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1. Introduction 

     Virial theorem has a wide application both in classical as well as in quantum mechanics. This 
theorem connects average values of kinetic and potential energies for the systems confined in 
limited areas. Moreover it allows making definite conclusions about some interesting problems 
without solving to equations of motion.  
   There are many generalizations of virial theorem, especially in relativistic quantum mechanics for 
investigation of bound states [1].  
   Recently much attention was devoted to singular potentials, namely, to potentials, behaving as 

 ;  for  in the Schrodinger equation, and as  for  in the 
Klein-Gordon and Dirac equations. 

( ) 0
2 VrVr −→ )0( 0 >V 0→r 0VrV −= 0→r

   Such behaved potentials appear in large classes of physical problems. Particularly, in Calogero 
model [2], Coulomb or Hulthen potential  in Klein-Gordon and Dirac equations [3], Black Hole 
theory [4] and etc. Virial-like theorems can make things clear while studying such problems.  

Therefore it seems natural to make attempts for generalization of virial theorem for such 
(singular) potentials too.  
    The most general methods for obtaining various virial like theorems were developed in [5] by C. 
Quigg for regular potentials in the Schrodinger equation. The general character of these methods 
allows us to carry over singular potentials as well. It appears that formally the theorem almost keeps 
the form familiar for regular potentials with obvious differences in averaging procedure.  
   But the main differences are provided by additional solutions, which are the relevant property of 
singular potentials and is related to the necessity of self-adjoint extension (SAE).         
   This article is organized as follows: 
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   First of all we remember the needed methods for deriving of virial-like theorems and apply them 
to general second order differential equation.  
   Consequences for regular potentials are reviewed and then the singular potentials are considered. 
It is shown, that there arise additional terms in the usual virial-like theorems, which depend on the 
additional solution for singular potentials. Some consequences of the new form of virial theorems 
are also considered. 
    After that the corresponding corrections to the Feynman-Hellmann theorem are discussed. 
 
II. Derivation of Hypervirial  (generalized virial) Theorems 
 
     Let us consider the second order differential equation of most general form  

                                              0)()()()()( =+′+′′ rRrLrRrGrR                                               (2.1) 
 Eexclusion of first derivative terms is always possible by using a suitable transformation [6] 

                                                          ∫
=

Gdr
erRru 2

1

)()(                                                            (2.2) 
 and for function it follows  the equation )(ru

                           0)()()( =+′′ rurDru ,                             (2.3) 

 

 where  is  ( )rD

                                                     GGHD ′−−=
2
1

4
1 2                                                            (2.4) 

But it turns out that the transformation (2.2) may be applied by some care. In particular we must 
distinguish two cases:  

                                                              
r

rG 2)( =                                    (2.5) 

and                                             

                                                            
r

rG 2)( ≠                                                                       (2.6)   

In case (2.5) equation (2.1)  becomes  

                                                             0)()()(2)( =+′+′′ rRrLrR
r

rR                                     (2.7)                

 Central potential in three-dimensions will be important for us in the following. Exactly to equation 
(2.7) reduces the radial Schrodinger and the one- and two-body Klein-Gordon equations 
with . Even the one-dimensional case may be investigated on the same footing, as well, 
where

∞<< r0
<∞− ∞<x . The transformation (2.2) gives  

                              
r
rurR )()( =                                  (2.8) 

and the Eq. (2.7) takes a reduced form  
                           0)()()( =+′′ rurLru                               (2.9) 

BBut a careful consideration [7-8] shows that after the substitution (2.8) into (2.7)  there appears an 
additional contribution in the form of Dirac’s delta-function, ( ) ( ) ( )34 u rπδ− r ,               and for its 
removal one must impose the following behaviour of the reduced wave function at the origin 
                                                  (2.10) ( ) ...3,2,1;

0
=≈

→
Nrru N

r

Moreover there appears that the satisfaction of this condition (2.10) is possible only for regular 
potentials. Therefore for singular potentials the substitition (2.2) does not remains  the usual form of 
equation (2.9) and we are forced to explore directly the equation (2.7). 
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    As regards of the second case (2.6), here  the substitution (2.2) does not lead to such 
inconsistency. FFor example, if we take 

                              
r

rG 1)( =                                    (2.11) 

it gives 

                              
r
rurR )()( =                                  (2.12) 

       Our aim is the derivation of the hypervirial theorem for the equation (2.7). Let rewrite it in the 
following manner 

