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Abstract:  
We calculate differential cross sections to the production of heavy-quark pairs with the 
associated light jet in the polarized and unpolarized photoproduction. Our method 
calculation consists of a mixture of analytical and numerical recipes, that one allow to 
implement various limiting behaviour in the total and differential cross sections, apply 
any relevant kinematical cuts and obtain various experimentally measurable quantities 
numerically. The results of this work are of importance for studies by COMPASS 
collaboration and possibly for the future Large Hadron Collider experiments at CERN 
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I. INTRODUCTION 
 
    It has been already 20 years since the next-to-leading-order (NLO) corrections to the 
hadroproduction of heavy flavors were first presented in the seminal work [1]. These results were 
confirmed yet in another seminal work [2]. 
    The importance of the calculation of the NLO corrections is due to the fact that the scale 
dependence of the theoretical prediction is expected to be considerably reduced when NLO partonic 
amplitudes are folded with the available NLO parton distributions. 
    In the past few years there was much progress in describing the experimental results on 
photoproduction of heavy flavors (see e.g. [3]). The improvement in the theoretical prediction is 
mainly due to advances in the analysis of parton distribution functions and the QCD coupling 
constant. In this regard, we point out the progress in dealing with numerically large mass logarithms 
that spoil the convergence of the perturbative expansion in the high energy (or small mass) 
asymptotic domain.     
       Similar studies are also important for the determination of the longitudinally polarized parton 
distribution functions, as a further test of the Standard Model. Deep inelastic scattering of 
longitudinally polarized particles has provided important information on the spin structure of the 
nucleon. However, the size and shape of the polarized gluon distribution g  in the proton remains 
an essential problem. Significant progress requires experiments on reactions with longitudinally 
polarized particles dominated by subprocesses with initial gluons [4]. One such reaction is a 
longitudinally polarized photoproduction of heavy flavors. The case of polarized incoming particles 
was considered in [5-7]. However, in all these calculations, polarized and unpolarized ones, too 
many process variables were integrated out analytically, leaving no possibility to determine 
meaningful differential cross sections as well as making it imposible to introduce the experimental 
cuts that are being imposed in the various realistic experimental setups. 
    The most interesting experimental observables for studying heavy quark features and checking 
theoretical predictions are various differential jet cross sections. In fact, the associated production of 
jets including b-hadrons and W vector bosons has been used for the detection of the t-quark. Several 
signals for new physics, such as an intermediate mass Higgs or the supersymmetric partners of the 
top quark, could manifest themselves via the presence in the final state, among other things, of jets 
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containing b-quarks. A close study of the production properties of b-jets in QCD is therefore an 
important phenomenological input for many of these and other future searches. 
       It is the aim of this work to develop such a program that will allow not only calculate the above 
mentioned observables and apply experimental cuts but also enable to apply effective structure 
function renormalization along the lines described in [8]. 
    This paper is organized as follows. Section II contains an outline of our general approach, as well 
as discusses results of our calculation for the total cross sections. Section III presents our final 
expressions for the physical cross sections for the 2-body and 3-body kinematics. Our results are 
summarized in IV.  
 

 
     

FIG.1: LO and loop graphs. In the loop graphs 21 pp   crossed ones are not shown. Note that graph (i) represents 

gluon, quark and ghost loops] 
 
 
II. NOTATIONS AND TOTAL CROSS SECTION 
 
        Photoproduction of heavy flavors proceeds through two partonic subprocesses: photon-gluon 
fusion as well as photon and light-quark (antiquark) collisions. The first subprocess 

                               kgQQg 4

_

321 ppp(p                                     (2.1)  

enters the calculation already at the leading order (LO) Born level with the two production 
topologies. The Born and the loop contributions to this subprocess are shown in Fig. 1. The second 
subprocess 
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                               kqQQq 4

_

321 ppp(p                                      (2.2) 

 

 
       
FIG. 2:A) Gluon Brems graphs; 21 pp   crossed ones are not shown. B) Graphs of the subprocess 

qQQq
_

.  
 
