(8) 
ISSN 1512-1461 

 

69 

 

( ) ( ) (, , ,A A B BTr Δ Δ Δ⎡ ⎤⎣ ⎦p q p q p q)
( )( ) ( )( )

( )( ) ( ) ( ) ( )1 2 2 3 3

2 3 1 2 2 3

3 1

- 1 2 - 1 2

- 1 2 A B

A B

i

d d d

e

δ δ

δ ⎡ ⎤− + − + −⎣ ⎦

+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
=

+⎡ ⎤⎣ ⎦

⌠
⎮
⎮
⌡

1

q q .p q q .p q q .p

q q q q q q q q q

q q q
 

  (28) 
( ) ( ) ( ){ }62 exp 2 . - . - . -A B B A B Ai ⎡= + +⎣p q q p q q p q q ⎤⎦     (29) 

 
where we have integrated over the  δ  functions.  Making use of eqs. (26), (28) and (29),                  
we obtain 
 

( )
( ) ( )

( ) ( ) ( ) ( ){ }

6

2 ' . '' ' . ''

' ' ' '' ', ' '', ''1,
i

d d d d a b
c

eπ − − − − −⎡ ⎤⎣ ⎦

×⎛ ⎞= ⎜ ⎟
⎝ ⎠

⌠
⎮⎮
⌡

q q p p p p q q

p q p q p q p q
p q      (30) 

( ) ( ) ( ){ }

( )

ˆ ˆ2 ' . ' .
6

ˆ ˆ. .

ˆ ˆ' ' ', '1

,

i p q

p q

d d dpdqa e

e b
π

− − −⎡ ⎤⎣ ⎦

⎛ ⎞∂ ∂
+⎜ ⎟∂ ∂⎝ ⎠

×
⎛ ⎞= ⎜ ⎟
⎝ ⎠

⌠
⎮
⎮⎮
⌡

q q p p

p q

p q p q

p q
     (31) 

 
In arriving at eq. (31), we have introduced new variables ˆ ''p = −p p  and   and  expanded 

into a Taylor series around 
ˆ ''q = −q q

( ˆ ,b p q+ +p q )ˆ ( ),b p q . Eq. (31) may be simplified further by making the 

replacements p̂
2
i ←∂

≡
∂q

, ˆ
2
iq

←∂
≡ −

∂p
 acting on the left. If we now integrate over p̂  and , we obtain q̂

δ  functions, Following this by integrations with respect to 'p  and ' , we finally obtain q
 

( )
( ) ( ) ( ) ( )

( ) (
1 . .
2,

a b a b

ic e a b

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟−
⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦=

p q q pp q p q p q), ,

)

      (32) 
     
We obtain a representation of  in coordinate space from eq. (27) as  ( ,Δ p q
 

( ) ( )( ) ( )1 2
1 2 1 2, - 1 2 ieδ −Δ = +⎡ ⎤⎣ ⎦

q q .pq p q q q q q      (33) 
 
A similar line of reasoning leads us to the following representation of ( ),Δ p q  in momentum space 
 

( ) ( )( ) ( )2 1
1 2 1 2, - 1 2 ieδ −Δ = +⎡ ⎤⎣ ⎦

q p pp p q p p p p      (34) 
 
The following identities relating to the Weyl transform of products of ( ),Δ p q  follow trivially from the 
composition law of eq. (30)  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 ' . '' ' . ''6ˆ ˆ ˆ, ', ' 2 '' '' '', '' id d e − − − − −⎡ ⎤⎣ ⎦Δ Δ Δ∫
q q p p p p q qp q p q p q p q�    (35) 

( ) ( ) 6ˆ ˆ, ,Δ Δp q p q � 2 ( ) ( ) ; 1 6ˆ ˆ, ,− ⎡ ⎤Δ Δ⎣ ⎦p q p q� 2      (36) 
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3. THE PHYSICAL IMPLICATIONS OF WEYL CORRESPONDENCE  
[10-16] 