                            )(2)()()( rR
r

rRrLrR ′−=+′′                                            (2.13) 

This equation will be our starting point in this article.  
   Let us introduce an arbitrary three-times differentiable function ( )f r , which will be restricted 
somehow in the following. The needed restrictions will follow from the requirements that arise 
below step by step. After multiplying the Eq.(2.13) on ( )f r  and integrating obtained result in the 
interval ( . We derive  )∞,0

                                       ∫∫∫
∞∞∞

′+′=′′′−
0

22

0

2

0

2 2 drrR
r
fdrrRfLRdrrRRf                 (2.14)                  

    Let us mention that by using the following relations  ( )[ ] [ ]′=′
′

′=′′′ 22

2
1

2
1 RRRandRRR , one 

can perform the partial integration in (2.14)          

( ) ( )∫ ∫∫
∞ ∞∞

∞
∞

∞ ′+′−
′

−=′
′

+′−
0 0

222

0

22
0

222

0

2
0

22 4][][ drRfrdrrRLfdrLRfrLRfrdrRfrRfr ∫    (2.15)             

 For bound states  at large distances and therefore one neglects contributions from upper 
bound in (2.15) if in addition  and are to be restricted as follows 

0, →′RR
f L

                                 (2.16)                  0lim;0lim 2222 →→′
∞→∞→

LRfrRfr
rr

(For scattering problems ,R R′  are not decaying functions and the conditions (2.16) may not take 
place, if we do not require it by special choice of ).  f
     Therefore there remain integrated terms in (2.15) only at lower bound: 

                   ( ) ( )∫ ∫∫
∞ ∞∞

′+′−
′

−−=′
′

+′
0 0

2

0

22
0

2222
0

22 4 drRfrLfdrLRfrLRfrdrRfrRfr     (2.17)                  

where <    > denotes averaging by means of R  function  

                                                 ∫
∞

′=′
0

22 drrLRfLf                                 (2.18)  

Now let us transform the second term in the RHS of (2.17)                   

             ( ) ∫ ∫∫
∞ ∞∞

+′=+′=
′

0 0

222

0

22 22 L
r
fLfrdrfLRdrLRrfdrLRfr            (2/19)  

and collect the last terms in both sides of (2.17) 

                                     (2.20) ( ) ∫ ∫∫
∞ ∞∞

′=′−′
′

=
0 0

222

0

22 4 drRFrdrRfrdrRfrI

where 

                             
r
ffF 2

−′=                                  (2.21)                 
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Now perform a partial integration in the  (2.20), using evident relation RRRRRR ′′+′′=′′)( . It 
follows 

                        ( ) ( )∫∫∫
∞∞

∞
∞

′′−′
′

−′=′≡
0

2

0

2
0

2

0

22 drRRFrdrRRFrRRFrdrRFrI              (2.22) 

FFFor bound states the first term on RHS at the upper limit may be neglected, if  
                                                                                   (2.23) 0lim 2 →′

∞→
RRFr

r

Now let us integrate the second term on RHS of (2.22) 

               ( ) ( ) 2
0

22

0

2
1 2

2
12

2
1

r
F

r
FFRrFrFdrRRFrI −
′

−′′−+′−=′
′

= ∫
∞

   (2.24) 

Here we have taken into account that for bound states  must be restricted as follows F
                         ( ) 02lim 22 →+′

∞→
RrFrF

r
                           (2.25) 

In the same fashion the last integral in (2.22) takes the form 

             ( )∫
∞

+
′

+−=′′=
0

20
22

2 r
F

r
FFLFrRdrRRFrI                  (2.26) 

Here we made a further assumption that for bound states  must be restricted as follows F
                                                           (2.27)  0lim 2 →

∞→
FrR

r

Therefore, we have  

                                    >′′<+
′

+><+⎥⎦
⎤

⎢⎣
⎡ ′+′−= F

r
FFLRrFRRFrI

2
1

2
1

0
222         (2.28) 

At last, from (2.17), (2.21) and (2.28) for bound states we derive the following hypervirial theorem: 

                          
[ ]2 2 2 2 2 2

0

1
2

12
2

r

f R r RR r R f rR rR R f r R

f L fL f

=

⎧ ⎫′′ ′ ′ ′ ′′⎡ ⎤− + − + +⎨ ⎬⎣ ⎦⎩ ⎭

′ ′ ′′′= − < > − < > − < >

=
              (2.29)  

