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Abstract.  
The Self-Adjoint Extension in the Schrodinger equation for potentials behaved  as an 
attractive inverse square at the origin is critically reviewed. Original results are also 
presented.  It is shown that the additional non-regular solutions must be retained for definite 
interval of parameters, which requires a necessity of performing a Self-Adjoint Extension 
(SAE) procedure of radial Hamiltonian.The "Pragmatic approach" is used and some of its 
consequences are considered for wide class of transitive potentials.  
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1. Introduction 
 
   Following to various physical requirements we have shown [1,2] that the full radial function 

must behave at the origin as , where is an arbitrary small positive number. 

Behavior of this kind is a more restriction than that which follows from the finiteness of the norm. 

Moreover because of singularity of Laplace operator at the origin after substitution 
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r
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→
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standard equation for reduced wave function ( )ru

ε+

→
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)( rr

, consisting only a second derivative, does not 
follow. It appears additional term with delta function [1,2] for avoiding of which radial function is 
strictly restricted by the behavior , where u

r
ε  is zero or positive integer according to the 

theory of distributions. Such behaviour takes place only for regular potentials (see, definitions 
below). As regards of singular potentials their consideration on the level of a reduced wave function 

 is hardly problematic and therefore we have to restrict our self by the equation for full radial 
function . It is worthwhile that our approach has been applied in paper [3] in study of magnetic 
resonances between fermions and antifermions at small distances.  

)(ru
)(rR

   It is well-known that the standard reduced radial Hamiltonian 
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is usually used  in case of attractive singular potentials for studying of self-adjoint extention 
(SAE)[4] . But it follows from our results that in such consideration without accounting above-
mentioned behavior at the origin the connection with original full 3-dimensional Schrodinger 
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equation is lost and hence the obtained results may only have mathematical interests. On the other 
hand the singular potentials can be considered on the basis of equation for full radial wave 
function . Among such potentials )(rR 2−r like behaving ones attract the most attention.  Number of 
physically significant quantum-mechanical problems manifest in such a behavior. Hamiltonians 
with inverse square like potentials appear in many systems and they have sufficiently rich physical 
and mathematical structures. Examples of such systems are:  Valence electron model for hydrogen 
like atoms in quantum mechanics [5], the theory of black holes [6], conformal quantum mechanics 
[7], Aharonov-Bohm effect [8], Dirac monopoles [9],  Calogero model [10],domains and spectra of 
the SAE of the Hamiltonian of the singular oscillator potential [11], SAE Hamiltonian in  a model 
of supersymmetric Quantum Mechanics with SUSY breaking [12], domains of the SAE and its 
(non-) scale invariance, as well as the departure of the Zeta function from the case of non-singular 
potentials [13]   and etc. Mathematical aspects of SAE in differential equations are considered also 
in [14].  
   Below we’ll study SAE problems in the Schrodinger equation directly on the basis of total radial 
function . Our consideration closely follows to our earlier paper [15], in which  the same 
boundary condition is used as here.  

)(rR

   At small distances 2−r like potentials have singular solutions together with regular ones. As a rule 
such solutions are ignored from the consideration, but by our opinion this action is not always 
reasonable and legitimate.  
   Detailed consideration of above-mentioned problems puts in doubt the motivations for neglecting 
of so-called additional (singular) solutions, which are based on mathematical sets of quantum 
mechanics without invoking of specific physical ideas.  
   The aim of this article is to elucidate some vague points, reviewing main papers in this direction. 
Original results are also presented. 
  In our paper we follow strictly to the vanishing boundary condition remarked above. 
   This paper is organized as follows: First, we bring the common reasonings under which these 
additional solutions are neglected usually. We show that none of them is convinced completely and 
this problem needs more profound investigation. In Section II we raise the problem, In Section III 
we show that under some circumstances it is necessary to preserve additional solutions. In Section 
IV SAE is introduced. In the foregoing Sections some consequences of retaining this additional 
(irregular) solution is discussed and various models are considered, where the problem of SAE 
takes place.  
  
2. Statement of Problem 
   
In this Section we briefly discuss the main properties of radial function and radial Hamiltonian in the 
light of above Introduction.We begin here by remembering of some definitions: 
   Full 3-dimensional wave function is presented as  
                                   ( ) ( ) ( )ϕθψ ,m

lrRr Υ=
r   πϕπθ 20;0;0 <≤≤≤>r                                (2.1) 

and satisfies  3-dimensional Schrodinger equation 
                                            ( ) ( )[ ] ( ) 02 =−+Δ rr

rr
ψψ rVEm                                                            (2.2) 

whereas the equation for radial function  takes form )(rR

                               ( )[ ] ( ) 0122
22

2
=

+
−−++ R

r
llRrVEm

dr
dR

rdr
Rd                                                   (2.3) 

If we follow to traditional way of exclusion the first derivative term by substitution 