 
At this point, it is pertinent to examine the physical implications of the Weyl correspondence. The 
conventional picture of quantum mechanics (that emerged through the work of Schrodinger, Dirac, von 
Neumann & Jordan) visualizes quantum dynamics as manifesting itself on a Hilbert space, H, on which 
linear operators, some of which represent physically relevant and measurable quantities act. Each such 
operator (that must necessarily be self adjoint) is referred to as an “observable” and the action of such 
an observable on the state vector representing the given system in H constitutes the act of 
“measurement” of the physical quantity represented by the observable. This process of “measurement” 
of the property represented by the observable through an appropriate measuring experiment returns one 
of the eigenvalues of the observable as the outcome of the measuring process. The spectrum of the 
observable, therefore, represents the set of possible values of the measured property that the system can 
take. Importantly, the dynamics of the quantum system is not affected by the choice of the Hilbert 
space or, in fact, the basis therein. If H(1) and H(2) are two differently described Hilbert spaces 
underlying the same quantum system then the dynamics reported by the two formulations are 
equivalent if the operators A(1) and A(2) corresponding to the same observable in H(1) and H(2)  
respectively are related as  
 
A(2) = UA(1)U-1          (37) 
 
where U is a unitary map from H(1) to H(2) [10]. 
 
The process of quantizing a classical system, conventionally, consists of (a) identifying and 
characterizing the relevant observables, usually, by reference to the canonical formalism of classical 
mechanics that comprises of a 2n-dimensional configuration space wherein points are labeled in terms 
of the position coordinates qi (i=1,2,3,…,n)  and the respective canonically conjugate momenta pi 
(i=1,2,3,…,n) and (b) the process of quantizing these classical variables by replacing them with the 
corresponding self adjoint operators that satisfy the quantization conditions of eq. (4) [10].   
 
The commutation relations of eq. (4) fix the representation of the canonical operators  in Hilbert 
space upto unitary equivalence for quantum systems with finite degrees of freedom. However, for 
systems with infinite degrees of freedom, this no longer holds and we have an infinite number of 
inequivalent irreducible representations of these commutation relations [10-16]. This aspect is of 
cardinal importance to our analysis and we look at it in greater detail. We illustrate this feature for the 
case of bosons i.e. particles with integral spin. The case of fermions can be exemplified on similar 
lines. For this purpose, we write the canonical commutation relations in terms of the creation and 
annihilation operators as: 

ˆ ˆ,q p

 
† † †ˆ ˆ ˆ ˆ ˆ ˆ, , 0; ,i j i j i j ia a a a a a jδ⎡ ⎤ ⎡ ⎤⎡ ⎤ = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ =

k

†ˆ

       (38)  
 
In terms of these operators, the particle number operator is a positive operator, whose 
eigenvalues must necessarily be non-negative. It gives the occupation number of the relevant quantum 
state and satisfies the commutation relations  

†ˆ ˆ ˆk kN a a=

 
ˆ ˆ ˆ,k k kN a a⎡ ⎤ = −⎣ ⎦ ;        (39) †ˆ ˆ,k k kN a a⎡ ⎤ =⎣ ⎦
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A kinematical description of the system encompassing all its quantum states can, then, be obtained in 
the system’s Fock space HF. This Fock space is the direct sum of all the n-particle spaces with 

 i.e.   0 ,n n≤ ≤ ∞ ∈�
 

( )F 1 ,
0

n

S A
n

∞ ⊕ ⊗

=

Η = Η∑          (40) 

 
where the suffixes S,A indicate symmetrized (for bosons) and anti-symmetrized (for fermions) n-fold 
tensor product of single particle Hilbert space H1 as the representative space of n-indistinguishable 
bosons or fermions respectively. A state vector in such a space is, then, an infinite hierarchy of 
symmetized/antisymmetrized wavefunctions, viz.  
 

( )
(
1

2 1 2,
...

c
ψ ξ

)ψ ξ ξ

⎛ ⎞
⎜ ⎟
⎜Ψ =
⎜
⎜ ⎟
⎝ ⎠

⎟
⎟

         (41) 

 
In the above expression for the wavefunction, the argument ξ  denotes both the position (or 
momentum) and spin component, ( 1 2, ,...,n )nψ ξ ξ ξ  is the probability amplitude of finding n particles in 

the configuration ( )1 2, ,..., nξ ξ ξ and c∈�  is the vacuum state in the Fock space spanned by the basis 

vectors{ }1 2, ,..., , 1, 2,...,j j nξ ξ ξ = . The ket 1 2, ,..., , 1, 2,...,j j nξ ξ ξ =  represents the state 

wherein j particles exist with the configuration 1ξ  for the particle 1, 2ξ  for the particle 2,….,, jξ  for the 

jth particle at the given instant of time 0x .  
 
