PACS number: 04.20.-q

CALCULATION OF THE GRAVITOELECTROMAGNETISM FORCE FOR THE BIANCHI TYPE IX SPACETIME

Morteza Yavari
Department of Physics, Islamic Azad University, Kashan Branch, Kashan, Iran

Abstract

The gravitoelectromagnetism force acting on the test particle in the Bianchi type IX metric is calculated.

Keywords: gravitoelectromagnetism.

1. INTRODUCTION

The slicing and threading points of view today are introduced, respectively, by Misner, Thorne and Wheeler [1] in 1973 and, Landau and Lifshitz [2] 1n 1975. Both points of view can be traced back when Landau and Lifshitz [3] in 1941 introduced the threading point of view splitting of the space-time metric. After them, Lichnerowicz [4] introduced the beginning of slicing point of view. In threading point of view, splitting of space-time is introduced by a family of time-like congruencies with unit tangent vector field, may be interpreted as the world-lines of a family of observers, and it defines a local time direction plus a local space through its orthogonal subspace in the tangent space. $\operatorname{Let}^{1}\left(M, g_{\alpha \beta}\right)$ be a 4-dim manifold of a stationary space-time. We now can construct a 3-dim orbit manifold as $\tilde{M}=\frac{M}{G}$ with projected metric tensor $\gamma_{i j}$ by the smooth map $\varsigma: M \rightarrow \tilde{M}$ where $\varsigma(p)$ denotes the orbit of time-like Killing vector $\frac{\partial}{\partial t}$ at the point $p \in M$ and G is 1-dim group of transformations generated by the time-like Killing vector of the space-time under consideration, [5,6]. The threading decomposition leads to the following line element, [2, 6]:

$$
\begin{equation*}
d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta}=h\left(d t-g_{i} d x^{i}\right)^{2}-\gamma_{i j} d x^{i} d x^{j}, \tag{1}
\end{equation*}
$$

where $\gamma_{i j}=-g_{i j}+h g_{i} g_{j}$, in which $g_{i}=-\frac{g_{0 i}}{h}$ and $h=g_{00}$. In a space-time with time dependent metric (1), the gravitoelectromagnetism force acting on a relativistic test particle whose mass m due to time dependent gravitoelectromagnetism ${ }^{2}$ fields as measured by threading observers is described by the following equation ${ }^{3}$, we use gravitational units with $c=1$, [9]:
${ }^{1}$ The Greek indices run fron 0 to 3, the Latin indices take values 1 to 3 .
${ }^{2}$ For more details about gravitoelectromagnetism see references [7,8]
${ }^{3}$ The vector $\boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{B}$ has components as $C^{i}=\frac{e^{i j k}}{\sqrt{\gamma}} A_{j} B_{k}$ in which $\gamma=\operatorname{det}\left(\gamma_{i j}\right)$ and 3-dim LeviCivita tensor $\varepsilon_{i j k}$ is antisymmetric in any exchange of indices while $\varepsilon^{123}=\varepsilon_{i 23}=1$.[2]

$$
\begin{equation*}
{ }^{*} \mathrm{~F}=\frac{{ }^{*} d^{*} \mathrm{p}}{d t}-\frac{m}{\sqrt{1-{ }^{*} v^{2}}}\left\{{ }^{*} \mathbf{E}+{ }^{*} v \times{ }^{*} \mathrm{~B}+\mathrm{f}\right\} \tag{2}
\end{equation*}
$$

where ${ }^{*} \boldsymbol{p}^{i}=\frac{m^{*} v^{i}}{\sqrt{1-{ }^{*} v^{2}}}$ such that ${ }^{*} v^{2}=\gamma_{i j}{ }^{*} v^{i *} v^{j}$ in which ${ }^{*} v^{i}=\frac{v^{i}}{\sqrt{h\left(1-g_{k} v^{k}\right)}}$ with $v^{i}=\frac{d x^{i}}{d t}$ and starry total derivative with respect to time is defined as $\frac{{ }^{*} d}{d t}=\frac{{ }^{*} \partial}{\partial t}+^{*} v^{i *} \partial_{i}$ where $\frac{{ }^{*} \partial}{\partial t}=\frac{1}{\sqrt{h}} \frac{\partial}{\partial t}$ and ${ }_{* i}={ }^{*} \partial_{t}+g_{i} \frac{\partial}{\partial t}$. In equation (2), the last term is defined as

