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Abstracts: 
In this paper Momentum based Radial Basic Function Neural Controller 

(MRBFNC) is designed for the pitch controller of an aircraft to obtain the desired pitch 
angel as required by the pilot. This controller utilizes a Momentum Factorα , which 
adjusts the weights of RBFNC and controls  the output of the Neural network. The 
performance of the MRBFNC is demonstrated for various conditions with change in the 
aircraft dynamics caused due to change in speed of the aircraft .A comparison between 
MRBFNC and conventional RBFNC is also establish to discuss the superiority of the 
former techniques. 
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1. Introduction 
The conventional design methods of a control system often require a mathematical model 

describing the dynamic behavior of the plant to be controlled. When such a mathematical model is 
difficult to obtain due to uncertainty or complexity of systems the conventional techniques based on 
a mathematical model are not well suited. Artificial Neural Networks (ANN) in last decade has 
become popular for plant identification and control [1-2]. An advantage of the ANN is its ability to 
handle the nonlinear mapping of the input–output space It is well known that back propagation 
based ANN suffers from local minima and over fitting problems which is difficult to be 
implemented in real time due to a large number of neurons in the hidden layer in comparison to the 
RBFNC [3-4]. Locally tuned and overlapping receptive fields [5] have been found cerebral cortex 
visual cortex and in other parts of the brain. The concept of localized information processing in the 
form of receptive fields suggests that such local learning offers alternative computational 
opportunities to learning with global basis functions. 
A novel and efficient method is proposed which implements a Radial Basic Function Neural 
Controller (RBFNC) with learning mechanism to control the pitch angle of an aircraft and to obtain 
the desired pitch angel as required by the pilot. This controller utilizes a learning mechanism, which 
observes the plant outputs and adjusts the weights of RBFNC, so that the overall system behaves 
like a "reference model" [6]. 
An efficient algorithm was proposed which based on Intrusion Detection, which utilizing both 
Artificial Immune Network and RBF neural network. The proposed method using multiple 
granularities artificial immune network algorithm to get the candidate hidden neurons firstly, and 
then, we training a cosine RBF neural network base on gradient descent learning process [7]. 
 

2. Radial Basic Function Neural Network: 
Radial basic function networks are two-layer feed-forward. In RBF Networks the hidden 

nodes are implementing a set of radial basis functions (e.g. Gaussian functions).  
In RBF the network training is divided into two stages:  

• Weights from the input to hidden layer are determined. 
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• Weights from the hidden to output layer is also determined. 
 

The training/learning in case of RBF is very fast and networks are very good at interpolation. 
A radial basic function neural network is shown below 

 
 

Figure 1: RBFNC for Aircraft Pitch Control 
 

The proposed RBFNN model with single neuron output y is presented in figure-1 consists of three-
layers [6]. Each input values are assigned to a node and passed directly to the hidden layer without 
weights. The hidden layer nodes are called Radial Basic Function (RBF) units which are determined by a 
parameter vector called center and a scalar called width. The Gaussian density function is used as an 
activation function for the hidden neurons. The RBFNN shown in Figure 1 has inputs ,ix i = 1, 2, 3…n. 
and output  . ( )rbfy F x= 1 2 3[ , , ,... ]Tnx x x x x=

ib
 is the input and   is  the output of the ith receptive field 

with strength  denoted by .Assuming 
( )iR x

Rn  receptive fields present  in the RBFNN, the output y can be 
written as 

( , )rbfy F x θ= =  ,                           (1) 
1

( )
nR

i i
i

b R x
=
∑

whereθ  holds the parameters of the receptive field units which consist of the parameters bi and possibly 
the parameters of the . The Gaussian-shaped functions are preferred for analytical convenience i.e. ( )iR x

( )iR x = exp 
2 2( )i ix c σ⎡ ⎤−⎢ ⎥

⎣ ⎦
 ,                               (2) 

where  parameterize the locations and 1 2[ , ,... ]i i i T
ic c c c= n σ  decides the spreading of the receptive fields in 

the input space  
The weighted average output of the RBF neural network can be written as  

( , ) ( ) ( )
1 1

n nR R
y F x b R x R xrbf i i i

i i
θ= = ∑ ∑

= = .
                (3) 

 
3.  Problem Formulation: 
Here the pitch control system of delta aircraft [8] is taken as plant whose pitch angle is to be 

controlled.  
Longitudinal dynamics of a aircraft [8-9] can be described by the following equations.  