An equivalent description of the kinematics can be represented in “occupation number” space. For this 
purpose, instead of using basis vectors { }1 2, ,..., , 1, 2,...,j j nξ ξ ξ =  where the ket 

1 2, ,..., jξ ξ ξ represents the quantum state of finding j particles with configuration 1 2, ,..., jξ ξ ξ  

respectively at an instant of time 0x , we introduce the “occupation number” basis.  We identify a 
complete and orthonormal basis of single-particle state vectors and label them by an index k (k=1,2,…). 
Let  denote an occupation number distribution so that is the number of particles in the 

th state.  is an infinite sequence of occupation numbers since there are infinitely many orthogonal 
quantum states for one particle. However, only such sequences are admitted for which the total particle 
number is finite, no matter how large i.e. for which 

( ) 1 2, ,...n n n=

( )n
kn

k

kn < ∞∑ . In the case of fermions each can, of 
course, only assume the values 0 or 1.  Let 

kn

( )nΨ denote the normalized state vector corresponding to the 

occupation number distribution ( . These vectors form a complete orthonormal basis in )n FΗ  referred 
to as the “occupation number” basis.  The kinematics of the system can, then, be represented in the 
Fock space  by introducing a system of annihilation and creation operators in this basis.  FΗ
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Now, the number operator  has, as its eigenvalue, an occupation number  which is 
mandated to be a non-negative integer by the commutation relations. An occupation number 
distribution (  is an infinite sequence of such integers. It is possible to divide the set of such 

sequences into classes, by defining an equivalence relation as 

†ˆ ˆ ˆk kN a a= k kn

)n
( )( )1n  and ( )( )2n  are in the same class if 

the sequences differ only in a finite number of places. Operation by a creation or annihilation operator 
will change (  only in one place. Therefore, such an operation will not result in a change in the 

sequence class. It follows that the basis vectors 
)n

( )nΨ with ( )n  restricted to one class, already span a 

representation space of the . Further, representations belonging to different classes cannot be 
unitarily equivalent. The set of representations obtained in this way does, however, not exhaust all 
possibilities [10]. Let us also introduce the operator  that satisfies the commutation relations [11-16] 

†ˆ ˆ,k ka a

Ĥ
 

ˆˆ ˆ, 2k k ka a H◊⎡ ⎤ =⎣ ⎦  ;     (42) †ˆ ˆ ˆ ˆˆ ˆ, , ,k k k k k kH a H a H N⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0=

k

 
ˆ

kH  is a central operator that remains constant in each representation  A Casimir operator for labeling 
the representations can be obtained as 
 

†ˆ ˆ ˆ ˆ ˆ2k k k kC N H a a= −          (43) 
 
with the ground state corresponding to ˆ 0kC = .  
 
Now, the different unitarily inequivalent representations are related by the Bogolubov transformations. 
For the operators  these transformations are generated by [11-16]  †ˆ ˆ,k ka a
 

( † †
1 2 1 2

ˆ ˆ ˆ ˆ ˆG i a a a a= − − )           (44) 
 
and are obtained as  
 
( ) ˆ ˆ

1
ˆ ˆi G i GA e a eθ θθ −= ; ( ) ˆ

2
ˆ ˆi G i ĜB e a eθ θθ −=        (45)   

 
giving 
 
( ) †

1 2
ˆ ˆ ˆcosh sinhA a aθ θ θ= − ; ( ) †

2 1
ˆ ˆ ˆcosh sinhB a aθ θ= − θ     (46) 

 
together with the respective hermitian conjugates [11-16]. It may be noted that ( )Â θ  and ( )B̂ θ  obey 

the commutators  and ( ) ( ) ( ) ( )† †ˆ ˆ ˆ ˆ, ,A A B Bθ θ θ θ⎡ ⎤ ⎡ ⎤= =⎣ ⎦⎣ ⎦ 1

0⎤
⎦

 

( ) ( ) ( ) ( )† †ˆ ˆˆ ˆ, ,A B A Bθ θ θ θ⎡ ⎤ ⎡= =⎣ ⎦ ⎣ . 