FFor scattering states (2.16), (2.23), (2.25) and (2.27) restrictions are not satisfied and instead of 
(2.29) we should have    

     
[ ]2 2 2 2 2 21

2 r

f R r RR r R f rR rR R f r R
=∞

⎧ ⎫′′ ′ ′ ′ ′′⎡ ⎤− − + − + +⎨ ⎬⎣ ⎦⎩
+

⎭                     (2.30)                 

     [ ]2 2 2 2 2 2

0

1 12
2 2r

f R r RR r R f rR rR R f r R f L fL f
=

⎧ ⎫′′ ′ ′ ′ ′′ ′ ′ ′′′⎡ ⎤+ − + − + + = − < > − < > − < >⎨ ⎬⎣ ⎦⎩ ⎭
 

Substituting here R function at infinity, corresponding hypervirial theorem can be derived for 
scattering problems as well.  
  Now let us make some comments in connection to (2.29) about restrictions on : f

(a) Because <  > means averaging by R  functions, f  must be such, that corresponding 
integrals do exist.  
(b) When )lq , then (2.29) coincides with (2.27) from [10], in which only the 
Schrödinger equation was considered, i.e. when  

(rf q 2−≥=

                                                     ⎥⎦
⎤

⎢⎣
⎡ +

−−= 22
)1(2

mr
llVEmL                                                   (2.31) 

with regular V .  
      Let us note that the choice  satisfies to (2.16), (2.23),(2.25) and (2.27) restrictions.  qrf =
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(c) The expression like (2.29) for arbitrary f was derived in [11] for  regular potentials only., 
and only for Schrodinger equation, as in [10].   
 
III.   Some Applications of Hypervirial Theorem 
 
   Choosing , one can obtain several interesting expressions from (2.29). Let us consider some of 
them. 

f

   Consider a particular case for  in (2.7) )(rL

                       2

)1()(
r
ssrAL +

−= ,                          (3.1) 0≥s

i.e. we separate a centrifugal term. 
   We use here a general notation  instead of (2.31) because a lot of physical equations reduce to 
the form, like (3.1), where potential participates in different manners.  

)(rA

   It is necessary to make distinction between two cases:  (regular) and  

(singular). 

0)(lim 2

0
=

→
rAr

r
0)(lim 2

0
≠

→
rAr

r

  Consider each of them in detail: 
(i) regular case, when  
                                                                                         (3.2) 0)(lim 2

0
=

→
rAr

r

It is easy to guess, that only regular potentials  
                                                                                          (3.3) 0)(lim 2

0
=

→
rVr

r

obey to (3.2) in case of Schrödinger equation (if we take 2,1,0; == lls ,...), whereas, for example, 
for one- and two-particle Klein-Gordon equations the condition (3.2) will be satisfied if 
                                                              0)(lim

0
=

→
rrV

r
                            (3.4) 

When (3.2) is satisfied it follows the following behavior of wave function at the origin  

                                                   (3.5) 
1

0

−−

→
+≈ s

s
s

sr
rbraR

The second term in (3.5) does not obey to the condition of hermiticity for Hamiltonian [12,13] and for 

the radial momentum operator )1(
rr

ipr +
∂
∂

−=  [14], which is imposed on the wave function at 

origin  
                                               0)(lim

0
=

→
rrR

r
                      (3.6) 

  Therefore it is neglected as a rule (see, any textbook in quantum mechanics). Then at small 
distances only the first term remains 

                                                                                          (3.7) s
ss raR ≈

Substituting this into (2.29) one obtains 

                 

>′′′<−>−
′

<++

+>′<−>′<−=
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
′′+′+−+

=

f
r
f

r
fss

AfAffrrfsfsra
r

s
s

2
1)1(2

2
2

)1()1(

32

0

2
22

       (3.8) 

Now consider a special form for  [5]  f
                                                                                            (3.9) qrf =
   We have  
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><⎥⎦

⎤
⎢⎣
⎡ −−+−+−

−>′+<−=
⎭
⎬
⎫

⎩
⎨
⎧ −+−+

−

−
=

+

3

1
0

22

)2)(1(
2
1)1)(1(2

2)1(
2
1)1)(1(

q

qq
r

sq
s

rqqqqss

ArAqrraqqqs
    (3.10) 

In order that the LHS of this expression be not diverging at 0=r , we must require  
 
                                                         sq 2−≥                                  (3.11) 
 