                                              
r
rurR )()( = ,                                                                                     (2.4) 

instead of well-known reduced equation, explored in the  literature ([16,17] and any textbook) 
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it follows the equation with extra delta function term [1,2] 

                     ( ) ( ) ( ) ( )[ ] ( ) 021)(4 2
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   This unexpected fact changes many familiar things drastically. Detailed analysis shows [1,2] that 
for consistency of solutions in terms of reduced wave function with that of full Schrodinger 
equation, which is important physical requirement [17], it is necessary to impose reduced wave 
function by the condition . Moreover the character of tending to zero at the origin must be 
established carefully. We have proven that the reduced radial equation (2.5) is equivalent to the 3-
dimensional Schrodinger equation (2.2) only when the function has less singularity at the 
origin, than   or  

( ) 00 =u

)(rR
r/1

                                                     0lim
0

=
→

rR
r

                                                                                (2.7)    

As a result it follows that the standard radial Hamiltonian (1.1) without mentioned boundary 
condition carries only mathematical interest. Therefore instead of it we have to consider a 
Hamiltonian, corresponding to full radial function , namely )(rR

                                    ( ) ( )rmV
r
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dr
d

rdr
dH R 212
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in the framework of mentioned boundary condition.  

   At the end of this Section we want remember Pauli’s comment [18] in connection to this 

boundary condition. Pauli mentioned that 0)(lim
0

≠=
→

ArR
r

 are inadmissible, while  exists; 

i.e. only normalizability is not sufficient.   Note that ignorance of this fact are continued in the 
recently appeared papers as well [see, e.g. [19]), where only the square integrability is considered. 
Our condition follows also from the requirement of hermitisity of radial momentum operator 

∫
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0
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1 [20]. 

 
 3. Problem of singular solution 
 
Usually regular potentials are considered in the Schrodinger equation, which obey the following 
restriction at the origin  

                                                                                                                          (3.1)                      ( ) 0lim 2
0

=
→

rVr
r

In this case the radial wave function behaves as [16,20] 
                                                                                          (3.2) )1(

210
lim +−

→
+= ll

r
rCrCR

where  is orbital momentum. The second term in this expression is singular; it does not satisfy   
boundary condition (2.7)  and should be neglected ,even for 

l
0=l .1 

   It is also known, that for singular potentials, that behave like  
                                                                                                                         (3.3) ±∞→

→
Vr

r
2

0
lim

                                                 
1 That the R-function, as the solution of the Laplace equation,  does not contain negative integer powers of r was mentioned 

long time ago and appeared already in quantum mechanical textbooks (see,e.g. [21]) 
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          “falling to the center” takes place [22-23]. 
   We study potentials with intermediate behavior, called “transitive potentials” or “regular-    
singular potentials” with  

                                          0
2

0
lim VVr
r

±→
→

)0( 0 >= constV                                                        (3.4) 

Two signs in the (3.4) correspond to repulsive (+) and attractive (-) cases, respectively. 
For such potentials, the following statement can be proved: 
Theorem. The Schrodinger equation except the standard (non-singular) solutions has also 
additional solutions for attractive potential, like (3.4), when the following condition is satisfied 
                                                             02)1( mVll <+                                                            (3.5) 
.  The proof of this theorem is straightforward. 
   Indeed, let us consider the equation (2.3). For the attractive potential (3.4) at small distances this 
equation reduces to 

                                        04/12
2

2
=

−
−′+′′ R

r
PR

r
R                                                             (3.6) 

where   
                              02)2/1( 0

2 >−+= mVlP                                                             (3.7) 
Therefore, Eq. (3.6) has following solution 

                                                                       (3.8) addst
P

add
P

str
RRraraR +=+= −−+−
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   So we have two regions for this parameter . In the interval  P
                                                                                                                                 (3.9) 2/10 << P
the second term  must be also retained, because the boundary condition is 
fulfilled for it. The potential like (3.4) was firstly considered by K.Case [22], but he ignored the 

second term in solution. As regards of a region

add
P

add Rra =−− 2/1

2
1

≥P , only the first term                   

must be retained. 
st

P
st Rra =+− 2/1

   From eqs. (3.7)  and (3.9) follows the condition (3.5) of existence of additional states. If we 
demand the reality of P  (otherwise ’’falling’’ to center takes place [22,23) the parameter  would 
be restricted by condition 

0V

                                                                                                                            (3.10) 4/1)1(2 0 ++< llmV
   The last two inequalities restrict  in the following interval  02mV
                                   4/1)1(2)1( 0 ++<<+ llmVll                                                                  (3.11) 
   Intervals from the left and from the right sides have no crossing and therefore, if additional 
solution exists for fixed  and for some , then it is absent for another . 0V l l
   Thus we see from (3.5) that in the 0=l