 
Now, it can be shown that the operators 
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( )† †
1 1 2 1 2a ; ˆ ˆ ˆ ˆ ˆ1 2 a a= +J a ( )† †

2 1 2 1
ˆ ˆ ˆ ˆ ˆ2J i a a a a= − − ; 2 ( )† †

3 1 1 2 2
ˆ ˆ ˆ ˆ ˆ1 2J a a a a I= + +   (47) 

 
onstitute the generators of an su(1,1) algebra. Furthermore, the corresponding generators with the c 1,2,3Ĵ

replacements ( ) ( )ˆ ˆˆ ˆ,a A a B1 2θ θ→ →  also generate an su(1,1) algebra. It follows, the re, that 

( ) ( )ˆ ˆ,A B

refo

θ θ  also constitute a irreducible representation of the canonical commutation relations for each 
parameter value of the θ  [11-16]. What remains to be shown is that these representations are unitarily 

inequivalent in the case of systems with infinite degrees of freedom. Let 0,0  be the vacuum state 

(that certainly exists for systems with finite degrees of freedom) for the ope s ( )rator ( )ˆ ˆ,A Bθ θ  so that 

( ) ( )ˆ ˆ0,0 0,0 0A Bθ θ= = . The functional dependence of  0,0  on θ  is obtained as 
 

( ) ( ) ˆ0 ,0 0,0i Ge θθ θ = ( ) ( ){ }† †ˆ ˆtanh1 0,0 ,
cosh

A B
n

n
e cθ θ θ

θ
⎡ ⎤
⎣ ⎦= =∑ n n    (48) 

 
bviously, the above states stay normalized for all values of the parameter O θ .     

he above results trivially generalize to k (k finite) degrees of freedom as  

 
 
T
 

( ) ( ) ˆ0 ,0 0,0ki G

k

e θθ θ =∏ ( ) ( ){ }† †ˆ ˆtanh1 0,0
cosh

k kA B

k

e θ θ θ

θ
⎡ ⎤
⎣ ⎦=∏    (49) 

 
he infinite degrees of freedom generalization, , is implemented by the usual substitution of the T k →∞

s summation operator by the integration operator a
( )

3V d k→ 32πk
∑ ∫  whence, we have   

 
( ) ( ) ˆ0,0 0 ,0 0,0 0,0ki G

k
k

Lim e θθ θ →∞= ∏  

( ) ( ){ }† †ˆ ˆtanh10,0 0,0 0 0
cosh

k kA B
k

k

Lim e θ θ θ θ
θ

⎡ ⎤
⎣ ⎦

→∞= =∏ ∀ ≠     (50) 

 
 follows from this that in the case of systems with infinite degrees of freedom, the states It ( ) ( )0 ,0θ θ  

and 0,0  are mutually orthogonal 0θ∀ ≠ . Further, the representations of the canonical c  
relations so obtained are unitarily ine ent in this infinite degrees limit [11-16].    
 

ommutation
quival

 is customary to identify quantum states as “pure” states, for which optimal information is available It
and a statistical mixture of such pure states, for which optimal information is not available. Pure states 
are represented by vectors of unit length in Hilbert space. Mixed states cannot be so represented. 
However, a formalism that can describe both pure and mixed states is the “density” operator. The 
density operator, ρ̂ , is a positive self adjoint operator with unit trace. For pure states ρ̂  degenerates 
into a projection operator on a one dimensional subspace of the parent Hilbert space. Therefore, the 
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description of a pure state in terms of the density operator and in terms of the unit vector that spans the 
one dimensional subspace are equivalent.  
 
To elaborate on the association of the density operator with the process of measurement we consider a 
discrete observable represented by a self adjoint operator  that has a discrete set of eigenvalues Â { }ka  

corresponding to the respective eigenfunctions { }kE  (that form a complete set of mutually orthogonal 
vectors in the Hilbert space of the system). The act of measurement shall return one of the eigenvalues 
{ }ka  as the outcome of measurement. We  can, then, write the following expressions forthwith [10]: 
 
 i j ij jE E Eδ= ; j

j
E I=∑ ; ˆ

j j
j

A a E=∑       (51) 

 
The probability of getting a result is obtained in terms of the density operator as  ia ( ˆiTr E )ρ  and the 

expectation value of the operator Â  in the quantum state  ρ̂   is given by [10]  
 

( ) (
ˆ

ˆ ˆj j
j

A a Tr E Tr A
ρ

)ˆ ˆρ ρ= =∑        (52) 

 
In the case of an operator with a continuous spectrum the probability that in an observation the operator 
Â  will take the value  is given by ia ( ) ( )ˆ ˆPr j ja Tr A aδ ρ⎡ ⎤= −⎣ ⎦ . 