cos    0 0   u X u X W q gu w θ= + + − Θ& ,                   (4)              

sin0 0      w Z u Z w U q g Zu w EE
θ δδ= + + − Θ +& ,    (5) 
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    q M u M w M w M q Mu w qw EE
δδ= + + + +& && ,       (6)    

   qθ =& .             (7)                   
 Substituting the values of stability derivatives of the aircraft for flight condition -3 in the above 
equations gives the following transfer function 

θ(s) 1.5 s + 1.386
= 3 2

δ (s) s + 2.198s + 1.222sE
    .     (8) 

 
4. Design of Momentum based RBF Neural Controller 
The RBFNC for aircraft pitch control system is shown in the   figure 2 tracks the desired pitch 

angle ( )kTθ  .The system has a Momentum factor [10] that is used to tune the output of the RBF network. 
 

                  
 

Figure-2: Proposed RBFNC Control for aircraft pitch control 
 

As shown in Figure 2 theα , , and ( )e kT ( )ec kT ( )kTθ  is used to adjust the weights of the neural 
controller i.e. bi., where 

( )ekT = ( )kTrefθ  - ( )kTθ , =( )e kTc
( ) ( )e kT e kT T

T

− −
 

and  T  is the sampling time. The output of the RBF neural controller ( )kδ  is computed by taking 
 as the argument to the radial basic function ( ) d ( )e k e kc an

( )(( ) ( ), ( ), , 1k F e k e k krbf cδ α= )δ −
,          (9) 

where α = Momentum Factor, 
( 1)kδ − = Previous output of neural controller. 

 
It is decided in the designing of pitch controller that elevator should not to exceed more than  2π  

radian   in either upward or downward direction or the change of error should not be   more than 0.01 
radian/sec. It concludes range of error  and change of error  are ( )e kT ( )e kTc ( ) [ 2 , 2]e k π π∈ −  and 

. A uniformly grid is created by taking the error and the change of error with the 
corners of the grid are placed at

( ) [ 0.01, 0.01]e kc ∈ −

( / 2, 0.01)π− − (, / 2,0.01)π− , ( / 2,0.01)π  and ( / 2, 0.01)π − . Each point on 
the grid contains a receptive field which is a Gaussian function . The error and change of the error’s 
spreading ( )σ   are taken differently as  

α
        

( )e kTc

( )kTrefθ  ( )kTδRadial Basic 
Function NN 

Aircraft     
Pitch control 

+

(de t
dt

( )kTθ
( )e kT  

Z
-1
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0.02
0.7c nG

σ =

   ,
0.7e

nR

π
σ =  

where  is   the no of partitions on the grid ( =11 here),  Gn nG nR  is the no of receptive field units in 
RBFNC which is equal to,  (2n nGR = nR =121). Each center  which represents a RBF is represented by 
circle shown in the Figure 3. 
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Figure 3: Receptive Field Unit Centers 
 

The left most bottom circle ( / 2, 0.01)π− −
0.01)

 is counted as 1 and the counting increases by 1 making 
the left most top circle ( / 2,π−  to be numbered as 11.Next counting starts from bottom circle of the 
next column with number as  12 and the top most circle in that column is represented as 22.So the right 
most bottom circle ( / 2, 0.01)π  is counted  as 111 and top most circle is counted as 121 
( / 2, 0.01)π −

2

. The input and output mapping of the radial basis function  neural network is shaped by 

choice of scaling parameters  . Assuming the scaling and summation of the receptive  field units with 
centers at the four dark shaded circles shown in Figure-1(the indices here are assumed to be 61, 62, 72 

and 73) is 

bi

3 ( ,62( , 2 ( , )61 73) ) ( , )72R e c R e c+R e c R e c+ + . The scaling and summing is computed and 
 shown in Figure 4. 
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Figure 4: Scaling and Addition of many Receptive Fields 

2 ( , ) 3 ( , ) ( , ) 2 ( , )61 62 72 73R e c R e c R e c R e c+ + +  
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A single receptive field ( , )73R e c  without scaling is shown in Figure 5. 
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Figure 5: Single receptive field  ( , )73R e c

 
For the receptive field the parameter σ  of the Gaussian function decides the spreading of the 

Gaussian function. The error and change of the error’s spreading ( )σ  are different and are taken as  

0.02
0.7c

nG
σ = , 0.7e

nR

π
σ =  

where  is   no of partitions on each edge of grid (here =11),   is the no of receptive field units 

in RBF Neural Controller which is equal to,  (here =121). 

nG nG

nR

nR
2

nR nG=
 

5. Simulation Results 
The reference signal is a pulse signal of duration 25 seconds and the flight travels with 

constant speed of 253 m/sec of a delta aircraft (flight condition-3) .A reference pitch angle of 5 
degree is given as input to the aircraft and to the reference model simultaneously. The output which 
is the actual pitch angle follows the reference trajectory of reference model output .The following 
figures illustrates the responses of the flight condition-3 with momentum factor and without 
momentum factor. The figure-6 explains the trajectory of the actual pitch angle  and the desired 
input and the output of the RBF Neural controller to the plant to maintain the reference trajectory. 