$$
\begin{equation*}
f^{i}=-\left({ }^{*} \lambda_{j k}^{i} v^{j}+2 D_{k}^{i}\right)^{*} v^{k} \tag{3}
\end{equation*}
$$

where the 3-dim starry Christoffel symbols are defined with the following form

$$
\begin{equation*}
* \lambda_{j k}^{i}=\frac{1}{2} \gamma^{i l}\left(\gamma_{j l * k}+\gamma_{k \mid * j}-\gamma_{j k * \mid}\right), \tag{4}
\end{equation*}
$$

and deformation rates of the reference frame with respect to the observer are represented by tensors $D_{i j}=\frac{1}{2} \frac{* \partial \gamma_{i j}}{\partial t}$ and $D^{i j}=-\frac{1}{2} \frac{* \partial \gamma^{i j}}{\partial t}$. Finally, time dependent gravitoelectromagnetism fields are defined in terms of gravioelectric potential $\phi=\ln \sqrt{h}$ and graviomagnetic vector potential $\boldsymbol{g}=\left(g_{1}, g_{2}, g_{3}\right)$ as follows ${ }^{4}$

$$
\left.\begin{array}{ll}
{ }^{*} \boldsymbol{E}=-{ }^{*} \nabla \phi-\frac{\partial g}{\partial t} ; & { }^{*} E_{i}=-\phi_{* i}-\frac{\partial g_{i}}{\partial t}, \\
{ }^{*} \boldsymbol{B} \tag{6}\\
\sqrt{h} & ={ }^{*} \nabla \times \boldsymbol{g} ;
\end{array} \quad \frac{{ }^{*} \boldsymbol{B}^{i}}{\sqrt{h}}=\frac{\varepsilon^{i j k}}{2 \sqrt{\gamma}} g_{\left[k^{*}\right]}\right]
$$

${ }^{4}$ Here, curl of an arbitrary vector in a 3 -space with metric $\gamma_{i j}$ is defined by $\left({ }^{*} \nabla \times \boldsymbol{A}\right)^{i}=\frac{\varepsilon^{i j k}}{2 \sqrt{\gamma}} A_{{ }_{l k * j}}$ while the symbol [] represent the anticommutation over indices

1.1 Classical motion of a test particle in the Bianchi type IX spacetime and calculation of the gravitoelectromagnetism force

As is well known, Bianchi type cosmological models play a vital role in general relativity to discuss the early stages of evolution of universe. Also, the Bianchi models can be coupled to any gravitational Theory. The Bianchi type IX space-time is important because FRW with positive curvature. Taub-NUT and de Sitter space-times etc. correspond to this space-time . We now consider the Rianchi type IX metric in Cartesian coordinates as

$$
\begin{equation*}
d s^{2}=d t^{2}-a^{2} d x^{2}-b^{2} d y^{2}-\left(a^{2} \cos ^{2} y+b^{2} \sin ^{2} y\right) d x^{2}+2 a^{2} \cos y d x d y \tag{7}
\end{equation*}
$$

where a and b are unknown functions of t. Firstly, it is not difficult to check that all components of gravitoelectromagnetism fields are zero and also the nonzero 3-dim starry Christoffel symbols are

$$
\begin{align*}
& { }^{*} \lambda_{12}^{1}=f \cot y, \\
& { }^{*} \lambda_{23}^{1}=\frac{1+(1-2 l) \cos ^{2} y}{2 \sin y}, \\
& { }^{*} \lambda_{13}^{2}=-l \sin y, \\
& { }^{*} \lambda_{33}^{2}=(2 l-1) \sin y \cos y, \tag{8}\\
& { }^{*} \lambda_{12}^{3}=\frac{l}{\sin y}, \\
& { }^{*} \lambda=(1-l) \cos y
\end{align*}
$$

where $l=a^{2} / 2 b^{2}$. In continuation, we will determine the trajectory of a test particle with mass m that moving in the Bianchi type IX space-time by using the Hamilton-Jacobi equation, [10,11]. Therefore, this equation is of the form

$$
\begin{equation*}
\left(b \frac{\partial S}{\partial t}\right)^{2}-\left(\frac{1}{2 l}+\cot ^{2} y\right)\left(\frac{\partial S}{\partial x}\right)^{2}-\frac{1}{\sin ^{2} y}\left[\left(\frac{\partial S}{\partial x}\right)^{2}+2 \cos y \frac{\partial S}{\partial x} \frac{\partial S}{\partial z}\right]-\left(\frac{\partial S}{\partial y}\right)^{2}-(m b)^{2}=0 \tag{9}
\end{equation*}
$$