 
starts to contribute at the next-to-leading order. Therefore, the tree contributions for both 
subprocesses are depicted in Fig.2. 
   Irrespective of the partons involved, the general kinematics is, of course, the same in both 
processes. With the 4-momenta 4,...,1, ipi   as indicated and with m the heavy quark mass we 

define: 

                                          



22

32

22
31

2
21

pp

ppp(ps

mu

mt
                               (2.3)  

so that one has the energy-momentum conservation relation s+t+u=0 in the case of a 2-body 
kinematics, i.e. for the graphs depicted in Fig.1. The momentum flow directions correspond to the 
physical configuration, e.g. 1p  and 2p  are ingoing whereas 3p  and 4p  are outgoing. At the next-

to-leading order, when additional real gluon is being emitted with a momentum k, the energy-
momentum conservation relation is apparently modified.  In our further analysis for the phase space 
integration for a 3-body kinematics we will closely follow the methodology developed in the paper 
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[9] that has worked out for the case of hadroproduction of heavy quarks. We will modify and adapt 
the above mentioned procedure for our case of photoproduction of heavy flavors. 
    It will be convenient to introduce variables 

                    ssxyxskpumpks k /,11
2

1
, 2

2
2

22
42         (2.4)  

and y - the cosine of the angle between vectors 1p


and k


 in the center of mass system of the 
incoming partons (e.g. partonic frame). 
    The contribution of the 3-particle final state diagrams to the cross section in given by                       

                          
2

,3r 2

1
;d rspincolorrr A

s
Md                              (2.5) 

where rA  stands for the invariant amplitude and we sum over the final and average over initial 
color and spin. The 3-body phase space in n=4-2ε dimensions is expressed as 

        
      22

2221
1

23 sin11
2







ddyyx
s

HNdd x 


                   (2.6) 
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angles ],0[, 21       are correspondingly polar and azimuthal angles of the heavy quark in the 

quark-antiquark rest frame, while sxmx /41 2 . The quantity  xd 2  transforms into the 2-

body phase space when 1x . 
    The real emission (so called "hard") cross section rM  has soft and collinear singularities that 

manifest themselves as poles in ε. Our aim is to isolate those singularities from the rM , calculate 
them analytically, and the finite part evaluate numerically. As the collinear pole can only arise from 
the initial light particle with momentum 2p  being collinear to the emitted gluon, the function 

                                                  rkr Muxsf  12                                               (2.10) 

has to be regular for 1y  and 1x . Therefore, we get 
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Then our cross section can be written as 
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        (2.12)   

next we Taylor expand first   211  x  and then    11 y to obtain 

                                   fsr dddd                                                         (2.13) 

The first term in the Eq. (2.13) contains all the soft poles of our cross section 
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As it can be seen from the Eq. (2.14), the soft part of the cross section sd is determined by the 

 x1  function, i.e. leading infrared behaviour x→1, and can be evaluated without calculation of 
the full real matrix element. The relatively uncomplicated analytical structure of such a matrix 
element in conjunction with a simplified phase space one allows to analytically integrate Eq.(2.14) 
over all the variables but 1 . Leaving out the details of such a calculation, we present below the end 
result for the soft part: 
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with g being a QCD strong coupling constant. The second term in the Eq. (2.13) contains only 
collinear poles of our cross section: 
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where the  -distributions in round brackets abogve are defined according to the following 
prescriptions: 
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Integration over the variables y and 2 renders the Eq. (2.17) to the form 
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 ij 's are the Altarelli-Parisi split functions depending on the subprocess under consideration, 
  21, xppd ij
LO  are the corresponding leading order born amplitudes with the rescaled momentum 

