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1.  INTRODUCTION 
       The slicing and threading points of view today are introduced, respectively, by Misner, Thorne 
and Wheeler [1] in 1973 and , Landau and Lifshitz [2] 1n 1975. Both points of view can be traced 
back when Landau and Lifshitz [3] in 1941 introduced the threading point of view splitting of the 
space-time metric. After them, Lichnerowicz [4] introduced the beginning of slicing point of view. 
In threading point of view, splitting of space-time is introduced by a family of time-like 
congruencies with unit tangent vector field, may be interpreted as the world-lines of a family of 
observers, and it defines a local time direction plus a local space through its orthogonal subspace in 
the tangent space. Let1  ,M g  be a 4-dim manifold of a stationary space-time. We now can 

construct a 3-dim orbit manifold  as 
M

M
G

  with projected metric tensor ij  by the smooth map 

 : M M  where  p denotes the orbit of time-like Killing vector  
t




 at the point p M and 

G is 1-dim group of transformations generated by the time-like Killing vector of the space-time 
under consideration, [5,6]. The threading decomposition leads to the following line element, [2, 6]: 

                                    22 i i j
i ijds g dx dx h dt g dx dx dx 

     ,                                    (1) 

where ij ij i jg hg g    , in which  0i
i

g
g

h
   and  00h g . In a space-time  with time dependent 

metric (1), the gravitoelectromagnetism force acting on a relativistic test particle whose mass m due 
to time dependent gravitoelectromagnetism2 fields as measured by threading observers is described 
by the following equation3 , we use gravitational units with 1c  , [9]: 
1The Greek indices run fron 0 to 3, the Latin indices take values 1 to 3.  
 2For more details about gravitoelectromagnetism see references [7,8] 

3The vector C = A B  has components as 
ijk

i
j k

e
C A B


 in which  det ij   and 3-dim Levi-

Civita tensor ijk  is antisymmetric in any exchange of indices while 123
23 1.i   [2] 

                          ,                    (2) 
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where 
21

i
i m 










p  such that 2 i j

ij       in which 
 1

i
i

k
kh g




 


with 
i

i dx

dt
   and 

starry total derivative with respect to time is defined as i
i

d

dt t


 
 

  


 where  
1

t th

  


 
  and 

i t ig
t





  


. In equation (2), the last term is defined as  

                                      2i i j i k
jk kf D  

   ,                                                                    (3)                   

where the 3-dim starry Christoffel symbols are defined with the following form  

                     1

2
i il
jk jl k kl j jk l    

     ,                                                                           (4) 

and deformation rates of the reference frame with respect to the observer are represented by tensors 
1

2
ij

ijD
t





 and 

1

2

ij
ijD

t


 


. Finally, time dependent gravitoelectromagnetism fields are 

defined in terms of gravioelectric potential ln h   and graviomagnetic vector potential 

 1 2 3, ,g g gg =  as follows4 

         ; ,i
i i

gg
E

t t
   




    

 
E = -

                                             (5) 

       2

i ijk

k jg
h h




 


  
B B

g;                                                (6) 

________________________________________________________________________________ 

4Here, curl of an arbitrary vector in a 3-space with metric ij is defined by    2

ijk
i

k jA




 A  

while the symbol [ ] represent the anticommutation over indices 
 
 
1.1   Classical motion of a test particle in the Bianchi type IX spacetime and calculation of the 
gravitoelectromagnetism force 
As is well known, Bianchi type cosmological models play a vital role in general relativity to discuss 
the early stages of evolution of universe. Also, the Bianchi models can be coupled to any 
gravitational Theory. The Bianchi type IX space-time is important because FRW with positive 
curvature. Taub-NUT and de Sitter space-times etc. correspond to this space-time . We now 
consider the Rianchi type IX metric in Cartesian coordinates as  
               2 2 2 2 2 2 2 2 2 2 2 2cos sin 2 cosds dt a dx b dy a y b y dx a ydxdy                 (7) 

where a  and  b are unknown functions of t. Firstly, it is not difficult to check that all components of 
gravitoelectromagnetism fields are zero and also the nonzero 3-dim starry Christoffel symbols are  
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 

 

 

1
12

2
1
23

2
13

2
33

3
12

cot ,

1 1 2 cos
,

2sin

sin ,

2 1 sin cos ,

,
sin

1 cos

f y

l y

y

l y

l y y

l

y

l y



























 


 

 



 

                                                            (8) 

where 2 22l a b .  In continuation, we will determine the trajectory of a test particle with mass 
m that moving in the Bianchi type IX space-time by using the Hamilton-Jacobi equation, [10,11]. 
Therefore, this equation is of the form 

    
22 2 2

22
2

1 1
cot 2cos 0

2 sin

S S S S S S
b y y mb

t l x x x z yy

                                            
     (9) 

By general procedure for solving the Hamilton-Jacobi equation, a natural form will be  
                           1 2, , , x zS t x y z S t p x S y p z    ,                                                           (10) 

where xp  and  zp are constants and can be identified as the momentum of the test particle along x  

and z -directions. If we substitute the ansatz (10) in Hamilton-Jacobi equation, then we get the 
following integral expressions for unknown functions 1S  and 2S : 

                         1S dt                                                                                                         (11) 

                         2S dt                                                                                                         (12) 

 

where 
1/22 2

2
2 2
zp L

m
a b


 

   
 

 and  

1/22

2
cos

sin
x yp y p

L
y


  
    
   

, while L is the constant of 

separation and 1   . Now the equations for the trajectory can be obtained by considering the 
following conditions, [10,11]: 

    tan , tan , tan
x y

S S S
cons t cons t cons t

L p p

  
  

  
                             (13) 

we can take the above constants to be zero without lose of generality. Then, the set of equations 
(13) change to the following relations respectively 

                              

 

 

2

2 2

2

, (14)

cos cos
, (15)

sin

cos
. (16)

sin

x y

x

x y

dL dy

b

p y p ydy dt
x p

y a

p y p dy
z

y



 
 




 


 




 

 

  

Next, with employing equations (14-16), we find  
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2 2

2
2 2

1
cos sin cos 1,

2

sin , 2
sin

cos 3

x y

i

x y

p y y p y i
l

y i
b y

p y p i

 




         
  


            (17) 

As a result, after some calculations, yields 

                            
21

m 





.                                                                               (18) 

Finally, with the help of equations (17-18) and after tedious calculations, we prove that 
                                                       F = 0                                                                (19) 
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