Therefore, (3.10) becomes  

                    
>⎥⎦

⎤
⎢⎣
⎡ −−+−++′+<−=

=+

−−

−

31

2,
22

)2)(1(
2
1)1)(1(22

)12(

qqq

sqs

rqqqqssArAqr

as δ
      (3.12) 

It must be noted that (3.12) is a generalization of relation (2.30) from paper [5] for in form (3.1). L
  Let now consider various interesting values of in (3.12):  q
   a)     1=q
  Then it follows from (3.12) that  

                                                          02 =′+ ArA                           (3.13) 

In case of Schrodinger equation, when  
                                                           )(2 VEmA −=                                                     (3.14) 
we derive  

                                                            VrVE ′+=
2
1

                         (3.15) 

which is the usual virial theorem 

                                                          VrT ′>=<
2
1

                          (3.16) b) 

 lq 2−=
Taking into account reparability of total wave function  
                                          ( ) ( ) ( ), , ,nl lmr R r Yψ θ φ θ φ=                          (3.17) 

we derive 

                                           ( ) ( ) ( ) ( )2 22
,l ,l2 1 22 1 0 ! 4l

n nl l

A Al R l l
r r+

′
+ = < − >             (3.18) 

Here  ( ) ( ),l 0e
nR  is the -th order derivative of radial wave function at origin. Eq.(3.18) generalizes 

eq. (1.4) of [10] for Schrodinger equation, which has a form   
l

                               ( ) ( ) ( ) ( )2 22
,l 2 1

12 1 0 2 ! 4e
n l

l

dV E Vl R m l l
r dr r +l

⎡ ⎤−
+ = +⎢ ⎥

⎣ ⎦
          (3.19) 

c) q=0 or  constf =
This case is well-known in the Schrodinger equation [5,11]. Now it follows from (2.29): 
                 [ ]{ } >′<−=′+′′− = LRrRRrR r 0

2222                       (3.20) 
or 

                            2 2
0 3

2 ( 1)( 1) ( )l
l r

l ll a r A r
r=

+′+ = − < > −         (3.21) 

If now we take , then 0=l
                                                      ( )[ ] >′<−== )(0 2

0
2
0 rARa                    (3.22)            
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It generalizes eq. (39a) from [11] for arbitrary . When we take expression (3.14), then it 
follows from (3.22) the well-known relation  

)(rA

                                                            
dr
dVm

π
ψ

2
)0( 2

0 =                       (3.23) 

In case  , the LHS of (3.21) is zero and therefore we obtain  0≠l

                                                        A
r

ll ′−=+ 3

1)1(2                        (3.24) 

which generalizes eq. (39b) from [11]  for arbitrary   . The relations (3.22) and (3.24) are 
formulated in terms of . Depending on equations of motion, the potential  appears in 
various forms and one must take care, which restrictions arise on potential . 

)(rA
)(rA )(rV

)(rV
 d)             lq 2,1,0 −≠
Now we have 

                          0)2)(1(
2
1)1)(1(22 31 >=⎥⎦

⎤
⎢⎣
⎡ −−+−++′+< −− qqq rqqqqllArAqr     (3.25) 

  This expression allows us to connect average values of various degrees of r . For example, in 
Schrodinger equation we have  

          ( ) ( ) 012
4

)1(22 311 =⎥⎦
⎤

⎢⎣
⎡ +−−

−
+′−− −−− qqqq rllqq

m
qVrVrqrEq     (3.26) 

For power-like potential,   it follows from (3.26), that  nrVV 0=

           ( ) ( ) 012
4

)1()2(2 31
0

1 =⎥⎦
⎤

⎢⎣
⎡ +−−

−
++− −−+− qnqq rllqq

m
qrnqVrEq   (3.27) 

If  , the well-known Kramer’s formula [15] follows for the Coulomb potential 1−=n

r
V α

−= , (i.e. 1;0 +=−= sqV α ) 

            0)1(
4

1)12()1(2 2
2

1 =⎥
⎦

⎤
⎢
⎣

⎡
+−

−
++++ −− sss rlls

m
srsrsE α            (3.28) 

And when , the relation for isotropic harmonic oscillator2=n 22

2
1 rV ω=  is derived [16] 

                          0)1(
4

1)2()1(2 2
2

22 =⎥
⎦

⎤
⎢
⎣

⎡
+−

−
++−+ −+ sss rlls

m
srsrsE ω         (3.29) 