 
Further, 
 

2
\

ˆ
i j i j i j ij j j j

i j i j j

2A a a E E a a E a Eδ= = =∑∑ ∑∑ ∑      (53)  

 
If ( )ˆf A   is any real valued function of the operator Â  then  

 

( ) ( )ˆ
j

j
jf A f a=∑ E          (54) 

 
It is worth emphasizing that the use of the operator valued function ( )ˆf A  instead of the operator Â  as 

an observable simply amounts to relabeling or recalibrating the results of the measurement i.e. if the 
measured outcome using the operator  returns the result of an observation as its eigenvalue then 

the observable 

Â ka

( )ˆf A  will return the result ( )kf a . It follows that any element of the abelian algebra 

generated by Â  could serve as the representation of the physical quantity being measured [10].  
 
This cardinal fact leads us to the  formalism of quantum mechanics wherein the system’s dynamics 
are analyzed in terms of the algebra of its bounded operators equipped with the norm topology. The 
Hilbert space of the system plays the secondary role of being a representation space for this algebra. 

*C
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*C  algebras are complex algebras that are complete in a norm Α  satisfying . . ,a b a b a b≤ ∀ ∈A  

and possess an involution a  that satisfies *a→ 2*a a a= . The  algebra picture of quantum 

mechanics visualizes a quantum system as a algebra whose self adjoint elements form the set of 
observables of the system. The quantum state in such a case is defined as a linear functional 

*C
*C

:ρ →A � that is positive in that  and normalized ( )* 0a a ∈Aa≥ ∀ρ ( ) 1I =ρ  where I  is the unit 

element of . Further, A ( )Âρ  is interpreted as the expectation value of the observable Â  in the state 

ρ . Each state ρ  of a C  algebra  also defines a representation * A ρπ  of the algebra  on the Hilbert 
space 

A
Hρ  by means of the GNS construction.  Firstly, let ρ  be faithful so that 

. Then, the map ( )* 0a a 0,aa ≠ρ > ∀ ∈A ( )ρ *a b  defines a positive definite sesquilinear form on .  
The completion of  in the corresponding norm is a Hilbert space H

A
A ρ . By construction, Hρ  contains 

 as a dense subspace. Let us now define for each A a∈A an operator ( )aρπ  on  by A ( )a b abρπ =  

for . Then, since   is bounded, it  may be extended by continuity to all of  b∈A ( )aρπ Hρ . Further,  

( ): B Hρ ρπ →A  is linear and satisfies ( ) ( ) ( )2ρπ1 2a a 1aρ ρ aπ π=  and  showing 

thereby that 
( )ρπ (ρπ )a* *a =

ρπ  defines a representation of  on  A Hρ . In the event that ρ  is not faithful, the 
sesquilinear form defined as above is not positive definite but positive semidefinite. We need to take 
the quotient of by the kernel A Nρ of the form i.e. the collection of all a∈A  for which ( )a a* 0ρ = . 
The Hilbert space Hρ  is then constructed as the completion of NρA  [10].  
 
It is worth mentioning here that the closure of the  algebra (i) under involution enables the 
identification of physically relevant observables through self-adjoint elements of  (ii) under linear 
combinations facilitates defining of mixed states in terms of pure states (iii) under multiplication 
enables the defining of pure states.  The algebra  also contains the additive and multiplicative unities 
and is endowed with a scalar product that satisfies  

*C
A

A

 

(* * * *ˆ ˆ ˆˆ ˆ ˆA B B A B A Tr A B= = = )ˆ ˆ       (55) 

 
Hence, we now have the following situation: The algebra A  is composed of all operator valued 
functions of  the canonical variables ˆ ˆ,p q . This set of operator valued functions of ˆ ˆ,p q  forms a linear 
vector space whose points are operators. This vector space is spanned by a complete orthonormal basis. 
Given such a basis, we can write any operator as a linear combination of the basis elements with the 
coefficients being c-numbers. Obviously, given the set of these c-numbers, we can reconstruct the 
operator and vice versa so that these c-numbers facilitate a representation of the operator in the given 
basis.  
 
