
GESJ: Computer Science and Telecommunications 2013|No.4(40)
ISSN 1512-1232

 51

POSSIBILITY OF FUNCTIONAL PROGRAMS VERIFICATION
THROUGH APPLICATION OF MODEL CHECKING

Natela Archvadze
Department of Computer Sciences Faculty of Exact and Natural Sciences

Ivane Javakhishvili Tbilisi State University, Tbilisi, GEORGIA
Natela.Archvadze@tsu.ge

Merab Pkhovelishvili

Department of Programming N.Muskhelishvili Computing Mathematic Institute
of Georgian Technical University, Tbilisi GEORGIA, merab5@list.ru

Abstract
The overall, ubiquitous computerization of all patterns of life makes the citizenry

more and more vulnerable and dependent to the technology created by human. In this
regards, the achievement of the required quality of the system software for the critical
application is becoming the most significant scientific and technical challenge.
The verification of the software has the huge potential in solution of this problem.
Verification considers the formal checking of formal requirements execution towards
the software behavior, presented in the type of the formal model.
Recent breakthrough in the verification researches is connected to the Model Checking
method that considers that the validity of the temporary logic formula, describing the
requirements towards the software behavior, is checked on the basis of the program
model.
This article hereby describes the Model Checking methodology application possibilities
for the verification of the functional programs, namely for Lisp and Haskell Programs.

Keywords: Functional Programming Languages; Recursion Forms; Programs
Verification

I. INTRODUCTION: ACTUALITY OF THE VERIFICATION PROBLEM

Almost every day the information on software errors is disclosed and spread. Hereby we
present several samples [1], having occurred in 2010: the accident in Mexico gulf could be probably
caused due to software error [2]; company Apple recognized 4 errors regarding iPhone 4
connections quality; carrier rocket “Proton-M” with the satellite “Glonass-M” deviated from the
assigned route due to the errors in mathematic software (main reason – incorrectly written formula
in documentation pertaining to filling the acceleration block by the oxygen); Japanese probe
“Akatsuki” could not depart to Venire orbit.

In average, 10 errors come on 1000 lines of the code within the modern software systems, 1-4
errors come on 1000 lines of high-quality software. The modern PU contains millions of codes.
Already passed software programs are full of errors.

One of the stages of the verification is validation, the significance of which is confirmed by
the fact that 80% of the costs attributable to the installed software falls at validation. Validation
means the process of checking the conformity of the software with the consumer requirement. The
software errors not detected during the validation stage lead to the huge material damage and
human casualty.

mailto:Natela.Archvadze@tsu.ge
mailto:merab5@list.ru

GESJ: Computer Science and Telecommunications 2013|No.4(40)
ISSN 1512-1232

52

During the recent decade, the complicatedness of the computer systems has reached the
critical threshold: more and more sophisticated software is required, but the programing technology
is unable to properly process them.

Verification is one of the methods aimed at software quality improvement (along with
validation). Verification is the formal confirmation that the formal system meets the formally
determined requirements.

Approximately 45 years ago, the verification direction appeared – it was deduction
verification theorem-proving [3]. By it, only not-large systems correctness can be confirmed, and
with significant efforts.

Example: in 2009, the Australian research center declared about the completion of
confirmation of formal correctness of operating system kernel through Isabel system by NICTA.
The operational system code included 7500 lines. 10000 theorems (200000 lines) have been
formally confirmed, consuming thereof 4 years and 12 researchers. This was “extraordinary result”,
achieved through the theorem-proving.

The complicatedness of confirmation of correctness through application of Theorem –
Proving 30 times exceeds the complicatedness of the code; thus, through its application it is fairly
easy to confirm the correctness of the program having several lines only.

II. MODEL CHECKING – DISCRETE DYNAMIC SYSTEMS VERIFICATION

Verification method – Model Checking [4,1] – is one of the most perspective and widely
applied attitude, through which the programs automated functioning and correctness problems can
be solved.

In 2007, Turing Prize was rewarded to three creators of Model Checking technique: Edmund
M. Clarke (CMU), E. Allen Emerson (U Texas, Austin) and Joseph Sifakis (Verimag, France) for
“their roles to transform the Model Checking method to the highly effective technology of
verification, widely applied in PU processing and machinery tools industry”.

Model Checking operates with the formal models and checks some of their qualities. These
qualities should be expressed by any of the logics. The ordinary logic is unable to express that
dynamic.

A. Logic for PU requirements formalization Application of Modality

Propositional logic [5] of the statement is inadequate as far as the statements are static, not
changeable across the time, added by the connuction non-commutation (A&B ≠ B&A). The
statements within the classical logic are not formalized. Systems subject to verification develop
across time; however, the ordinary logic is inadequate to express their qualities. Due to this, the
tense is introduced into the logical statements.