2p  (in one instance for the  -quark subprocess the momentum 1p  is rescaled). Finally, for the hard 
part of the cross section we obtain: 
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 where the hard amplitudes  21,,, yxfr  can be deduced from the Eqs. (4.2) and (5.1) of [7] for the 
subprocesses  -gluon and  -quark, respectively. 
    With the above notations in place, we analytically regulated ultraviolet, infrared, and collinear 
singularities using dimensional regularization [10] in the unpolarized case and dimensional 
reduction [11] for the polarized one. To get the total cross sections, we had to integrate over the 
phase space of generally five variables, e.g. Feynman parameters bx , variables x, y and azimuthal 

and polar angles of a heavy quark of momentum 3p in the rest frame of the heavy quark pair. After 

plugging in virtual and real matrix elements, for the two contributing subprocesses, that were 
obtained in our previous publication [7], we found a complete agreement with the numerical results 
for the total cross sections of heavy quark production that were also presented in [7]. 
 
 
III. DIFFERENTIAL CROSS SECTIONS 
     
The quantity of interest for the experimental measurements is the so called transverse energy of a 
heavy quark jet which in the laboratory center of mass system of incoming hadrons is defined as 
follows: 

                                            3
0
3 sinpE                                                     (3.1) 

 Here 0
3p  is the energy of the heavy quark and 3sin  is its polar angle with the beam direction, all 

in the laboratory frame. Therefore, the next step is to obtain differential cross sections in the 
transverse energy E  from the analytical expressions we got previously. Mathematically, this task 
is equivalent to changing and shuffling integration variables. However, one has to take into account 
that one has to deal with various physical center of mass systems involved in the process. While for 
a 2→2 kinematics this task can be readily done analytically, things get very complicated in the 2→3 
case. 
    Starting with the 2→2 phase space, which is relevant to the leading order, soft and virtual 
contributions, we note that in this case the rest frame coincides with the partonic one. After some 
algebraic manipulations, for the physical cross section we obtain the following end result:  
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where S is a total energy of the physical process in the laboratory center of mass system, iii xFf /  

is the corresponding hadron structure function, and dtdud /̂  is the partonic cross section. The 
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differential cross section over E  is obtained from Eq. (3.2) by integrating its right hand side over 
the polar angle (in the laboratory center of mass system) of a heavy quark 
 

                                         












 

S

E

S

E 22

3
4

1,
4

1cos                              (3.4) 

    Turning to the 2→3 kinematics, we were able to derive analytical transformations for the 
collinear configurations. In our case of 1y  we obtain: 
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    In the above expression 1cos  is a polar angle of a heavy quark with mimentum 3p  in the rest 

frame of a heavy quark pair, and Sxs b  is the collision energy in the partonic center of mass 

system. Differential cross section in E  is obtained by integrating the right hand side of the 

Eq.(3.5) over the heavy quark polar angle 3cos similarly to the 2-body case. 

    What concerns a general case of 2→3 kinematics, e.g. hard gluon bremsstrahlung, we were 
unable to find a satisfactory analytical solution to reshufling five integration variables. Therefore, 
we adopted the following numerical procedure: 
    We seek a differential cross section 
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where function  Ef  is a heavy quark production cross section integrated over all the variables 

except E (note that in this approach instead of a transverse energy  E one could have any other 

variable). In fact, we need its value at some given  EE  , i.e. 
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Now consider the following integral 
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where we chose δE to be a small enough increment of the variable E . Clearly, if one draws the 

function  Ef , on the plane     EEf , the value of δσ above is a AREA of a rectangle under 

function  Ef  with a central value around E . From the other side, one can write an approximate 
relation for the area of this rectangle: 
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Therefore, combining Eqs. (3.9) and (3.10), we finally arrive at 
                                            

