УДК 05.20-у, 75.75.Jn

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ МАГНИТОКАЛОРИЧЕСКИХ СВОЙСТВ ЖИДКИХ СУПЕРПАРАМАГНЕТИКОВ

А. Угулава¹, М. Верулашвили², З. Ростомашвили³, С. Чхаидзе¹

¹Тбилисский государственный университет им. И. Джавахишвили, **0179**, Тбилиси, пр. И. Чавчавадяе, З. ²Кутаисский государственный университет им. А. Церетели, 4600, Кутаиси, ул. Царицы Тамар, 59. ³Телавский государственный университет им. *Я*. Гогебашвили, 2200, Телави, ул. Грузинского Университета, 1.

Аннотация

Теоретически исследованы магнитные характеристики суспензий, содержащие макроскопическое количество магнитных наночастиц. Вычислены поляризация намагниченности и магнитостатическая воспримчивость жидких суперпарамагнетиков. Построены полевые зависимости этих величин для водяной суспензии магнетита Fe_3O_4 при комнатной температуре. Показано, что кривая поляризации намагниченности незначительно отличается от бриллюэновской и сильно отличается от ланжевеновской кривых. В работе анализируются причины этого различия. Из сравнения полученных нами результатов с существующими экспериментальными данными установлено, что при исследовании магнитных характеристик учет энергии анизотропии приводит к бриллюэновской форме кривой намагничивания.

Ключевые слова: ферромагнетизм, суперпарамагнетизм, наночастицы

1. Введение

За последнее десятилетие в области разработки магнитных наноматериалов произошли большие изменения [1]. Это связано как с разработкой эффективных методов получения магнитных частиц нанометровых размеров (наночастиц), так и с развитием физических методов их исследования.

При уменьшении размеров частиц до однодоменных, и при сохранении в них самопроизвольной намагниченности ($T < T_c$, T_c - температура Кюри), начинает расти влияние тепловых флуктуаций на динамику магнитного момента \vec{M}_s наночастицы. Такой тип броуновского движения магнитного момента называют суперпарамагнетизмом [2-4]. Элементарными носителями магнетизма в них являются не отдельные молекулы, как в обычных парамагнетиках, а их совокупности, содержащие до 10^6 атомов в магнитоупорядоченном состояний. Они обладают магнитным моментом \vec{M}_s , который по величине намного превосходит магнитные моменты отдельных частиц обычного парамагнетика, имеющих порядок лишь нескольких магнетонов Бора.

Макроскопическая совокупность однодоменных магнитных наночастиц, образующая суперпарамагнетик, обычно исследуется в двух модификациях – в виде порошка (пудры) магнитных частиц и в виде суспензии (магнитная жидкость или феррофлюиды). По отношению к воздействию внешнего магнитного поля и температуры, магнитные наночастицы в порошковых суперпарамагнетиках ведут себя подобно обычному парамагнетику, состоящего из магнитных атомов в твердотельной матрице, где под воздействием тепловых флуктуаций ориентацию меняют лишь магнтные моменты атомов. В отличии от этого, в газе состоящем из атомов с магнитными моментами, могут менять ориентацию как сами атомы, так и их

магнитные моменты. В этом отношении магнитные жидкости более схожи со вторым случаем, так как сами наночастицы могут свободно вращаться в них, если только жидкая фаза суспензии характеризуется малым значением коэффициента вязкости. Главное отличие суперпарамагнетиков от обычных парамагнетиков обусловлено магнитной анизотропией содержащихся в них частиц. Магнитный момент \vec{M}_s наночастицы стремится ориентироваться вдоль направления оси легкого намагничивания.