4. THE WEYL BASIS [3-5, 8] 
 
The properties of the  function elaborated in the preceding section show that they constitute such a 
basis in the  space. This basis set is usually termed as the Wigner basis and is extensively used in 
the phase space representation of quantum systems. Another equivalent basis referred to as the Weyl 
basis is related to the Wigner basis by the transformation   

Δ
ˆ ˆ,p q
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( ) ( ) ( ) ( )3 . .ˆ ˆˆ ˆ, 1/ 2 ,id d e Tπ ⎡ + ⎤⎣ ⎦Δ = − −∫ σ p τ qp q σ τ σ τ       (56)           

and constitutes a basis set in the (  space that is dual to the ),σ τ ( ),p q space. Eq. (56) follows from the 

equivalent representations of an operator  in the Â Δ̂  and the  bases as: T̂
 
( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆˆ ˆ, , , ,tA d d A T d d AΔ= =∫ ∫p q σ τ σ τ σ τ p q p q p qˆ ,Δ

)⎤⎦

    (57) 
 
From eqs. (12) and (56), we also obtain  
 
( ) ( ˆ ˆ. .ˆ , iT e⎡ +⎣= σ p τ qσ τ          (58) 

From eq. (8), (58) and the definition of the δ  function as ( )
( )

.
32

id eδ
π

+∞

−∞

=
⌠
⎮
⌡

p xpx , we immediately 

obtain   
 

( ) ( ) ( ) (3ˆ , 2Tr T π δ δ⎡ ⎤ =⎣ ⎦σ τ σ τ)        (59) 

 
and 
 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ. . '. '.ˆ ˆ, ', ' i iT T e e⎡ + ⎤ ⎡ +⎣ ⎦ ⎣= σ p τ q σ p τ qσ τ σ τ ⎤⎦ ( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ ˆ ˆ' . ' . 1 2 . . , '. '.ie + + + − ⎡ + + ⎤⎣ ⎦= σ σ p τ τ q σ p τ q σ p τ q  
( ) ( ) ( ) ( ) (ˆ ˆ' . ' .2 ' ' 2 ' ' ˆ ', 'ii ie e e T⎡ + + + ⎤− −⎣ ⎦= =σ σ p τ τ qστ τσ στ τσ σ σ τ τ )+ +     (60) 

 
We also have 
\ 
( ) ( )ˆ ˆ. . ˆ ˆ ˆ2 . . . . 2 . . . .ˆ , i i i i i i iT e e e e e e⎡ ⎤+ −⎣ ⎦= = =σ p τ q σ τ σ p τ q σ τ τ q σ pσ τ ˆe

)

     (61)  
 
The representation of  in position and momentum space are respectively obtained as: (ˆ ,T σ τ
 

( ) ( )ˆ ˆ. . ˆ ˆ2 . . . .ˆ' . '' ' '' 'i i i iT e e e e+ −= =σ p τ q σ τ σ p τ qq σ τ q q q q q ''  
ˆ ˆ2 . . . .' ''qi i ie e d e−= ∫σ τ σ p τ qq p p p 2 . . . . ''' ''i i ie d e e−= ∫σ τ σ p τ qp q p p q ( ) ( )2 ' ''' '' ieδ += − + τ q qq q σ  

       (62)  
 
and 
 

( ) ( ) ( )2 ' ''ˆ' , '' ' '' iT δ += − + σ p pp σ τ p p p τ e       (63) 

( )
( )

( ). 2 . ' '. '
3/2

1ˆ' , '
2

iT e
π

− ⎡ − − − ⎤⎣= σ τ σ p q τ qp σ τ q ⎦       (64) 
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Eq. (59) also follows directly from the representations (62) or (63) by setting   and ' ''=q q ' ''=p p  

respectively.  Expression for  can be obtained directly from eqs. (59),(60) or from 

the representation (62). We have  
( ) ( )ˆ ˆ, ',Tr T T⎡⎣ σ τ σ τ ' ⎤⎦

 
( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ. '. ' . '. 'Tr T T T T⎡ ⎤ =⎣ ⎦σ τ σ τ q σ τ σ τ q  ( ) ( )2 ' ' ˆ ', 'ie T−= +στ τσq σ σ τ τ q+