0V
 state except the standard solutions there are additional 

solutions as well for arbitrary small , while for 0≠l  the “strong” field is necessary in order to 
fulfill (3.5).  
   It should be mentioned, that additional solutions survive such traditional requirement as the 
normalizability of wave function [23] and the finiteness of the integral from probability density 
[16].   The stronger restriction on the wave function is also considered in the textbooks [24,25]. 
Namely, the matrix elements of kinetic energy operator are required to be finite. To this end, the 

average value of kinetic energy operator 
m

pT
2

2 ><
=

r

 is evaluated by this additional function in 

 state for a Coulomb potential in the Klein-Gordon equation (This problem after corresponding 
modifications reduces to the Schrödinger equation with potential (3.4)) 

0=l
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         If we calculate this expression by using P

r
add rR −−

→

2/1

0
~ , then it indeed diverges. However, in our 

opinion this requirement is overestimated. The finiteness of the total energy could be sufficient, and 
indeed, this is the case. 

             We can demonstrate this by using generalized virial theorem [26] just for singular potential; It 
differs from the usual virial theorem and can be written as 

                                                addst aa
m
PVrVE
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where  and  are given by (3.8). It is evident that for “pure” standard ( ) and “pure” 
additional ( ) solutions the usual virial theorem follows from (3.13)  

sta adda
0=

0=adda

sta

                                                VrVE ′+=
2
1                                                                                  (3.14) 

   We see that for our potential (3.4) the total energy is finite. It is clear from (3.13) that singular 
parts are cancelled. It is also evident, that the finiteness of total energy follows from explicit 
calculations as well, without using virial theorem. It will be shown below.  
   Thus, the total energy is finite in case under consideration and the requirement of finiteness of 
kinetic energy separately is very strong and unjustified.  

There is an interesting remark in the book of R.Newton [27] for (3.4) like potentials. In (3.8) both 
terms are singular in the range (3.9). R.Newton pointed out that: “If 2/1<P , then the second term 
is non-regular in the sense that it dominates under the first one. At the same time this non-regular 
solution is square integrable as well and satisfies to the three – dimensional Schrödinger equation”. 
We think that this argument does not forbid the additional solution.  
  To summarize all above-mentioned restrictions and comments as well as other artificial ones, we 
conclude that there is no satisfactory argument in the framework of quantum mechanics, which 
avoids this additional solution self-consistently. 

Therefore, one has to retain this additional solution and study its consequences. 
 
4. SAE procedure for Radial Hamiltonian in pragmatic approach 
L 
   Let us remember some principal points of self-adjoint extension (SAE) procedure. 
      If for any functions  and , given operator u v Â  satisfies to the condition  
 
                                                  uvAuAv ˆˆ =                                    (4.1) 

then this operator is called hermitian (or symmetric). For self-adjointness it is required in addition 
that the domains of functions of operators  and  would be equal. As a rule, the domain of 
the 

Â +Â
+Â  is wider and it becomes necessary to make a self-adjoint extension of the operator . Â

   There exists a well known powerful mathematical apparatus for this purpose [28,29]. 
      It may happen that the operator is hermitian, but its self-adjoint extension is impossible, i.e. 
hermiticity is the necessary, but not sufficient condition for self-adjointness. Good example is the 
operator of the radial momentum r which is hermitian on functions that satisfy to the condition 
(2.7), but its extension to self-adjoint one is impossible (see, L.D.Faddeev’s remark in the 
A.Messiah’s book – Russian translation, footnote in p.336 [30]). 

p

   Our subject of interest is the radial Hamiltonian (2.8).                                                                         
   It is easy to see that for any two eigenfunctions  and  corresponding to the levels  and 

 of the radial Hamiltonian , the condition (4.1) takes the following form  

1u 2u 1E

2E
^

RH
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Where, for convenience, we have temporarily introduced the notation  
                                                2,1);()( == irrRru ii                                                              (4.3)                        
Moreover we mean only bound state solutions tending  to zero at infinity and wave functions are 
real.  
   It is also easy  to obtain   orthogonality condition :  
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      We see that (4.2) and (4.4) have the same right-hand sides. Or self-adjointness and orthogonality 
conditions are equal to the same expressions. Therefore because the self-adjoint operator has 
orthogonal eigenfunctions, requirement of orthogonality automatically provides self-adjointness 
of , which means that this way provides realization of SAE procedure. It is an essence of so-called 
“pragmatic approach” [31], which is much simpler and gets the same results as the strong 
mathematical full SAE procedure, provided the fundamental condition (2.7) is not violated. Moreover 
this method is physically more transparent. Just this method had been used by Case in his well-known 
paper [22]. Notice that all above considerations are true only for the radial Hamiltonian operator , 

because for other operators proportionality like (4.2) and (4.4) does not arise.  