Как известно, функцию Гамильтона для одноосной магнитной наночастицы порошковых суперпарамагнетиков можно представить в виде [1-4]

$$H_{p} = A \sin^{2} \theta - H \cos(\theta - \psi), \quad H = M_{s}B, \quad A > 0.$$
⁽¹⁾

а для магнитных жидкостей [5, 6] характеризующихся малым коэффициентом вязкости она имеет вид [7]

$$H_{f} = A \sin^{2} \left(\theta - \psi \right) - H \cos \left(\theta - \psi \right).$$
⁽²⁾

Ψ и θ в выражениях (1) и (2) - углы между осью легкой намагниченности и соответствующими векторами \vec{M}_s и \vec{B} , где \vec{B} вектор магнитной индукции, $0 \le θ \le \pi$, $0 \le ψ \le \pi$, A – константа магнитной анизотропии. В этих выражениях первые слагаемые выражают энергию магнитной анизотропии, а вторые соответствуют взаимодействию магнитного момента частицы \vec{M}_s с магнитным полем. Угол ψ отражает ориентацию легкой оси и он меняется хаотически от частицы к частице. Заметим, что в отличии от H_p , энергия анизотропии в функции Гамильтона H_f , кроме θ зависит еще и от ψ, что выражает способность отдельной частицы свободно менять ориентацию легкой оси.

В настоящей статье, ставя целью исследование магнитных свойств жидких суперпарамагнетиков, мы будем пользоваться функцией Гамильтона H_f .

2. Термодинамические характеристики магнитных жидкостей

Приступим теперь к стандартной процедуре [8] вычисления магнитотермодинамических величин для функции Гамильтона H_f . Составим соответствующий статистический интеграл:

$$z = (4\pi)^2 \int_0^{\pi} d\theta \sin\theta \int_0^{\pi} d\psi \sin\psi \exp\left\{-a\sin^2\left(\theta - \psi\right) + b\cos\left(\theta - \psi\right)\right\},\tag{3}$$

где $a = \frac{A}{kT}$, $b = \frac{BM_s}{kT}$, k - постоянная Больцмана, T - абсолютная температура. Точное

интегрирование этого выражения не представляется возможным. Поэтому сделаем определенные допущения.

Предположим, что исследуемая система находится в окрестности своего энергетического минимума, который находится из условия

$$\frac{\partial H_f}{\partial \theta} = A \sin 2\delta + H \sin \delta = 0, \qquad (4)$$

где $\delta = \theta - \psi$. Легко показать, что точки экстремума, две из которых $\delta = 0$ и $\delta = \pi$, соответствуют двум минимумам энергии. Действительно,

$$\frac{\partial^2 H_f}{\partial \theta^2} \bigg|_{\delta_+=0} = 2A + H > 0,$$

ISSN 1512-1461

$$\frac{\partial^2 H_f}{\partial \theta^2} \bigg|_{\delta_{-}=\pi} = 2A - H > 0, \quad \text{если } 2A > H.$$
(5)

Далее будем предполагать, что условия (5) удовлетворяются.

Заметим, что частицы находящиеся в потенциальной яме $\delta = 0$, в основном поляризованы вдоль магнитного поля, а частицы в яме $\delta = \pi$ - против поля. Можно полагать, что при достаточно низких температурах, когда выполняется условие kT << A, частицы находятся на дне ям. Тогда, для статистического интеграла из (3) легко получим

$$z = z_- + z_+ \sim ch \ b \ , \tag{6}$$

где $z_{\pm} \sim e^{\pm b}$ - статистические интегралы наночастиц, находящихся в разных ямах.

Как известно [8], с помощью статистического интеграла средняя намагниченность вычисляется по формуле

$$M = kT \frac{\partial}{\partial B} \ln Z , \qquad (7)$$

где $Z = \frac{z^N}{N!}$, а N - количество магнитных наночастиц в единице объема. Подставляя (6) в (7),

для магнитной поляризации намагниченности получим

$$\frac{M}{NM_s} = th \frac{M_s B}{kT} \,. \tag{8}$$

Для тангенса угла наклона касательой к кривой магнитной поляризации в точке B = 0, получим

$$tg\alpha_B = \frac{M_s}{kT} \ . \tag{9}$$

Заметим, что в бриллюэновском квантовом парамагнетике через гиперболический тангенс намагниченность выражается в том случае, когда парамагнетик состоит из системы двухуровневых частиц (половинных спинов). Очевидно, что в нашем случае роль этих двух уровневней, заселенных противоположно направленными спинами, играют две потенциальные ямы, на дне каждой из которой находятся мпгнитные частицы одного направления.