By general procedure for solving the Hamilton-Jacobi equation, a natural form will be

$$
\begin{equation*}
S(t, x, y, z)=S_{1}(t)+p_{x} x+S_{2}(y)+p_{z} z, \tag{10}
\end{equation*}
$$

where p_{x} and p_{z} are constants and can be identified as the momentum of the test particle along x and z-directions. If we substitute the ansatz (10) in Hamilton-Jacobi equation, then we get the following integral expressions for unknown functions S_{1} and S_{2} :

$$
\begin{align*}
& S_{1}=\varepsilon \int \xi d t \tag{11}\\
& S_{2}=\varepsilon \int \lambda d t \tag{12}
\end{align*}
$$

where $\xi=\left[m^{2}+\frac{p_{z}^{2}}{a^{2}}+\frac{L^{2}}{b^{2}}\right]^{1 / 2}$ and $\lambda=\left[L^{2}-\left(\frac{p_{x} \cos y+p_{y}}{\sin y}\right)^{2}\right]^{1 / 2}$, while L is the constant of separation and $\varepsilon= \pm 1$. Now the equations for the trajectory can be obtained by considering the following conditions, [10,11]:

$$
\begin{equation*}
\frac{\partial S}{\partial L}=\text { cons tan } t, \quad \frac{\partial S}{\partial p_{x}}=\text { cons } \tan t, \quad \frac{\partial S}{\partial p_{y}}=\text { cons } \tan t \tag{13}
\end{equation*}
$$

we can take the above constants to be zero without lose of generality. Then, the set of equations (13) change to the following relations respectively

$$
\begin{align*}
& \int \frac{d L}{b^{2} \xi}=-\int \frac{d y}{\lambda}, \tag{14}\\
& x=\varepsilon \int \frac{\left(p_{x} \cos y+p_{y}\right) \cos y d y}{\lambda \sin ^{2} y}-\varepsilon p_{x} \int \frac{d t}{a^{2} \xi}, \tag{15}\\
& z=\varepsilon \int \frac{\left(p_{x} \cos y+p_{y}\right) d y}{\lambda \sin ^{2} y} . \tag{16}
\end{align*}
$$

Next, with employing equations (14-16), we find

$$
v^{*}=-\frac{\varepsilon}{b^{2} \xi \sin ^{2} y} \begin{cases}p_{x}\left(\cos ^{2} y+\frac{1}{2 l} \sin ^{2} y\right)+p_{y} \cos y & i=1, \tag{17}\\ \varepsilon \lambda \sin ^{2} y, & i=2 \\ p_{x} \cos y+p_{y} & i=3\end{cases}
$$

As a result, after some calculations, yields

$$
\begin{equation*}
\frac{m}{\sqrt{1-{ }^{*} v^{2}}}=\xi \tag{18}
\end{equation*}
$$

Finally, with the help of equations (17-18) and after tedious calculations, we prove that

$$
\begin{equation*}
{ }^{*} \boldsymbol{F}=0 \tag{19}
\end{equation*}
$$

2. Acknowledgment

Financial support was supplied in part by the Islamic Azad University-Kashan Branch.

3. References

1. C.W.Misner,K.S.Thorne and J.A.Wheeler, Gravitation, W.H.Freean and Company, San Francisco, 1973.
2. L.D.Landau and E.M.Lifshitz. The classical theory of fields, pergamon Press. New York.1975.
3. L.D.Landau and E.M.Lifshitz. Teorya Polya. Nauka. Moscow,1941.
4. A.Lichnerowich, J.Math. Pures. Appl. (1944), 23, 37.
5. R.Jantzen and P.Carini, Understanding space-time splitting and their relationships in classical mechanics and relativity:Relationship and consistency, ed. by G.Ferrarese, Bibliopolis, Naples (1991) 185.
6. S.Boesma and T.Dray, Gen. Relativ. Gravit. (1995), 27, 319.
7. B. Mashhoon. Gravitoelectromagnetism. A brief review., 2008, arXiv:grqc/0311030v2.
8. R.T.Jantzan, p.Carini and D.Bini. Ann. Phys. (1992), 215, 1.
9. A.Zel'manov. Soviet Phys. Doklady. 1 (1956) 227. Chronometric invariants.
10. American Research Press, New Mexico, 2006.
11. S. Chakraborty and L.Biswas, Class. Quantum Grav. (1996) ,13, 2153.
12. S. Chakraborty. Gen. Rel. Grav. (1996) 28, 1115.

Article received: 2013-02-24