RH

ˆ
RH

 
5.  SAE procedure for radial Hamiltonian in different cases 

 
   Let us now study in which cases are the right-hand sides of (4.3) and (4.4)  vanishing. We must 

distinguish regular and transitive potentials. 
     In case of regular potentials (3.1), as was mentioned above, we retain only first, regular (or 

standard) solution at the origin , )0( 2 =C

                             1                                                                             (5.1) 
0
~ +

→

l
st

r
st raR

Calculating the r.-h.-sides of (4.3) and (4.4) by this function, we get zero. Therefore for regular 
potentials the radial Hamiltonian is self-adjoint on regular solutions and it does not need SAE. ˆ

RH
   Contrary to this case, for transitive attractive (3.4) potential one has to retain the additional 

solution as well, because there are no reasons to neglect it. Now for both solutions, 

the r.-h.-sides of (4.3) and (4.4) are not zero in general. Indeed they equal to  

P

r
add rR −−

→

2/1

0
~

                            R.-H.-Side of (4.4) ( )addstaddst aaaaP 1221 −=                                           (5.2)                           
Remark. The case   must be considered separately, when the general solution of (3.8) behaves 
as                                                        

0=P

                               addstaddstr
uurraraR +=+=

−−

→
lnlim 2

1
2
1

0
                                          (5.3)             

Thus, instead of (4.4) one obtains 

                ( )addstaddst aaaadrrRREEm 1221
2

12
0

21 2
1)( −−=− ∫

∞

                       (5.4) 

So retaining additional solution causes the breakdown of orthogonality condition and 
consequently is no more a self-adjoint operator. ˆ

RH
   It is natural to ask – how to fulfil the orthogonality condition? It is clear, that in both 0≠P  and 

 cases one must require  0=P
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                                                                                                           (5.5) 01221 =− addstaddst aaaa
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st

add
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2
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1
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In this case the radial Hamiltonian becomes a self-adjoint operator. This generalize the Case 
result [22], who considered only standard solution. 

ˆ
RH

   So it is necessary to introduce so called SAE parameter, which in our case may be defined as 

                                                           
st

add
a

a
≡τ                                                                                (5.7) 

τ parameter is the same for all levels (for fixed orbital l  momentum) and is real for bound states. 
   From expressions (3.8) and (5.7) it is clear that we have three particular cases: 
i).   0=adda )0( =τ . We keep only standard solutions. 
ii).  0=sta )( ±∞=τ . We keep only additional solutions. 
iii). ∞±≠ ,0τ  . Solutions are neither “pure” standard nor “pure” additional. 
   In the last case this parameter becomes arbitrary one and it may be restricted only from some 
physical requirements. In other words the mathematical sets of quantum mechanics may not be 
enough without invoking of specific physical ideas. 
 

6.  ’’Fall’’ of a particle to the center 
 

As a first application of retaining of additional solution let us reconsider the classical problem of 
particle’s “falling to the center”. It is described in many textbooks and is used in many articles. 
Most frequently, the book [23] is referenced. In this book, potential of kind (3.4) is regularized near 
the origin: in the range,  this potential is taken as constant and at the end, this 
regularization is removed . Using this procedure it is argued that the additional solution 

must be neglected in (3.8). However, because 

00 rr ≤≤
)00 →r(

P
addadd raR

−−
= 2

1

 satisfies   fundamental 

requirement (2.7) in the interval (3.9), as we think, this regularization and subsequent neglecting is 
not necessary.  We can see it in an alternative way. 
   First let us make some remarks concerning to nodes of wave function. According to well-known 
theorem for the regular potentials (3.1) about the number of nodes for bound states (see, e.g. [20]), 
the n-th eigenfunction has n-1 nodes (or the ground state eigenfunction does not have nodes). It is 
easy to show that this theorem remains valid for the attractive potentials like (3.4). Besides that, the 
second theorem, according to which the number of bound states coincides with the number of nodes 
of Schrodinger wave function in )(rR 0=E state [20], is also valid for the potential (3.4). Below we 
consider examples, where these properties are applied. 
   Let us rewrite equation (3.7) (in resemblance to [23]) 

                                         02
2

2
=+′+′′ R

r
R

r
R γ                                                                       (6.1) 

where the constant 
                                                 )1(2 0 +−= llmVγ                                                                                  (6.2)                 

 is related to above introduced P  as follows 
                                                  γ−= 4/1P                                                                                          (6.3) 

Let’s search the solution of equation (6.1) in the form srR ~ . Then we find quadratic equation for 
s    

                                                                                                                                          (6.4)  02 =++ γss
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with solutions   
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2
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1 γ−+−=s  γ−−−= 4/1
2
1

2s                                           (6.5) 

   Consider first the case 4/10 << γ  or 2/10 << P , when  and are real numbers. Thus, the 
general solution of equation (6.1) should be  

1s 2s

                                          addst
PPss uuBrArBrArR +=+=+=

−−+−
2
1

2
1

21                            (6.6)                           
  Here  is more singular at the origin, than , but in the interval (3.9) they both have the 
same properties and must be retained. As one saw in the previous section, this causes introduction 
of SAE procedure for Hamiltonian.        