С повышением температуры начинает проявлятся разброс направлений магнитных моментов частиц в потенциальных ямах. Вводя одночастичные статистические интегралы z_{\pm} для частиц в двух потенциальных ямах и интегрирования по δ_{\pm} в малых окрестностьях вблизи точек 0 и π (рис.1), из (3) получим:

$$z_{\pm} \approx (4\pi)^2 \int_0^{\pi} d\psi \int_0^{\delta_{\pm}^{(0)}} d\delta_{\pm} (\cos \delta_{\pm} - \cos 2\psi) \exp\left\{-a \sin^2 \delta_{\pm} + b \cos \delta_{\pm}\right\}.$$

Разлогая в ряд подинтегральное выражение по малым отклонениям δ_{\pm} от точек минимумов 0 и π ($sin^2 \delta_{\pm} \approx \delta_{\pm}^2$, $cos \delta_{\pm} \approx 1 \pm \frac{\delta^2}{2}$) и проводя интегрирование по малой области $\delta_{\pm}^{(0)}$, получим

$$z_{\pm} \approx \int_{0}^{\delta_{\pm}^{(0)}} exp\left\{-ax^{2} \pm b\left(1 - \frac{x^{2}}{2}\right)\right\} dx = \frac{e^{\pm b}}{\sqrt{a \pm \frac{b}{2}}} Erf\left(\sqrt{a \pm \frac{b}{2}} \cdot \delta_{\pm}^{(0)}\right), \tag{10}$$

где $Erf(x) = \int_{0}^{x} e^{-t^{2}} dt$ - интеграл вероятности ошибок. В формуле (10) перед интегралом мы пренебрегли постоянным множителем, несущественным для дальнейших вычислений.

Рис.1. Зависимость безразмерной энергии $\varepsilon = E/kT$ магнитной наночастицы суспензии от угла δ . Энергия обладает двумя минимумами (при $\delta = 0$ и $\delta = \pi$) разной глубы. Энергетическое расстояние между минимумами равно 2*b*.

Нетрудно усмотреть взаимосвязь между статистическими суммами (10) и соответствующими средними числами частиц N_+ в потенциальных ямах

$$N_{\pm} = e^{\varepsilon_{\pm}} z_{\pm}, \tag{11}$$

где ε_{\pm} - безразмерные максимальные уровни энергии частиц в ямах (рис.1). Тогда *N* - частичный статистический интеграл будет иметь вид

$$Z = \frac{\left(e^{-\varepsilon_{+}}N_{+}\right)^{N_{+}}}{N_{+}!} \cdot \frac{\left(e^{-\varepsilon_{-}}N_{-}\right)^{N_{-}}}{N_{-}!}.$$
(12)

Как известно [1-4], важной характеристикой макросистем магнитных наночастиц является температура блокировки T_b . Ниже этой температуры наночастицы в разных ямах изолированы друг от друга и число частиц N_{\pm} в разных ямах такое же, что и до включения магнитного поля. Следовательно, при $T < T_b$, числа частиц в ямах равны друг другу ($N_{\pm} = N_{-}$), а суммарная намагниченность исчезающе малая величина (M = 0).