Also it is possible to derive recurrence like relations between different powers of r for various 
relativistic equations. Such relations have many applications in the diverse physical problems [17].  
Let us note also that while we considered only regular potentials, we could work with the wave 
function  as well. ( ) ( )u r rR r=
ii) Singular case .  Now 

                                                     2
0 00

lim ( ) ; ( 0)
r

r A r V V
→

= − >                     (3.30) 

A  As was shown in [18,19],  in cases of Schrodinger and two equal mass particles’ Klein-Gordon 
equations,  besides the standard levels there appear additional levels as well, whose wave function 
behaves at small distances as  

                                               
P

stst raR
+−

≈ 2
1

 ; 
P

addadd raR
−−

≈ 2
1

                 (3.31) 

where, for example, in Schrodinger equation    
                                                02)2/1( 0

2 >−+= mVlP                           (3.32) 
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while in the Klein-Gordon equation for two equal mass particles 
                                               04/)2/1( 2

0
2 >−+= VlP                             (3.33) 

Likely it is possible to find P for a given L (see, above)  for each relativistic equations. At the same 
time, as is indicated in [18,19], for the existence of additional levels following constraint must be 
satisfied 
                                                                                     (3.34) 2/10 <≤ P
which is expression of the fact that the condition (36) is satisfied. 
  Now if we take the wave function at small distances as general form [19] 

                                              
P

add
P

st raraR
−−+−

+= 2
1

2
1

                          (3.35) 

and use (3.9) for , then (2.29) gives f

   

2 2
,1 2 ,1 2

2 2
,1

1 3

(1 )(1/ 2 / 2) (1 )(1/ 2 / 2)

( 1) 4

2 2 ( 1)(1 ) ( 1)( 2)
2

st q p add q P

st add q

q q q

q P q a q P q a

q P a a

qqr A r A l l q q q r

δ δ

δ
− +

− −

− + − + − − −

⎡ ⎤+ − − =⎣ ⎦

⎡ ⎤′= − + + + − + − −⎢ ⎥⎣ ⎦

+

                 (3.36)                

Here we must require that .  Pq 21−≥

Let consider various q-s in (3.36) as above. 

   a)   2/10,0;1 <<≠= PPq
  Then from (3.36) follows                   
                                                    addst aaPArA 242 =′+                          (3.37) 

FFFor the Schrodinger equation this means 

                                             addst aa
m
PVrVE

2

2
1

+′+=                         (3.38) 

Therefore, for singular potential the virial theorem differs from that of regular ones by the extra term  

                                                     addst aa
m
Pb

2

=                                (3.39) 

This term vanishes when we take only standard or only additional solutions. 
Comment: Separate consideration needs the case 0=P . As is indicated in [19], we have in this case 

                                                rraraR addstr
ln2

1
2
1

0

−−

→
+≈                        (3.40)  

Clearly . Now instead of (3.36) it follows 0)(lim
0

=
→

rrR
r

                                 0)2)(1(
2
1)1)(1(22 31 =⎥⎦

⎤
⎢⎣
⎡ −−+−+−′+ −− qqq rqqqqllArAqr   (3.41) 

AAnd virial theorem for Schrodinger theory takes the form  

                            VrVE ′+=
2
1

                            (3.42) 

which is analogous to regular potential case, but difference appears in averaging by function with the 
behavior (3.40). 
     For pure singular potential  

                                                        )0(; 02
0 >−= V

r
V

V                           (3.43) 

it follows from (3.37) that 
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                                                             addst aa
m
PE

2
=                            (3.44) 

A This is a single level, which appears in quantum mechanical consideration, when we retain the 
additional solution as necessary ingredient for providing a self-adjointness of Hamiltonian via self-
adjoint extension (SAE) procedure [19].  
   This level disappears immediately as we neglect pure standard or pure additional solutions.  
   It is evident that the equality (3.37) is rather general relation and many physical consequences can 
be derived from it.  
    Consider, for example, two-particle Klein-Gordon equation with equal masses : m

                                  ;0)1(
424

2
2

2
22

=
+

−⎥
⎦

⎤
⎢
⎣

⎡
−+−+′+′′ R

r
llRmMMVVR

r
R             (3.45) 

M  is a total mass of composite state.. Comparison to (2.7),(3.1) and (3.45) gives  

                                               2
22

424
mMMVVA −+−=                         (3.46)     