addu stu

   If 0<γ  or ,  one must keep only . 2/1>P stR
   When 4/1>γ , or P  becomes imaginary number, then   and  should be mutually conjugated 
complex numbers 

1s 2s

                                                   ;4/1
2
1

1 −+−= γis                                                               (6.7) •= 12 ss

In this case the general solution of Eq. (6.1) will be 

( )[ ] ([ riBrriArBrArR
ii

ln4/1expln4/1exp 2
1

2
14/1

2
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2
1

−−+−=+≈
−−−−−−+−

γγ
γγ )](6.8)                                

   We see that both solutions oscillate and have same singularity at origin. Taking into account that 
for bound states the wave function R must be real, we are forced to require AB =•  and therefore 

                                                  ( αγ +−≈
−

rArR ln4/1cos2
1

)                                                         (6.9)           
where  α  is an arbitrary constant – the phase of B relative to A . Therefore retaining of both 
solutions causes introduction of “superfluous” parameterα , which really is a SAE parameter [32]. 
If we follow the discussion given in [23], we can show that wave function (6.9) corresponds to 
“falling to the center”.  
   Therefore, it is evident that if we retain  in addR 4/10 << γ  domain ( ), the problem 
of “falling to the center” can be considered without modification (regularization) of potential. It is 
just the alternate view to this problem. 

2/10 << P

   Moreover, one  can easily confirm that in case 4/1>γ , the requirement of finiteness of kinetic 

energy gives the following limitation 
2
1Re 2,1 −>s , but now 

2
1Re 2,1 −=s .   Therefore, in this case 

both solutions have the same behavior and give infinite kinetic energy. Thus, the argument of 
authors in Ref. [24,25] against the additional solution fails.  

                  
7. What is new for Inverse square potential when we retain additional solutions?  
 
 Consider the following potential                                                           

                                                     2
0

r
V

V −= ,                                                                   (7.1) 00 >V

in the whole space.  There is only one worthy case, namely 2/10 << P .   
Now the wave function R for  has the form (6.6) in the whole space. It has a single zero, 

determined by  
0=E

                                               
P

A
Br

2/1

0 ⎟
⎠
⎞

⎜
⎝
⎛−=                                                                               (7.2) 

(It is evident from this relation that constants A and B must have opposite signs in order for  to be 
real number). Therefore, the wave function has only one node and according to well-known 

0r
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theorem we have one bound state only. This result differs from that considered in any textbooks of 
quantum mechanics. 
   We can give very simple physical picture of how the additional solutions arise. For this purpose, 
let us rewrite the Schrodinger equation near the origin for attractive potential (3.4) in the form 

                                                [ ] 0)(22
=−+′+′′ RrVEmR

r
R ac                                                             (7.3)                         

where 

                                                             2

2

2
4/1

mr
PVac

−
=                                                                           (7.4) 

   Consider the following possible cases: 
i). If , then  and it is repulsive centrifugal potential and as we saw, one has no 
additional solutions. 

2/1≥P 0>acV

ii). If , then . Therefore, it becomes attractive and is called as quantum anti-
centrifugal potential [33].This potential has  states, because the condition (2.7) is fulfilled in 
this case. 

2/10 << P 0<acV

addR

iii). If then becomes strongly attractive and one has “falling to the center”.  ,02 <P acV
   Therefore, the sign of the potential  determines whether we need additional solutions or not. acV
   It was thought that potential (7.1) had no levels out of region of “falling to the center” (See e.g. 
[22,23]), but in [5,34,35] single level was found by complete SAE procedure, while the boundary 
condition and the range of parameter, like P are questionable there. Here we’ll show explicitly that 
this potential has exactly a single level, which depends on the SAE parameter τ .  
   Let’s take the Schrodinger equation for potential (7.1) 

                                       04/12
2

2
2

2

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−++ R

r
Pk

dr
dR

rdr
Rd                                             (7.5)            

where P  is given by (3.7)  and  
                                                          ;022 >−= mEk )0( <E                                                                 (7.6) 

   One can reduce Eq.(7.5) to the equation for modified Bessel functions by substitutions 

                                 krx
r
rfrR == ;)()(                               (7.7) 

    leading to the following equation  

                        ( ) 0)()()( 22
2

2
2 =+−+ xfPx

dx
xdfx

dx
xfdx                        (7.8) 

   This equation has 3 pairs of independent solutions: and ,  and , 
 and   ,where  and   are  Bessel and MacDonald modified  

functions [36], respectively. Consider these possibilities separately.  