При температурах выше температуры блокировки $(\frac{A}{k} > T > T_b)$, эффективными становятся надбарьерные переходы частиц, устанавливающие равновесие между подсистемами. Условие статистического равновесия между ними [8] можно найти с помощью минимизации свободной энергии $F = -kT \ln Z$. Считая N_{\pm} макроскопически большими числами, с помощью выражений (11) и (12), для свободной энергии будем иметь :

$$F = -kT \Big[N_{+} (1 - \varepsilon_{+}) - N_{-} (1 - \varepsilon_{-}) \Big].$$
(13)

Учитывая это выражение, из условия равновесия

$$\frac{\partial F}{\partial N_{+}} - \frac{\partial F}{\partial N_{-}} = 0, \qquad N_{+} + N_{-} = N, \qquad (14)$$

получим $\varepsilon_{+} = \varepsilon_{-} \equiv \varepsilon$. Таким образом, в состоянии равновесия в ямах устанавливается одинаковый максимальный уровень. Нетрудно связать верхний предел $\delta_{\pm}^{(0)}$ интеграла (10) с максимальным уровнем энергии ϵ (рис.1):

$$\delta_{\pm}^{(0)} = \sqrt{\frac{\varepsilon \pm b}{a \pm b/2}} \,. \tag{15}$$

С учетом (10) и (15), из (11) получим:

$$N_{\pm} \sim \frac{e^{\pm b} Erf\left(\sqrt{\epsilon \pm b}\right)}{\sqrt{a \pm b/2}}.$$
(16)

Как видно из (16), в присутствии магнитного поля ($b \neq 0$), в состоянии равновесия, в ямах находятся разное количество частиц N_{\pm} , и, поэтому, происходит намагничивание системы. Ясно, что среднюю магнитную поляризацию приходящую на одну частицу, с учетом (16), можно вычислить по формуле

$$\frac{M}{NM_s} = \frac{N_+ - N_-}{N_+ + N_-} = \frac{\Delta N}{N} = \frac{e^b \sqrt{a - b/2} \operatorname{Erf}\left(\sqrt{\varepsilon + b}\right) - e^{-b} \sqrt{a + b/2} \operatorname{Erf}\left(\sqrt{\varepsilon - b}\right)}{e^b \sqrt{a - b/2} \operatorname{Erf}\left(\sqrt{\varepsilon + b}\right) + e^{-b} \sqrt{a + b/2} \operatorname{Erf}\left(\sqrt{\varepsilon - b}\right)}.$$
(17)

Выражение (17) для магнитной поляризации можно рассматривать как обобщение теории парамагнетизма Ланжевена на случай суперпарамагнетика, когда энергия (2) магнитных частиц, наряду с энергией взаимодействия с магнитным полем, содержит и энергию анизотропии. Существенное отличие, которое вносит учет анизотропии связано с тем, что магнитные наночастицы в рассматриваемой нами модели "скованы" в потенциальных ямах, ограничивающих их вращение, в то время как в ланжевеновском парамагнетике они могут свободно вращаться. Как отмечалось выше, в следствии образования двух изолированных подсистем, содержащих магнитные наночастицы соответственно ориентированные вдоль и против поля, возникает аналогия с двухуровневым бриллюэновским парамагнетиком. В пределе $\varepsilon \square a >> b >> 1$, все интегралы вероятности в (17) стремятся к единице, а само выражение (17) – к соответствующей формуле Бриллюэна (8). Можно полагать, что интегралы вероятности, появившиеся в (17), учитывают тепловые флуктуации отклонений ориентаций магнитных нанояастиц от 0 и π в соответствующих подсистемах при конечных температурах.

Логично предположить, что для температур $\frac{A}{k} > T > T_b$ максимальный уровень є определяется высотой барьера $\varepsilon \approx a$. Тогда для тангенса угла наклона касательной к кривой магнитной поляризации в точке B = 0 получим

$$tg\alpha = (1+\Delta)\frac{M_s}{kT},\tag{18}$$

где $\Delta = \frac{1}{2e^a Erf(\sqrt{a})}$. Коэффициент (1+ Δ) играет роль константы Кюри для нашей задачи.

