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Abstract 
Paper deals with the problem of long-term control of Hydro Power System. 

Actually, this is the problem of optimization of the regimes of Hydro Power Plants 
(HPP) with reservoirs, aiming to achieve the maximal economic effect. The problem is 
dynamic with traditional constraints. The model is based on the method of Markov 
decision process. The matrices of transition probabilities and the corresponding 
recurrent inequalities are composed. One practical idea is also suggested to avoid the 
dimension problem in the case of a large number of HPPs.  
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1. Introduction 
Control issues of Energy Systems, especially of Hydro Power Plants (HPP) are well known 

among the problems of Operations Research. Optimal control of the system comprehends to obtain 
the regimes (work schedules) of synchronized work of its terms so, that the maximal economic 
effect is achieved. The existence of HPP-s with reservoirs is essential for the optimization of the 
regimes of the system. It's there basic task to balance power and energy and they cover the peak 
parts of the load. Other terms of energy generation, in fact do not take part in the process of control 
and cover basic parts of the load. 

Consequently, here we only consider the control problem for HPP with reservoir. Actually, 
this is the problem of optimal storage control of water and fuel. It should be noted that in our region 
(South Caucasus) and possibly elsewhere, natural resources of the neighbor countries differ with 
regard to Energy Industry. Some of them have high Hydro Energy potential, while others – 
expensive fuel. Besides, due to the seasonality of the water flow, capacities of generation of hydro 
energy during the year are sharply diverse. Therefore coordinated control of energy systems of the 
countries at the regional level would imply economical benefits as for each country, also in general.   
First we consider separately regulation process for the HPP with one reservoir and then proceed to 
the problem of control of the system. The issue of optimal functioning of HPP with one reservoir 
under various constraints (such as the volume of the reservoir, the character of water flow etc.) is 
considered in the works [1, 2, 3]. The long-term control problem of the system is dealt in the paper 
[4]. Here we suggest mathematical model for the long-term (annual) regime optimization, which is 
based on on the method of Markov decision process (see [5, 6]).  

 
2. The process of regulation of HPP with reservoir as Markov decision process. 
Let’s consider scheduling dynamic problem with one year horizon. One year horizon is 

naturally imposed since the water flow is cyclic periodic. Year is divided into the equal time 
intervals with appropriate enumeration , 2, , .t T= K  Generally the length of the interval is either 
one month or half of the month. Assume that the volume of the water flow in the reservoir with 
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volume  during the time period t  equalsQ tx . ( )1, 2, ,tx t = K T
 

are independent integer-valued 
random variables with known distributions: 
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Apparently we assume that the unit of the water flow (volume) is chosen. Traditionally the work of 
HPP is described as follows (see. [1, 2]): The plant posses supplied power, that is the maximum of 

water output Y . Thus at every stage the water expenditure is bounded. Define the latter by  at 

stage . Then the vector  is the control policy, i.e. the strategy. If denotes the 
volume of water at the beginning of stage  in the reservoir of volume , then the regulation 
process can be represented as follows:        

ty
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where denotes the volume of wasted water and  tu | |
2

a aa+ +
= . It’s clear that the random variable  

 can be probabilistically defined completely if the value of  tz  is known and it does not depend 

on previous periods (by assumption tz are independent random variables). Hence, for the reservoir 
we have the Markov process {

1tz +

}tz  with possible values  0,1, ,QK  .  Appling (2) we construct the 

matrix { }( )t
i jP y , , ,i K  probabilities from the state tz i=  to the  

1tz j+ = . Fo t  the matrix has the following form (Table 1.):  
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To the transition matrix, at each stage t  corresponds the mathematical expectation of losses, 

which depend on the quantities , 
tz tx  and 

ty . The losses at each stage consist of two summands 
– the losses of deficiency and of unutilized water. The deficiency losses are related to the costs that 
cover the deficit by means of purchase of expensive energy, to the drop in reputation, the penalty 
from the consumers etc. These costs can be described separately as the functions of above cited 
factors. Here, for the simplicity we restrict ourselves by the linear relations.   If   denotes the 
losses, corresponding to the unit deficit and c denotes the losses related to the waste of unit water, 
then expected losses are  

d
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 where tR  is the consumed electric power (cost) at stage , denotes the quantity of electric 

power (kWh) generated by the quantity of water (m3).  The following formula is valid – 

t ( )tN y
ty

(9 ) / 3600,H,8N y η= ⋅ ⋅ ⋅  where H is the pressure (height difference) at the power plant (in 
meters), η  – efficiency of the power plant (turbine). In altitudinal reservoirs H  is considered as 
constant, while in the rest of cases it depends on the average volume of water in the reservoir at the 
given stage.   

We apply the functional equation method of dynamic programming. Denote ( )tf i  the 
expected losses when following the optimal policy from the stage t  to stage T (inclusively), where 
the volume of water in the reservoir at the beginning of the stage t  equals .  Due to the optimality 
principle     
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Applying the standard procedure for each initial state i , we obtain the optimal policy 

1 2, , , Ty y yK   and the corresponding summary losses ( )if i . ( )Tf i
 is easily calculated by means of 

t t ty z x= + . 

 
3. Control of Energy System with several HPPs with reservoirs. 
Assume the system consists of M  HPPs, each one with technical parameters – 

, , , ,H K Y Qμ μ μ μη μ  ( 1, )Mμ = . In the corresponding relations (1), (2) and the transition matrices 

( M  matrices at each stage) we have the following notations – , , , , ( ),t t t t t t
i jx y z u P k Pμ μ μ μ μ μ . It’s 

more convenient to deal with the matrices of equal order. For this sake, in the transition matrices we 
consider max( )Q Qμ=  and max( )Y Yμ= instead of the quantities Qμ  and Yμ  and assume that the 
transition probabilities corresponding to the impossible states equal zero.   
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At every stage we choose the vector . This vector transfers the system 

from the state 
1 2( , , , )t t t t

MY y y y= K

1 2( , , , )t t t t
MZ z z z= K to new state – 1tZ + . Corresponding transition probability is 
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Analogously as above the following holds 
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The sequence of the vectors ,  – the strategy, should be chosen to minimize 

expected annual summary losses. Here, as above we write the functional equations based on the 
principle of dynamic programming.  Denote 
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strategy from the stage  to stage T (inclusively), where at stage t  the system is in the state t tZ . 
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4. Remarks. 
a) In the presented model, like in cited works, hydro energy, in fact is regarded free of charge. 

This assumption is justified for a single structure or a single country when the model is closed. In 
the regional models, where the buy-sell process of energy is essential factor, the prices are taken 
into account and the criteria should be the maximization of the profit. If necessary the model may 
include the constraint on the balance of capacities.  

b) The problem of dimension occurs to be very hard in the method of dynamic programming. 
In case of energy system with three HPPs the problem can be practically resolved. In case of more 
HPPs (e.g. there are 6 HPPs with considerable reservoirs in Georgia) we have presented the 
following suggestion (see [7]): at every stage instead of the vector  we deal with 
one parameter – the sum of electric power generated at all HPPs at stage . should be 
distributed to the plants proportionally to the expected losses . As above, the losses are 

represented by the formula  (kWh) and they depend on the quantities  
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t
ix is mathematical expectation of . Following this procedure at every 

stage we obtain the partition and appropriate vector . Such an 
approach allows corresponding simple software and significantly reduces the dimension problem.   
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