)(krI P

)(kr

)(krI P− )(krI P )(krKe P
Piπ

)(krI P− )(krKe P
Piπ )(krI P K P

1) The pair )(krI P  and  )(krI P− : 
      The general solution of (7.5) is      

                                           [ )()(2
1

krBIkrAIrR PP −
−

+= ]                                                                   (7.9) 
   Consider the behaviour of this solution at small and large distances: 
a) Small distances 
      In this case [36] 

                                           
)1(

1
2

)(
0 +Γ

⎟
⎠
⎞

⎜
⎝
⎛≈

→ P
zzI

P

z
P                                                                               (7.10) 

Then it follows from (7.9) and (7.10) that 
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rkArrR
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r
                                   (7.11) 

From (3.8), (7.11) and the definition (5.7) we obtain  τ, 

                                                
)1(
)1(2 22

P
Pk

A
B PP

−Γ
+Γ

= −τ                                                                (7.12) 

b) Large distances 
     In this case [36]  

                                                            
z

ezI
z

z
P

π2
)( ≈

∞→
                                                                           (7.13) 

and  

                                                 { } kr

r
eBArR +≈

∞→ π2
1)(                                                              (7.14)                         

  Therefore, requiring vanishing of  at infinity, we have to take )(rR
                                                          AB −=                                                                                         (7.15)  

and from (7.12), (7.15) and (7.6) we obtain one real level (for fixed orbital l  momentum, satisfying 
(3.5)),  

                                             PP

P
P

m
E

11
1

)1(
)1(2

⎥⎦
⎤

⎢⎣
⎡−⎥

⎦

⎤
⎢
⎣

⎡
−Γ
+Γ

−=
τ

 ;   2/10 << P                                     (7.16) 

Eq. (7.16) is a new expression derived as a consequence of orthogonality condition in the 
framework of “pragmatic” approach. It differs from the form obtained in [5,34,35], where the 
complete SAE was used, while the boundary condition and the range of parameter, like P, are 
questionable.            
   Reality of energy in (7.16) restricts τ parameter to be negative 0<τ . In general τ is a free 
parameter but some physical requirements may restrict its magnitude. Note that this level is absent 
in standard quantum mechanics without SAE procedure.   
   To obtain corresponding wave function, take into account   a well-known relation [36] 

                                           [ )()(
sin2

)( zIzI ]
P

zK PPP −= −π
π                                                             (7.17) 

Then the wave function corresponding to the level (7.16) is 

                                           )(sin2 2
1

krKPrAR P⋅−=
−

π
π

                                                                 (7.18) 

  Because of exponential damping  

                                          z

z
P e

z
zK −

∞→
≈

2
)( π                                                                                          (7.19) 

the function (7.18) corresponds to the bound state.  It is also known that  function has no 
zeroes for real P  

)(zK P

)2/10( << P and therefore (6.14) corresponds to single bound state.  Moreover, 
wave function (7.18) satisfies the fundamental condition (2.7) for  2/10 << P . 
2)   The pair  and  ;   )(krI P )(krKe P

Piπ

      The general solution of (7.5)   is 

                                            ⎥⎦
⎤

⎢⎣
⎡ +=

−
)()(2

1

krKBekrAIrR P
Pi

P
π                                                         (7.20) 

At large distances  

                                    ( )
π

π
π

π

22
1)(lim

kr
krPikr

r

eAeBeAerR ≈+≈ −
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                                              (7.21) 
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Therefore we have no bound states.  
   The same follows for pair  and . Thus only pair  and  has a single 
bound state.  

)(krI P− )(krKe P
Piπ )(krI P )(krI P−

 Noting that the considerations of all possible pairs of solution is, in general, necessary, because 
there is no guide principle, by which one can guess which pair must be considered. 

 Let us make some comments, concerning to the application of above results.  
a) Owing to the fact that the Schrodinger equation has a single level for inverse square potential after 
SAE procedure, one can make some comments about monopole problem where exactly like potential 
(7.1) is applied. Contrary to common opinion there may appear new bound state solutions after a self-
adjoint extension.  This point will be discussed elsewhere.  
b) In [34] it was noticed that single bound state may be observed experimentally in polar molecules. 
For example,   and HCl exhibit anomalous electron scattering [37,38], which can be explained 
only by electron capture. Indeed, for those molecules electron is moving in a point dipole field, and, 
in this case the problem is reduced to the Schrodinger equation with a potential (7.1). Thus, a level   
(7.16) obtained theoretically may be observed in those experiments. 

SH 2

     
8.  The valence electron model  

  
   It is well known that the potential  

                                                    
rr

V
V α

−−= 2
0  ;    ( )0,0 >αV                                                     (8.1)                        

is used for the description of alkaline metal  (Li,Na,K,Rb,Cs) atoms’ spectra [5]. Add to this the 
similar potential "naturally" arises in the Klein – Gordon equation for the Coulomb interaction, for 
which SAE will be discussed below.    
   This potential, unlike to the Coulomb one, has a singular 2r− like behaviour at the origin. Therefore 
according to our strategy one must consider equation for the function, which in dimensionless 
variables takes form  