The modalities (Tense Logic, A.Prior, Y1950) are applied, the operators of which are as
follows: Fq – q will occur sometimes in future; Рq – q already occurred sometimes in past; Gq – q
will always present in future, Нq – q has always been in past; pUq – q will occur in future, before
that р is always executed; Хp - р will occur in the next moment. Through these operators, we can
express the natural language sentences by such logic.

Even in 1977, A. Pnuel has introduced LTL discrete tense logic [6]. Tense logic described the
sequence (yesterday, today, tomorrow…). The “Probable Universes” semantics has been applied
herein. In each universe, each logical formula is either true or false, which is fair for any temporary
formula as well.

GESJ: Computer Science and Telecommunications 2013|No.4(40)
ISSN 1512-1232

 53

B. Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) is also determined here. In this formula, is:

• Atomic position (atomic predicate) p, q, ...,

• or by logical operators , ¬ related formulas

• or by temporal operators U, related X (the past modality is not in LTL)

Grammar ::= p | | ¬ | X | U

 LTL basis = {¬, , U, X }

In LTL logic, only two modal operator - Until and NextTime – are added.

C. LTL and discrete systems specification

The sequence of “universes” within the LTL can be imagined as the never-ending sequence of
the discrete systems positions. As for the dependence, it can be considered as availability, as the
discrete, non-divided transitions of the systems. In such moment, atomic predicates describe the
basic qualities of the process.

Any temporal formula is the calculation in future, the process dynamics: qUp is ended while
calculation; Gr – is not ended.

D. Kripke’s Structure

Kripke’s structure, as fixed-length system with the transformation pointed positions as well as
non-pointed positions, might be applied for the program modeling. Actually, the position is the
program state; transition means the execution by the program operators, and the atomic positions
means some statements we are interested in. For instance a>b, two specific processes stated in the
critical interval, etc.

The general scheme of the formal verification through application of the model checking can
be explained as follows: the Kripke’s structure will be applied as the formal model through which
we intend to verify; the requirements specifications are expressed on the temporal logic language.
Model Checking is the program, the algorithm, enabling us to check the execution level of the
quality expressed by the temporal logic across the Kripke’s structure [7].

E. Kripke’s Strucure, as the Program Model

Program state means the vector of its variable values as well as notch, while transition means
the change of the program variables by the operators or/and notches.

Let us discuss the McCarty’s sample, where z is pre-determined:
begin
x:=0; y:=1;

GESJ: Computer Science and Telecommunications 2013|No.4(40)
ISSN 1512-1232

 54

while x+z<5 do
{ x:=5;
if z=1 then y:=x+1;
x:=-2; y:=1;
}
y:=x*y-5; x:=5;
end
Let us develop the formal model to be applied for verification. Only two variables – x and y –

determine the state, z is not defined in this block, thus it cannot determine the state. The state will
be developed into the angels, and those operators that change the state will be positioned on sides:

Please note that we do not focus our attention on the operators’ semantics within this scheme

but on the states and transformation. The transformation to one state can be done from several states
and vice versa, from one state transformation is possible to several directions. Return is possible to
the angle from which the transition occurred, or directly, or by passing other states. The cycle
operator’s actions are reflected through such manner.

Let us suggest that the atomic positions we are interested in are as follows: a=x>y; b=|x+y|<3.
This means that these are those formulas (in general, they might be temporal) according to which
the verification should be implemented.

Let us transform the McCarty’s sample into the relevant Kripke’s structure. For this purpose:
a) variable with the false value (ex: x=0), and: b) variable which does not change the value (ex:x=5)
will not be included in the following position. We will receive the following scheme of Kripke:

Hereby the Model Checking is already functioning, over which the following general scheme

is applied for verification: from one side, we have the system, on another – system specifications.
As far as only formally determined model can be formally confirmed, we need two models: 1.
System formal model, same specifications, which will be presented by the Kripke’s structures; 2.
Requirement specifications essential for description of the system specifications, same formal
language, which will be presented through the temporal logic formulas. According to the procedure
by Model Checking, the conclusion will be developed: 1. Yes, system meets the specifications; or:
2. No, the system cannot meet the specifications as confirmed by the counter-sample, over which it
is executed.