)'+

)

 

( ) ( ) (32 'π δ δ= +σ σ τ τ         (65) 
 
5. THE ASSOCIATION BETWEEN WEYL & WIGNER BASIS [8,17-21] 
 
The expansion of an arbitrary operator  in the Weyl basis is given by [8] Â
 

( ) (ˆ ˆ, ,A d d A T= ∫ σ τ σ τ σ τ%  where ( ) ( ) ( ) ( )3 ˆˆ ˆ ˆ, 1 2 , ,A Tr T Aπ ⎡ ⎤= − −⎣ ⎦σ τ σ τ p q%   (66) 

 
and its expectation value in a quantum state ψ  is [8] 
 

( ) (3ˆ 2A d d A ψψ
π χ= ∫ σ τ σ τ% ),        (67) 

 
where  
 

( ) ( )3 2 ˆ, 1 2 Tψχ π ψ ψ=σ τ         (68)   

 
is the characteristic function of the corresponding Wigner distribution given by 
 

( ) ( ) ( ) ( )3 2 ., 1 2 1 2 1 2iW d eψ π ψ ψ−= −∫ p xp q x q x q x+     (69)  
 
It is instructive at this point to explore the effect of operating by ( )ˆ ,T σ τ  on a quantum state q . We 
have  
 
( ) ˆ ˆ ˆ2 . . . . 2 . . . . 2 . . .ˆ , i i i i i i i iT e e e e e e e e− − −= = =σ τ σ p τ q σ τ τ q σ p σ τ τ qσ τ q q q σ−q   (70) 

 
and 
 
( ) ( ).ˆ ˆ ˆ2 . . . . 2 . . . 2 . .ˆ , ii i i i i iT e e e e e e e −= = − = τ q σσ τ τ q σ p σ τ τ q σ τσ τ q q q σ q σ−   (71) 

 
The maps  and ( ) ˆ.ˆ iT e→ = σ p

σσ σ ( ) ˆ.ˆ iT e→ = τ q
ττ τ
ˆ ˆ,p q

 constitute unitary representations, (respectively 
generated by the infinitesimal generators ) of the additive group of reals. It, further, follows from 

eqs. (60) and (61) that the map ( ) ( ) ( )ˆ ˆ. .ˆ , iT e ⎡ + ⎤⎣ ⎦ρσ p ρτ q→ =ρρ σ τ

( ),σ τ

 also constitutes a representation of the 

additive group of reals for each pair  [17].   
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Consider the Wigner quasiprobability distribution function defined by: 
 

( ) ( ) ( ) ( )
1 2

3 2 .
, 2, 1 2 1 2 1 2iW d eψ ψ π ψ ψ−= −∫ p xp q x q x q x1 +

)

    (72) 
 
The characteristic function of this distribution is given by the inverse Fourier transform 

 which gives [17] (
2 1 1 2

1 1
, ,F F Wψ ψ ψ ψ

− − p q
 

( ) ( ) ( ) ( )
1 2

3 2 .
, 2, 1 2 1 2 1 2id eψ ψχ π ψ ψ= −∫ τ xσ τ x x σ x σ1 +     (73) 

 
Introducing a change in variables ' 1 2→ = −x x x σ , we have, 
 

( ) ( ) ( ) ( ) ( )
1 2

3 2 . ' 1 2
, 2, 1 2 ' ' 'id eψ ψχ π ψ ψ+= ∫ τ x σσ τ x x x σ1 +

)+x

    (74) 
 
We also have from eqs. (61), (70) and (71) that  
 

( ) ( ) ( ) (. '
1 1

ˆ , ' 'iT eψ ψ+⎡ ⎤ =⎣ ⎦
τ x σσ τ x σ        (75) 

 
whence, we obtain [17] 
 

( ) ( ) ( ) ( ) ( )
1 2

3 2
, 2 1 'ψˆ, 1 2 ' ' ,d Tψ ψχ π ψ ⎡ ⎤= ⎣ ⎦∫σ τ x x σ τ x ( ) ( )3 2

2
ˆ1 2 ,T 1π ψ= σ τ ψ  (76) 