)(rR
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                                     (8.2)                           

where  

                                                                 ;8 arrmE =−=ρ   0
8

2
>

−
=

mE
mαλ ,  0<E                      (8.3)  

      and is again done by  Eq.(3.7).  P
      If we use the notation of [39],  

                                                                )(22
1

ρρ
ρ

FeR
P −+−

= ,                                                               (8.4)  
the equation for confluent hypergeometric functions follows 

                                                                  0)2/1()12( =−+−′−++′′ FPFPF λρρ                           (8.5)  
  This equation has four independent solutions, two of which constitute a fundamental system of 

solutions [40]. They are (in notations of [40]):                 

                                                                                                               (8.6) 
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where   
                                                        λ−+= Pa 2/1 ,  Pb 21 +=                                                 (8.7)   
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   Only  is considered in the scientific articles, as well as in all textbooks (see, e.g. [5, 23]). 
Requiring   the standard levels follow. Other solutions  have singular 
behaviour at the origin and usually they are not taken into account. But as was mentioned 

frequentative, the singularity in case of attractive potentials like (3.4) has the form 

1y
na −= ,...)2,1,0( =n ),,( 752 yyy

P
r

−−
2
1

 and in the 
region  other solutions must be considered as well. Therefore, the problem becomes more 
“rich”.    

2/1<P0 <

   Let us consider a pair  and .The general solution of (8.5) is 1y 2y

                                                         
( )
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−+−

                         (8.8)  

 From the behaviour of (8.8) at the origin and from (5.7), we obtain the following expression for 
SAE τ  parameter     

                                                           
PmEC

C

)8(
1

1

2

−
=τ                                                                        (8.9) 

  Note on the other hand that, R must decrease at infinity. From well-known asymptotic properties 
of confluent hypergeometric function F, we find the following restriction 
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   It gives an equation for eigenvalues in terms of τ  parameter    
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)2/1(

P
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P
P P

+Γ
−Γ

−−=
+−Γ
−−Γ τ

λ
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   We see that this is very complicated transcendental equation for E, depending on τ parameter. There 
are two values of τ, when this equation can be solved analytically: 
i) 0=τ . In this case we have only standard levels, which can be found from the condition that                

)P+Γ 2/1( − λ  has poles 
                                                          rnP −=+− λ2/1 ;  ...2,1,0=rn                                                 (8.12)     

ii) ±∞=τ . In this case we have only additional levels, obtained from the poles of  )2/1( P−−Γ λ  
                                                           rnP −=−− λ2/1 ;  ...2,1,0=rn                                                 (8.13)          

 Thus, in these cases i) and ii) one can obtain explicit expression for standard and additional levels 
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where signs (+) or (–) correspond to standard and additional levels, respectively. 
   iii) For arbitrary τ  parameter the equation (8.11) is discussed in the Appendix A of [15]. 
   Let us study the asymptotic of equation (8.11) for large values of λ , which allows us 
approximately find explicit dependence of E on τ .As it is evident from (8.11), arguments of 

functions are negative for large values of Γ λ  . Therefore if we reflect the signs of arguments with 
the aid of well-known relation [36] 
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−=−ΓΓ                               (8.15) 

 we find the approximate dependence of energy on τ  parameter  
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We note that only the Eq. (8.12) was known till now. So the equation (8.11) and its consequences 
are new results.  
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   Notice also that, if we take  in (8.1), then we obtain well-known Kratzer potential [5], but in 
this case the condition (3.5) is not satisfied. Therefore there are no additional levels for Kratzer 
potential. 

00 <V

   In monograph [5] energy levels for alkaline metal atoms are written in Ballmer’s form                                       

                                                  2
1

n
REn ′

−=′                                                                          (8.17)                        

where R is a Rydberg constant and is the effective principal quantum number n′

                                                             1+′+=′ lnn r        ...)2,1,0( =rn                                              (8.18) 
l ′  is defined from equation                                                                                                                                        

                                                                08)1()1( mVllll −+=+′′                                         (8.19)           
or 
                                       0

2 2)2/1(2/12/1 mVlPl −+±−=±−=′                                       (8.20)                          
Only (+) sign was considered in front of the square root until now. In [5] was considered to be 
small and after expansion of this root, approximate expression for the standard levels was derived 
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where  

                                                             
12
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+
−=Δ≡Δ

l
mVst

ll                                                                 (8.22) 

          is so - called Rydberg correction (quantum defect) [5]. 
   As regards of additional levels, this procedure is invalid, because  is bounded from below 
according to (3.5). 