( )kTθ

Closed Loop Response of the proposed system without momentum ( 0α = ) 
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Figure 6: Response of Simulation Without momentum 
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Closed loop response of proposed system with momentum ( 0.9α = ). 
The figure-7 explains the trajectory of the actual pitch angle  and the desired input with 
momentum factor 

( )kTθ

0.9α = , and  output of the RBF Neural  controller to the plant to maintain the 
reference trajectory. 
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Figure 7: Response of Simulation with momentum 

 
Comparison of closed loop response (without and with momentum) for ( 0, 0.9 )α α= =  
The figure-7 explains the comparison of pitch angle  without  and with momentum 
,comparison output of the RBF Neural controller to the plant. 

( )kTθ
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Figure 8 Comparison Response of Simulation between with and without momentum 

 
Comparison of closed loop system of Aircraft for different values of momentum factor  
( 0.4, 0.9, 0α α α= = = ) 
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Figure 9 Comparison of Response for different value of momentum factors  

 
 

6. Conclusion 
The non zero value of the RBF neural network output exhibits its adoptive nature whenever 

the actual pitch  angle differs from its reference value and at the time of transition of the reference 
signal. When the speed of the  aircraft is changed the control signal to the pitch control system also 
changes to cope up with the speed change.  It is also shown in this simulation the use of momentum 
factor tunes the output of the RBF neural network. The Figure 8 shows that a comparative analysis 
of closed loop response between conventional and momentum based  RBF neural network which 
shows that the Momentum based system has a better response than the Conventional RBF network. 
In figure 9 the response of the Pitch control system varies according to the value of Momentum 
factor (α ).It is concluded that with increase in value of α the response ( )kθ becomes settles faster 
 early to the reference value. Consideringα  beyond 1 results distorted value and does not fallow the 
trajectory. 

References: 

1. K.S.Narendra  and  K.Parthasarathy, “Identification and Control of Dynamical Systems 
using Neural   Networks,” IEEE Trans. on Neural Networks, vol. 1, no. 1, pp.4–27, Mar. 
1990. 

2. S. Suresh, N. Kannan, S. N. Omkar and V. Mani “Nonlinear Lateral Command Control 
Using Neural Network for F-16 Aircraft”, American Control Conference, 2005. June 8-10 
Portland, USA . 

3. Y. Li, , N.Sundararajan  and  P.Saratchandran, ,“Neuro-Controller Design For Nonlinear 
Fighter Aircraft Maneuver Using Fully Tuned RBF Networks," Automatica, Vol. 37, No. 8, 
2001. 

4. Ming-guang Zhang, Xing-gui Wang, Man-qiang Liu” Adaptive PID Control Based on RBF 
Neural Network Identification” Proceedings of the 17th IEEE International Conference on 
Tools with Artificial Intelligence,2005, IEEE Computer Society. 

5. S.Schaal, and C.Atkeson, Constructive Incremental Learning from Only Local Information, 
Neural Computation, 10, 2047–2084, 1998. 

6. P.S Khuntia and D.Mitra, Radial Basic Function Neural Controller for Pitch Control of an 
Aircraft, Georgian Electronic Scientific Journal: Computer Science and 
Telecommunications, No.2 (19), 2009. 

7. YongJin Zeng and JianDong Zhuang, Construction cosine radial basic function neural 
networks based on artificial immune networks, Proceedings of the 6th international 



GESJ: Computer Science and Telecommunications 2014|No.1(41) 
ISSN 1512-1232 

    37

conference on Advanced data mining and applications, 134-141, Springer-Verlag Berlin, 
Heidelberg, 2010. 

8. Automatic Flight Control Systems, Mclean Donald, Prentice Hall International (UK) Ltd, 
1990. 

9. Advances in aircraft flight control, M. B. Tischler, UK: Taylor & Francis, 1996. 
10. Yonghomg Tan, Dang xuanju, A.Cauwenberghe, Generalized nonlinear PID controller 

based on neural networks, Proceeding of information, decision and control 1999, 519-
524,Adelaide,SA,1999. 

  
 

 
____________________________ 

 
Article received: 2013-12-30 

 
 