UUUsing this in (3.37), we obtain 

                                        ( ) addst aaPmMMVVrMVV 22
22

42
222

=−+−
′

+−       (3.47) 

L Let us now consider the following problem: Can two massive particles produce massless bound 
state in case of Coulomb potential (attraction or repulsion)? Existence of bound states for both cases 
is a consequence of the relativistic structure of Klein-Gordon equation, where for 0=M  there 
remains only in (3.45).This problem was considered in scientific literature [20]. 2V

      For this aim one must take  in (3.47). We derive 0=M

                          addst aaPmVVrV 22
2

42
22

=−
′

+                  (3.48)   

   For Coulomb potential it follows 
                                                       (3.49)         

and we see that this problem has a positive answer only if both 
addst aaPm 22 2=−

0≠sta  and  0≠adda (and 
. Correctness of this result may be verified also by direct solution of the Klein-Gordon 

equation. Indeed, substituting  in (3.45), one finds    
)0<addst aa

0=M

                                                ;0)1(
4

2
2

2
2

=
+

−⎥
⎦

⎤
⎢
⎣

⎡
−+′+′′ R

r
llRmVR

r
R                        (3.50)               If 

we take here 
r

V α
m=   this equation becomes 

                     04/12
2

2
2 =⎥

⎦

⎤
⎢
⎣

⎡ −
−−+′+′′ R

r
PmR

r
R                    (3.51)  

where P  is given by (3.33). Note that this equation coincides to the Schrodinger equation with the 
accuracy of notations. Therefore we can use the results of our paper [19] and write down the general 
solution derived there                                                           

               ( ) { )()( mrBImrAI
r
mrR PP −+= }                                   (3.52)   

where  and  are the modified Bessel functions. We have the following behaviour at infinity PI PI −

                             { } mr

r
eBA

r
rR +≈
∞→ π2

1)(                                                  (3.53) 
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Requiring vanishing of  at infinity as for bound state solution we have to take )(rR
                                                                      AB −=                                (3.54) 

A Remembering the well-known relation  

                           [ )()(
sin2

)( zIzI
P

zK PPP −= −π
]π
                   (3.55)        

our wave function takes the form 

                             )(sin2 mrKP
r
mAR P⋅−= π

π
                         (3.56) 

which is exponentially damping at infinity and in the interval 2/10 <≤ P  satisfies to fundamental 
requirement (3.6). It is evident, that our solution is derived by the requirements 

                                0;0 ≠≠ BA                              (3.57)     

which means, that   state can be derived only by SAE procedure. We see that explicit 
solution of Klein-Gordon equation repeats the conclusion, derived by Virial theorem.  

0=M

   One important remark is in order: W. Krolikowski [20] derived the same solution for 0=l state 
only. It is true, because is the only Bessel function, which behaves in a needed fashion at 
infinity (vanishes!).It appears that a massless bound state for Coulomb potential may be constructed 
from 2 massive particle in nonzero orbital momentum states also, 

)(zK P

0≠l [18].But SAE procedure is 
necessary. 
   Owing to the fact, that repulsive case also forms a massless bound state, we conclude, that the 
following alternatives take place: 

        (i) Those values of SAE parameter 
st

add

a
a

=τ , when this strange fact occurs, must be         

        deflected in order to  suppress such unphysical results. 
(ii)  We must recognize, that the SAE procedure produces an effective attraction , which    may be 
seen from equation (3.50), where the factor ( )4/12 −P  has a negative sign in area (3.34) and gives a 
quantum anticentrifugal potential, which is attractive [19]. 
(iii) It is not excepted that such unphysical fact is a pathology of the Klein-Gordon equation. For 
example if we reverse the problem and ask if two massless particles can compose a massive bound 
state in Coulomb field, we can easily see that (3.47) would give a positive answer in case of Coulomb 
repulsion, but not for attraction .                                                             
   b)  Cases   and  may be discussed in full analogy. One derives some 
recurrence like relations between average values of various powers of 

Pq 21m= lq 2,1,0 −≠
r . 

 
 IV. Generalization of the Feynman - Hellmann Theorem 

 
         It is known that the Feynman-Hellmann (FH) [21 -22] and generalized FH [23-24] theorems are 

closely related to the hypervirial theorems.  
    FH like theorems connect average values of energy derivatives by some parameters to those of 
Hamiltonians.  
   We want to take attention to the fact, that for singular potentials in Schrödinger equation, when 
SAE is necessary, FH theorem also should be modified.  

