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abstract: 
We have studied the motion of a relativistic test particle in the Bianchi type I 
spacetime with applying the Hamilton-Jacobi formalism. Also, in threading 
formalism, the gravitoelectromagnetic force in this spacetime is calculated. 
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1. Introduction 
 

The slicing and threading points of view today are introduced respectively by Misner, Thorne and 
Wheeler [1] in 1973 and, Landau and Lifshitz [2] in 1975. Both points of view can be traced back 
when the Landau and Lifshitz [3] in 1941 introduced the threading point of view splitting of the 
spacetime metric. After them, Lichnerowicz [4] introduced the beginnings of slicing point of view. 
The slicing point of view is commonly referred as 3+1 or ADM formalism and also term 1+3 
formalism has been suggested for the threading point of view. In this paper, we are going to work in 
threading formalism. 
In threading point of view, splitting of spacetime is introduced by a family of timelike congruences 
with unit tangent vector field, may be interpreted as the world-lines of a family of observers, and it 
defines a local time direction plus a local space through its orthogonal subspace in tangent space. 
Let 2  (M, g )αβ  be a 4-dimensional manifold of a stationary spacetime. We can construct a 3-

dimensional orbit manifold as MM = 
G

 with projected metric tensor ijγ  by the smooth map 

: M MΣ →  where ( )pΣ  denotes the orbit of the timelike Killing vector 
t
∂
∂

at the point Mp ∈  and 

G is 1-dimensional group of transformations generated by timelike Killing vector of the spacetime 
under consideration, [5,6]. The threading decomposition leads to the following line element, [2,6,7]: 

( )22 g g i i
i ijds dx dx h dt dx dx dxα β

αβ γ= = − − ,j

j

                              (1) 
where the components of metric are 

00 0g ,   g g ,   g g g ,i i ij ij ih h hγ= = − = − +                                     (2) 
and their inverse are 

00 2 01g g ,   g g ,   g ,i i ij ij

h
γ= − + = − = −                                       (3) 

such that  In a spacetime with the time dependent metric (1), the 
gravitoelectromagnetic force acting on a relativistic test particle whose mass  due to time 

2g g g g gi ij
i iγ= = .j

                                                

m
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dependent gravitoelectromagnetic3 fields as measured by threading observers is described by the 
following equation4, we use gravitational units with c=1, [10,11]: 

{
2

= ,
1

d m
dt v

∗ ∗
∗ ∗ ∗ ∗

∗
− + × +

−

pF E B Mv }∗                                  (4) 

where 
2

p  = 
1

i
i m v

v

∗
∗

∗−
 such that  in which 2 i

ijv vγ∗ ∗= jv∗
( )1 g

i
i

k
k

vv
h v

∗ =
−

 while 
i

i dxv
dt

= . 

Also, the starry total derivative with respect to time is defined as 
 

i
i

d v
dt t

∗ ∗
∗ ∗∂

= + ∂
∂

 where 

 1
t th

∗∂ ∂
=

∂ ∂
 and gi i i i t

∗
∗

∂
= ∂ = ∂ +

∂
. In equation (4), the last term is defined as 

M 2i i j k i
jk kv v vλ∗ ∗ ∗ ∗ ∗= − − D ,k                                            (5) 

where the 3-dimensional starry Christoffel symbols are defined with the following form 

(1 .
2

i il
jk jl k kl j jk lλ γ γ γ γ∗

∗ ∗ ∗= + − )                                            (6) 

Also, deformation rates of the reference frame with respect to the observer are represented by 

tensors 1D
2

ij
ij t

γ∗∂
=

∂
 and 1D

2

ij
ij

t
γ∗∂

= −
∂

. Finally, the time dependent gravitoelectromagnetism 

fields are defined in terms of the gravoelectric potential ln hφ =  and the gravomagnetic vector 
potential  as follows ( 1 2 3 = g ,g ,gg )

g, E ,i
i it t

φ φ∗ ∗ ∗
∗

∂∂
= − ∇ − = − −

∂ ∂
gE                                         (7) 

  [ ]
B,

2

i ijk

k jh h
ε
γ

∗ ∗
∗

∗= ∇× =
B g   g ,                                            (8) 

here the curl of an arbitrary vector in a 3-space with metric ijγ  is defined by 

( ) [= A
2

ijkì

k j
ε
γ

∗
∗∇×A ]  while the symbol [] represent the anticommutation over indices. For more 

details about applications of gravitoelectromagnetic fields, see references [12,13]. 
 