                                                       
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                                  (3.11) 
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    We will use Eq. (3.11) to obtain numerical values for the differential cross section 
dE

d
 at a 

given value E . This is feasible as an integral in the right hand side of Eq. (3.11) is nothing but the 
TOTAL cross section of a heavy quark production except that it is integrated over interval δE. To 
implement this idea practically, we have to introduce logical statements into our FORTRAN 
program, particularly in the parts that deal with the 2→3 kinematics (e.g. hard bremsstrahlung 
subprocesses), that will eventually cut off all the events when values of the transverse energy do not 
fall into the specified small area δE around some fixed value E . Thus, when running our 
FORTRAN subroutine for a particular set of integration variables, one has to check at the same time 
which value of a transverse energy it corresponds to. To begin with, note that our total cross section 
is being calculated with the variables in the rest and partonic frames. However, the transverse 
energy is measured in the laborary frame. Thus, to perform the above mentioned nontrivial 
verification, one has to perform several Laurence boosts of all the relevant kinematical variables 
numerically between different center of mass frames. In particular, first one has to boost 
kinematical variables (e.g. momenta) from the rest frame to the partonic one, where the light 
momentum 1p  is OFF z-axes. Secondly, one has to perform SO(3) rotation of the whole system by 

some angle which ensures that the light momentum p₁ is directed along collision axes z. Third, one 

has to boost all the relevant kinematical variables to the laboratory frame. To ensure that all the 
numerical steps were done correctly, we derived several analytical relations between mainly 
massless kinematical variables in different center of mass frames, where possible. We then checked 
intermediate numerical values of the kinematical variables against those analytical ratios. Needless 
to say, we found a complete agreement. 
    To include a jet isolation criteria, we adopt the Snowmass convention [12], where particles are 
clustered in cones of Radius R in the pseudorapidity-azimuthal angle plane. Following work [13], 
the jet differential cross section is written as a sum of an open heavy quark cross section for which 
we already got all the necessary ingredients above, and the additional term dΔ defined as:  

                                        JJJba dddEdMSd  3,3
~

                                       (3.12) 

where baM , are partonic matrix elements for the light parton bremsstrahlung (i.e. radiation) that we 

already used in our FORTRAN code, 3d  is our 3-body phase space, JJJ dddE   is the measure 

over jet variables (e.g. transverse energy, pseudorapidity, and azimuthal angle), and 
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  (3.13) 

where 

                                             R
EE

EE
EEg

ji

ji
ji ,max


                                           (3.14) 

                                           22
jijiji                                   (3.15) 

    Indices 1 and 2 for the quantities in the above expression (3.13) for the function 3
~
S  indicate their 

connection to the heavy quark and heavy antiquark, respectively, while quantities without any index 
relate to the variables of the light parton. In Eq. (3.14), R is the usual jet-resolution parameter, 
which defines the cone size in the pseudorapidity--azimuthal angle plane. 
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    IV.CONCLUSIONS 
 
    We have presented calculation of some differential cross sections at the next-to-leading order 
accuracy for heavy quark production in association with a light jet in hadronic collisions. We have 
dealt with the cases when initial state particles are either unpolarized or longitudinally polarized. 
For the 2-body kinematics, as well as for the case of 3-body kinematics with collinear 
configurations, all the phase-space integrations are performed analytically. We conveniently present 
these solutions in a compact form. As a consequence, numerical evaluation of the corresponding 
part of our FORTRAN program proceeds extremely fast. For the 3-body kinematics we found partly 
analytical and partly numerical solution for the phase space integrations. All the analytical results in 
this work were obtained with the help of a symbolic manupulation program REDUCE [14]. Our 
method is universal and one allows to evaluate the jet differential cross sections in a general way, 
for instance applying kinematical cuts on various measurable observables, and for any limiting 
behaviour, for example one can easily apply the effective renormalization procedure for structure 
functions as described in [8]. The alternative, simpler option would be to use our matrix elements in 
conjunction with the structure functions determined in the fixed flavour number scheme [15]. The 
studies on the numerical results for various physical quantities of interest, including asymmetries, 
will be presented elsewhere. 
    Our results form part of the NLO description of heavy-quark pair photoproduction, the process 
being under extensive study by COMPASS collaboration [4] at CERN, and could be of relevance 
for the future experiments by LHeC collaboration [16] at CERN. 
    Finally we have to emphasize that our FORTRAN program should not be considered as an event 
generator for heavy quark production. It should rather be considered a tool capable of giving the 
exact NLO numerical result for the heavy quark cross section even when complicated kinematical 
cuts are imposed over the final-state partons. 
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