       Indeed, in  a traditional way [23], we consider a wave equation of the form 
                                           0),( =ψλEF                                         (4.1) 

where ψ is the wave function of a bound state with energy E, which depends on the parameterλ . 
Then we can write 

                  0=
∂
∂

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

=
∂
∂

λ
ψψψ

λλ
ψψ

λ
ψψψ

λ
FFE

E
FFF              (4.2) 
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If F has the property that (this property is fulfilled in the regular (3.2) case!)     

                                                          
λ
ψψ

λ
ψψ

∂
∂

=
∂
∂ FF                                                 (4.3) 

then in view of (4.1), from (4.2) we obtain 

                                                  
ψψ

ψ
λ

ψ

λ
E
F

F
E

∂
∂

∂
∂

−=
∂
∂

                                                                (4.4) 

  If EHF −= , then (4.4) reduces to the usual Feynman – Hellmann theorem [23-24] 
 

                                                     ψ
λ

ψ
λ ∂

∂
=

∂

∂ HE ˆ
                              (4.5) 

       Now from (2.7), (3.1) and (4.1) we have 

                                          
( )

22

2 1)(2
r
llrA

dr
d

rdr
dF +

−++=                                            (4.6) 

 and in the singular (3.30) case, instead of (4.3) we obtain additional term on the right side  
                                     

( ) ( ) ( ) ( )
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+
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R
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R
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n

n
n

n
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λ
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λ
λ

λ
λλ

,,,
,lim

0
        (4.7) 

 and it follows 

                                                      
ψψ

ψ
λ

ψ

λ
E
F
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E

∂
∂

+
∂
∂

−=
∂
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                                                        (4.8) 

     where    

                         ⎥⎦
⎤

⎢⎣
⎡

∂
∂

−
∂

∂
=

→ dr
rdrRrrRrrR

dr
drrRB nnn

nr

),(),(),(),(lim
0

λ
λ
λ

λ
λλ                          (4.9) 

    We see that FH theorem is modified as well. 
    This happens because is not a self-adjoint operator in singular case (3.30) and the fundamental 
relation 

F

                                                         ϕψϕψ FF =                                                        (4.10)                                    
    does not takes place. Therefore the SAE procedure is necessary.      
    Inserting (3.35) we obtain 

    { }P
addnaddnstnr

stn
addn

addn
stn raraPa

d
dPa

a
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aPB 22
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,
,

,
, ln4lim2 −

→
−+⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂

∂
−=

λλλ   (4.11) 

    Consider some consequences for Schrodinger and one body Klein-Gordon equation.       
        a) For Schrodinger equation P is given by (3.32) and for singular  
                                                                        (4.12) )0(lim 00

2

0
>−=

→
VVVr

r

        potential from (4.7) we obtain 
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We see that the last parenthesis of eq. (4.13) is divergent expression at the origin, except the regular 

case or when . Therefore only for 0=adda 0=
∂
∂
λ
P

 has this expression a viable sense, i.e. when we 

choose lorVm 0,≠λ . 
  So when SAE procedure (which is necessary in a singular potential case) is not used, the FH 
theorem takes usual form (4.5).   
   When P does not depend on  λ ( lorVm 0,≠λ ),there remains only the first row in   (4.13) 
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In particular case, when , calculations must be performed by function (3.40). In this case 
singularities from (4.13) disappear. We find  

0=P
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a) For one body Klein - Gordon equation 
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         We obtain for lorV0≠λ  
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And for m=λ we get 
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        where 

                                0)2/1( 2
0

2 >−+= VlP                                                     (4.19) 
The main result here is that in case of singular potentials Feynman-Hellmann theorem has to be 
modified.  
       
 
 

V. Conclusions 
 
      In this article we consider problems, related to the singular potentials in light of hypervirial and 
FH theorems. Main results can be summarized as follows: 

1. We have derived a hypervirial theorem for general second order differential equation.  
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2. For regular potentials we have generalized known results concerning the Schrodinger 
equation ( virial theorem, wave function and its derivatives at origin, recurrence relations 
between average values of different powers of r ) 

3. We obtain virial theorem for singular potential, by means of which some physical results are 
derived (existence of one level for pure 2−r  potential, possibility of having massless bound 
state for repulsive and attractive Coulomb potential  in the two-body Klein – Gordon 
equation).  

4.  We have derived the modification of Feynman-Hellmann theorem for singular potential, 
when the SAE procedure is necessary.  
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