F. Model Checking application samples

Let us name the projects across which the Model Checking has been successfully applied:
• Cambridge ring protocol;
• IЕЕЕ Logical Link Control protocol, LLC 802.2 ;

GESJ: Computer Science and Telecommunications 2013|No.4(40)
ISSN 1512-1232

 55

• Part of XTP and TCP/IP protocol;
• Protocols of penetration to splint;
• Protocols for error control within the machinery;
• Cryptography protocols ;
• Ethernet Collision Avoidance Protocol;
• DeepSpace1 (NASA) – the critical errors gave been detected upon its passing;
• SLAM: Microsoft Model checking Driver Development Kit Driver for Windows.

III. MODEL CHECKING FOR FUNCTIONAL PROGRAMS

Let us set the task as follows: to apply the Model Checking for the functional programs
verification, namely, initially for one of the classical functional language Lisp; afterwards - for
commercial and widely spread language Haskell; and finally - for strong, multi-paradigm F# that
works starting from Microsoft Visual Studio 2010.

The general problem of solution of this task is the fact that within the functional languages
there is no state, i.e. there is no variable description, linking the memory cell to the variable,
assigning operator, changing the value in the memory cell, etc.

The functional program is the recursive function, or combination of the functions. The
program written according to the imperative paradigms, i.e. procedural language can be generally
formulated as follows: we gave the initial state, operators’ sequence which changes one state into
another and we have the resulted state. According to this analogy, functional program can be
formulated as follows: we have the initial argument, operators which change the argument and we
have result, i.e. resulted value of the argument. The main idea is to investigate which arguments the
function has, and which type of the actions are implemented for changing this argument to apply the
formal methods.

The special positions within the functional programing languages are occupied by the lists.
List is the abstract type of the data which presents the ordered multiplicity of the values, whereas
several values can be met more than once. Hereinafter we will discuss only those functions the
arguments of which are lists.

Thus, the sequence of the states of the calculation processes within the functional programing
can be considered as the list.

A. Recursion functions representation means

For the repeated calculations, the recursion is applied within the functional programing
instead of standard cycle operators. Recursion functions recall themselves, thus enabling the
multiple implementations of the operations. For recursion, the large capacity stack is required;
however, this can be avoided through application of tail area recursion. Hereby we discuss the
samples of the recursion functions creating the program over the Lisp:

(defun MEMBER (item list)
 (cond ((null list) nil)
 ((eql(car list) item) list)
 (t (MEMBER item

 (cdr list)))))

(defun negnums (l)
 (cond ((null l) nil)
 ((< (car l) 0)

 (cons (car l)

GESJ: Computer Science and Telecommunications 2013|No.4(40)
ISSN 1512-1232

 56

 (negnums (cdr l))))
 (t (negnums (cdr l)))))

 (defun reverse (x)
 (if (eq x nil) nil
 (if (atom x) x
 (append (reverse (cdr x))
 (cons (reverse (car x)) nil)))))

Please note that the function determination style is similar. As a rule, the conditional (if) and
branching (cond) operators are applied. We propose one condition for the operators that determined
the actions to be implemented in case of emptying the list. The second condition includes the
recursion access, which is done either on list tail-area, or list top, i.e. generally, as F0 function on
the given argument. In [9-12] we describe the general form over which we can adopt the Lisp
recursion functions, reflected in the tail area recursion:

(DEFINE FUN(F F0.L)
(COND((MEMBER NIL L) a)
 (T (g(f(M F L))
 (APPLY FUN(CONS F
 (CONS F0(M F0 L))))))))
Let us hereby discuss the Haskell program samples:

Length (L) = 0 when L == []
 Length (L) = 1 + Length (tail (L))

Reverse_all (L) = L when atom (L)
Reverse_all ([]) = []
Reverse_all (H:T) = Append
Reverse_all (T), Reverse_all (H))

Append ([], L2) = L2
Append (L1, L2) = prefix (head (L1), Append (tail (L1), L2))

The functions determined by the tail-area recursion across Haskell can be presented in the
generalized form (template) as follows:

f [] = g1 []
f (x : xs) = g2(g3 x)(g4(f(g5 xs)))

In this formula g1, g2, g3, g4, g5 functions present the functions dependent on the
task objectives: g1 is the function for processing the empty list; g2 is the function which unifies the
results of processing the list top area and tail area; g3 is the function that processes the list top
area, g4 is the function that processes the recursive recall for tail area of the non-empty lists; g5 is
the function which pre-processes the tail area of non-empty list before the recursion recall.

The program has been implemented (Microsoft Visual Studio 2010, C#), which, at the entry,
is granted by the text file – the determination text for the given function across Haskell. The
program will then compare this text to the Haskell tail area recursion function template, and as a
result will bring back the specific values of g1, g2, g3, g4 and g5 functions.