Исследование магнитных характеристик наночастиц (размерами 12 нм) магнетита Fe_3O_4 , диспергированных в воде (вязкость $\eta \approx 0.001$ Па·с) показали [5, 7], что температура блокировки $T_b \approx 25$ К, магнитный момент $M_s = 4.3 \cdot 10^{-19}$ А·м², а константа энергия анизотропии $A \approx 25 \cdot 29k \approx 725k$. При комнатной температуре $a \sim 2.4$ и второе слагаемое $\Delta \approx 0.05$ в (18) несущественно. Таким образом, для рассматриваемой экспериментальной ситуации [7] выражение (18) приблизительно совпадает с (9). Это означает, что наночастицы так сильно "скованы" в ямах, что образовавшееся состояние мало чем отличается от упо-

мянутого выше бриллюэновского (а не ланжевеновского) парамагнетика. Можно полагать [4], что при высоких температурах kT >> A, кривая намагничивания суперпарамагнетика будет приближаться к ланжевеновской.

На рис.2 представлены кривые магнитной поляризации и магнитостатической воспримчивости ($\chi = \mu_0 dM/dB$, μ_0 - магнитная постоянная), построенные на основе выражений (8) и (17). Для сравнения приводится также кривая магнитной поляризации для ланжевеновского суперпарамагнетика $\frac{\Delta N}{N} = cth \frac{M_s B}{kT} - \frac{kT}{M_s B}$.

Рис.2. Кривые магнитной поляризации (*a*) и воспримчивости (*b*) водной суспензии магнетита Fe_3O_4 при комнатной температуре (T = 300K) и значениях параметров [7] $\varepsilon \approx a$, $a \approx 725/T$, $b = 3 \cdot 10^4 B / T$. Кривые 1 и 2 соответствуют формулам (17) и (8), а кривая 3 – ланжевеновскому парамагнетику.

Заключение

При исследовании магнитных характеристик эмульсии, содержащей магнитные наночастицы, необходимо учитывать энергию магнитной анизотропии этих частиц, специфическая форма которой приводит к образованию двух, слабо взаимодействующих термодинамических подсистем. Одна подсистема состоит из частиц с магнитными моментами, направленными в основном вдоль, а другая – против поля. Показано, что кривая намагниченности с понижением температуры все больше отличается от ланжевеновской и приближается к бриллюэновской. Сходство рассматриваемой нами системы с бриллюэновской объясняется существующей аналогией двух подсистем с двухуровневой системой.

Литература

- 1. S. P. Gubin, Yu. A. Koksharov, G .B. Khomutov, G. Yu. Yurkov. Russian Chemical Reviews, (2005),74 (6), 489-520.
- 2. S. Blandell. Magnetism in Condensed Matter. Oxford Master Series, 2001.
- 3. B.D. Cullity. Introduction to Magnetic Materials. Addison-Wesley Publishing Company. 1972.
- 4. S. V. Vonsovski. Magnetism. J. Willey. 1974.
- 5. E. L. Bizdoaca, M. Spasova, M. Farle, M. Hilgendorff and F. Caruso. J. Magn. Magn. Mater. , (2002), v. 240, no.1, 44-46.
- 6. E. L. Bizdoaca, M. Spasova, M. Farle, M. Hilgendorff, L. M. Liz-Marzan, F. Caruso., J. Vac. Sci. Technol. A, (2003), v.21, no.4, 1515-1518.
- 7. Elena-Lorena Salabas. Structural and Magnrtic Investigations of Magnetic Nanoparticles and Core-Shell Colloids. Von der Fakultät für Naturwissenschaften der Universität Duisburg-Essen Standort Duisburg zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation. 2004.
- 8. S. J. Blundell, R. M. Blundell. Consept in termal Physics. Oxford, New York. 2010.

Количество рисунков 2.

Article received: 2013-06-27