 
Let us, now, consider an arbitrary function f  in the phase space of the system. f admits a Fourier 
representation  
 
( ) ( ) ( ) (3 2 ˆ, 1 2 , if d d fπ += ∫ σp τqp q σ τ σ τ )e       (77) 

 
Let ˆ

fA  be the operator given by  
 

( ) ( ) ( ) (3 2 ˆ ˆˆˆ , 1 2 , i
fA d d fπ += ∫ σp τqp q σ τ σ τ )e       (78) 

 
We, then, have [17] 
 

1 2 1 2 1 2 2 1 1 2 1 2 1 2

__________
1 1

, , ,f W f F F F F f F F fψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψχ χ− −= = = ,χ    (79) 

 
where we have used the unitarity of the Fourier transform and the property of the Fourier transform that 

(
______

1F F )ψ ψ− = . Writing out explicitly, the expression for the inner product, we have   
 

( ) (
1 2 1 2, ,f W d d f Wψ ψ ψ ψ= ∫ p q p q p q), ,       (80) 
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whence 
 

( ) ( )
1 1 2 1 2', ,, ,f W d d f Wψ ψ ψ ψ ψ+ = ∫ p q p q p q  

 
( ) ( )

1 2 1 2 1 2', , ',, ,d d f W f W f Wψ ψ ψ ψ ψ ψ+ =∫ p q p q p q +     (81) 
      
where we have used the fact that 
 

( ) ( ) ( ) ( )( )
1 1 2

3 2 .
', 2 1 1, 1 2 1 2 ' 1 2iW d eψ ψ ψ π ψ ψ ψ−

+ = − +∫ p xp q x q x q x+  

( ) ( ) ( ) ( ) ( ) ( )3 2 3 2. .
2 1 2 11 2 1 2 1 2 1 2 1 2 ' 1 2i id e d eπ ψ ψ π ψ ψ− −= − + + −∫ ∫p x p xx q x q x x q x q x

( ) ( )
1 2 1 2, ',, ,W Wψ ψ ψ ψ= +p q p q

+

)

        (82) 
 
Similarly, the following properties of the inner product result from the corresponding properties of 

[17]: (
1 2, ,Wψ ψ p q

 

1 2 1 2,f W f Wλψ ψ ψ ψλ= ,         (83) 

1 2 2 1 2 1 2, ' , , 'f W f W f Wψ ψ ψ ψ ψ ψ ψ+ = +       (84) 

1 2 1 2,f W f Wψ λψ ψ ψλ= ,         (85) 
 
and also   
 

( ) ( ) ( )
1 2 1 2 1 2

1 2

, , ,, ,W W Wψ ψ ψ ψ ψ ψ=p q p q p q,  

( ) ( )
1 2 1 2, ,, ,d d W Wψ ψ ψ ψ 1 2ψ ψ= ∫ p q p q p q =       (86) 

 
where we have used the expression (72) for the Wigner function. 
 
We also have, by the Cauchy Schwartz inequality   
 

1 2 1 2, , 1. .f W W f fψ ψ ψ ψ 2ψ ψ≤ ≤       (87) 

 
Putting all these results together, we find that the inner product is a bonded sesquilinear form and 
hence, by the Riesz representation theorem, there exists an operator such that [17]  
 

1 2, 2
ˆ

ff W Aψ ψ 1ψ ψ=         (88) 

 
whence it follows that  
 

( ) ( )
1 2 1 2 1 2 1 2 1 2

___________

2 1 , , ,
ˆ , ,fA f W F F f d d F F fψ ψ ψ ψ ψ ψ ψ ψ ψ ψψ ψ χ χ= = = ∫ σ τ σ τ σ τ  
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( ) ( ) ( )
1 2

3 2
2

ˆ1 2 , ,d d F F f Tψ ψ 1π ψ= ∫ σ τ σ τ σ τ ψ      (89) 

 
whence [17] 
 

( ) ( ) (
1 2

3 2ˆ ˆ1 2 , ,fA d d F F f Tψ ψπ= ∫ σ τ σ τ σ τ)       (90)  
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