For instance, let us hereby consider the function Length, which calculates the length of the
argument – list. For this function, g1 is constant, which brings back the value 0; function g2 is the
operation „+“; function g3 is constant, that brings back value “1”, and function g4 and g5 are the
similar functions, i.e. they bring back without changes the transferred parameters. Therefore, the
description of function length can be formulated as follows:

gl _ = 0
g2 a b = а + b
g3 _ = 1

GESJ: Computer Science and Telecommunications 2013|No.4(40)
ISSN 1512-1232

 57

g4 x = х
g5 x = х
length [] = gl []
length (x:xs) = g2 (g3 x) (g4 (length (g5 xs))
Let us hereby consider the second function last: [a] -> a, which brings back the last

element from the list. It can be described as follows:
last [] = error "Prelude.last: "

last [x] = x
last (_:xs)= last xs

For this function, g1, g2, g3, g4 and g5 functions are determined as follows:
gl _ = error

g2 a b = b

g3 x = х

g4 x = х

g5 x = х

Therefore, the description of function last can be formulated as follows:
f [] = gl []

f (x:xs) = g2 (g3 x) (g4 (f (g5 xs)))

These types of the recursive functions are applied for tasks other than verification as well.
One of such tasks is the automated creation of the program “significant” part according to the data
structure.

IV. CONCLUSION

Achieving excellence in program software still remains the topical scientific and technical
problem. The verification of the software plays significant role in solving this problem. The
verification through application of Model Checking methodology has been considered hereby,
according to which the verification means the formal checking of the software actions formal
requirements, represented in the type of the formal model. Hereby we also showed that the
functional programs verification can be implemented through application of this very methodology
if the lists are applied instead of positions which do not exist across functional languages. More
specifically, we have applied the tail area recursive functions for verification.

REFERENCES

1. Ю.Г. Карпов. Model Checking. Верификация параллельных и распределенных
программных систем. 2010. БХВ-Петербург. C.552

2. Don Shafer, Phillip Laplante. The BP Oil Spill: Could Software be a Culprit? IEEE IT Pro
September/October 2010, IEEE, 2010.

3. John Harrison. Theorem Proving for Verification. Intel Corporation, CAV 2008.
4. Edmund M. Clarke Jr., Orna Grumberg , Doron A. Peled. Model Checking .1999, pp.314.
5. Hurley, Patrick (2007). A Concise Introduction to Logic 10th edition. Wadsworth

Publishing. p. 392.
6. Amir Pnueli. The temporal logic of programm. Proc. of 18th Anny.Symp. on Foundation of

Computer Science, 1977.
7. S.A.Kripke. Semantic conderation on modal logic. Acta Philosofica Fennica, v.16, 1963.

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/175-7863391-6672112/175-7863391-6672112?_encoding=UTF8&field-author=Edmund%20M.%20Clarke%20Jr.&ie=UTF8&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/175-7863391-6672112/175-7863391-6672112?_encoding=UTF8&field-author=Orna%20Grumberg&ie=UTF8&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3/175-7863391-6672112/175-7863391-6672112?_encoding=UTF8&field-author=Doron%20A.%20Peled&ie=UTF8&search-alias=books&sort=relevancerank
http://www.wisdom.weizmann.ac.il/%7Eamir

GESJ: Computer Science and Telecommunications 2013|No.4(40)
ISSN 1512-1232

 58

8. V.Berj. Metodi rekursivnix funkcii. (In Russian). Moscow,”Mashonostroenie”, 1983.
9. Archvadze N., Pkhovelishvili M., Shetsiruli L., Nizharadze. Recursion forms and their

verification by using the undictive methods. Computing and Computational Intelligence.
Proceeding of the 3nd European Computing Conference (ECC’09), Tbilisi, 2009, pp.357-
361.

10. Archvadze N., Pkhovelishvili M., Shetsiruli L Problems of Verification of Functional
Programs. Bulletin of the Georgian Academy Sciences. Bulleten of the Georgian National
Academy of Sciences. vol.3. no.3, 2009. pp 16-19.

11. N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze. Program Recursive Forms
and Programming Automatization for Functional Languages. WSEAS TRANSACTIONS
on COMPUTERS. Volume 8, 2009. ISSN: 1109-2750. pp. 1256-1265.

12. N. Archvadze, M. Pkhovelishvili. Several issues of program verificatio. PCI’2010 The Third
International Conference “Problems of Cybernetics and Informatics”, Baky, Azerbaijan.
Volume I. pp.71-74.

Article received: 2013-11-15

	A. Logic for PU requirements formalization Application of Modality
	B. Linear Temporal Logic (LTL)
	C. LTL and discrete systems specification
	D. Kripke’s Structure
	E. Kripke’s Strucure, as the Program Model
	F. Model Checking application samples
	A. Recursion functions representation means