0V

   Aapproximate expansion for additional levels is possible only for 0=l . We have in this case 

                                                       )41(
2
12

4
1

00 mVmVP −≈−=                                            (8.23) 

 
 
0V  may be arbitrary small, but different from zero, because in this case  and we have no 

additional levels. 
2/1=P

   Let us rewrite now the function (8.8) in united form by using the following relation for the 
Whittaker functions [40] 
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Then from (8.3), (8.8), (8.10) and (8.24) we derive 

                            ( ) ( ) ( ) ( )rmEW
r

PPPCrR P 821sin2/121)( ,1 −
+

−−Γ+Γ= λπ
πλ                    (8.25) 

Because the Whittaker function has an exponential damping [40]  )(, xW ba

                                                          ax

x
ba xexW 2

1

, )(
−

∞→
≈ ,                                                             (8.26) 

it is clear that (8.25) corresponds to a bound state. Moreover, it satisfies the fundamental condition 
(2.7) for  interval.   2/10 << P
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   Therefore, for ∞±= ,0τ  the standard and additional levels are obtained from (8.14) with 
corresponding wave functions                                                                   

                                   ( ρλρ
ρ
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                                   ( ρλρ
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add −−−=
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   For arbitrary ±∞≠ ,0τ  the energy can be obtained from the transcendental equation (8.11), while 
the wave function is given by (8.25).  
   The united form (8.25) is also new and it is a consequence of the SAE procedure.  
   According to [40] our function (8.25) takes the following form  
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where   is one of the above mentioned solutions, (8.6), namely . Its zeros are well-

studied [40]: For real   (note that in our case  

),,( xbaΨ 5y

ba, PbPa 21;
2
1

−=−−= λ  are real numbers) this 

function has finite numbers of positive roots. However, for the ground state there are three cases 
where this function has no zeros:  
1) ; 2) ; 3)  and0>a 01 >+− ba 01 <<− a 10 << b . Only the last case is interesting for us, because 

PbP 21; −=a
2
1

−−= λ  and P is in the interval (3.9). It means 

                                                   0
8

22/11 <
−

−−<−
mE

mP α                                                      (8.30) 

   In other words, the ground state energy, which is given by transcendental equation (8.11), must 
obey this inequality. 
   The wave function in form of (8.29) is new . 
   Let us now make some comments: 

I)  One can easily obtain the existence condition of additional levels from (8.21) and (3.5) in diverse 
form 

                                                             1+<Δ< ll l                                                                           (8.31)       
   If we use data of monograph [5], we obtain that for 0=l  states only Li, for only Ka and for 

only Cs satisfy (8.31) (i.e. they have additional solutions and it is necessary to carry out SAE 
procedure), and Na and Rb have no additional levels. The condition (8.31) is also new, which helps us 
to determine which alkaline metals need SAE extension of Hamiltonian.  

1=l
2=l

II)  We have following situation in case of choosing another pairs of solutions of (8.6): 
1) ( and ) -  do not have levels.   5y 7y
2) (  and ) - give only standard levels (nothing new). 1y 5y
3) ( and ) - give only pure additional levels (2y 5y ±∞=τ ), which is unjustified physically, because 
the standard levels are completely lost. 
4) ( and ) - not permissible, because in this case 2y 7y 0=τ  is forbidden and we have no standard 
levels.  

5) (  and ) - not allowed, because in  limit 1y 7y 0→α  no levels follow for  potential 2
0

r
V

V −= , but  as 

we’ve seen above   there exists a single level for this potential. 
 
 
  10.  Conclusions  
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   In this paper we have studied the inverse square potential in the framework of equation for the full 
radial function ( )R r  exploring its boundary behavior near the origin, established by us in    [1,2]. 
We have shown that there are no reasons to neglect the singular solution and therefore we retain it. 
We have investigated the possibility of realization of SAE procedure in the pragmatic approach, 
basing on orthogonality property of solutions under consideration. This procedure introduces an 
extra parameterτ . 
   We emphasize that after performing of SAE procedure 2r−  like behavioring potentials get one 
level of bound state. We derived this both on general framework and by explicit solution of 
corresponding equation. It is natural, that the energy eigenvalue depends on the SAE parameterτ .  
-In parallel of this we discussed analogous problems, considered by other authors. Our result differs 
from their mainly in that that we retained a non-regular solution. Moreover some differences result 
from the difference of the areas of parameters as a consequence of used boundary conditions.  

- Consideration of particle’s falling to the center is a peculiar example, when regularization of 
2r− term in potential is avoided in this case by inclusion of both solutions and performing SAE 

procedure.  The regularization in this example is a particular case of SAE 
- It must be underlined that obtained results are depending on the SAE parameterτ  which is 
arbitrary. It is natural that in particular cases this parameter could be determined in accordance of 
considered physical problems. 
- We considered also physically quite realistic examples, such as a valence electron model and 
relativistic Klein-Gordon equation with the Coulomb potential, which is considerably related to the 
previous example.  
- We obtain a solution for the radial wave function in terms of special functions and present a united 
expression for this solution, from which the separate cases follow. The problem of zeros of this 
function is also investigated and the definite predictions about the levels of alkaline metal atoms are 
presented.  
      Notice at last that  many related problems are considered by us in the earlier paper [15], which 
was based on the considered above boundary condition ( )0 0u = , while that time we did not know, 
that this restriction is so strong and important.  More relevant references may be found also in that 
paper. 
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