2. Motion of a test particle in the Bianchi type I spacetime 
2.1. Calculation of the gravitoelectromagnetic force 
 

As is well known, the Bianchi type cosmological models play a vital role in general relativity to 
discuss the early stages of evolution of universe, [14]. The Friedmann-Robertson-Walker metrics 
are isotropic, which are particular cases of types I, V, VIIh and IX. The Bianchi type I models 
include the Kasner metric as a special case. Hence, we consider the Bianchi type I spacetime in 
Cartesian coordinates with the following line element 

( )2 2 2 2 2 .ds dt t dx dy dz= − + − 2

                                                

                                           (9) 

 
3The gravitoelectromagnetic refers to a set of analogies between Maxwell equations and a reformulation of the Einstein 

field equations in general relativity, [8,9]. 

4The vector  has components as = ×C A B C A
ijk

i Bj k
ε
γ

=  in which det( )ijγ γ=  and 3-dimensional Levi-Civita 

tensor ijkε  is antisymmetric in any exchange of indices while 123
123ε ε 1,= =  [2]. 



 GESJ: Physics 2013 | No.2(10) 
ISSN 1512-1461         

34 

We firstly determine the trajectory of a relativistic test particle of mass  moving in this spacetime 
by using the Hamilton-Jacobi equation, [15-17]. Therefore, we have 

m

22 2 2
2 2S S S S 0.t t

t x y z
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

2 2m t                            (10) 

We now use the method of separation of variables for the Hamilton-Jacobi function for solving this 
equation as follows 

S( , , , ) ( ),x y z t ax by cz tψ= + + +                                        (11) 
where ,  and c  are arbitrary constants and can be identified respectively as the angular 
momentum components of test particle along 

a b
x , y  and -directions. Afterwards, with 

substituting the relation (11) into Hamilton-Jacobi equation, the unknown function 
z

ψ  is given by 
1sinh ( ) ,LL

t
ψ λ−= −

l
+                                                 (12) 

where 2 2 2t Lλ = +l  in which 2L = + d 2 m2a b  2 an 22 c= + . l t, the equations for the trajectory 
can be obtained by considering the following conditions, [15-17]: 

Nex

S S Sconstant, constant, constant,
      a b c
∂ ∂ ∂

= = =
∂ ∂ ∂

                          (13) 

without loss of generality one can consider the above constants to be zero. Hence, the equations 
(13) respectively convert to the following equalities 

1sinh ( ),a Lx
L t

−=
l

                                                    (14) 

1sinh ( ),by
L t

−=
l

L                                                     (15) 

2

 .cz λ= −
l

                                                              (16) 

Therefore, from equations (14-16), the trajectory of particle is obtained as 
2

2 2

21
sinh sinh

Z ,
X Y

= +
+

                                            (17) 

where  LX x
a

= ,  LY y
b

=  and 
2

Z z
cL

= −
l . From the equations (14-16), we conclude 

2

    1,
1     2,

 3.

i

a i
v b i

t
ct i

λ
∗

⎧ =
⎪= − ⎨
⎪

=

=⎩

                                                 (18) 

With applying the last relation and after simplifying, we lead to 

2
,

1
m

tv
λ

∗
=

−
                                                        (19) 

(2

2 , ,0 .a b
tλ

∗ =M )                                                     (20) 

Finally, by considering equations (18-20) and using this fact that all components of 
gravitoelectromagnetic fields and starry Christoffel symbols are zero, we obtain 

= 0.∗F                                                              (21) 
 
3. Conclusion 
 

The behaviour of test particles in the Bianchi type I spacetime have been studied. We proved that 
the particles can be trapped by this gravitational field. Also, it was shown that the 
gravitoelectromagnetic force acting on particles in this spacetime is vanish. 
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