
GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 38

A STUDY OF TASK SCHEDULING IN MULTIPROCESSOR

ENVIROMENT
 Ranjit Rajak1, C.P.Katti2, Nidhi Rajak3

1Department of Computer Science & Applications, Dr.H.S.Gour Central

University, Sagar, India, ranjit.jnu@gmail.com
2School of Computer and System Sciences, Jawaharlal Nehru University,

New Delhi India, cpkatti@mail.jnu.ac.in
3School of Computing Science & Engineering, Galgotias University,

Gr.Noida, India, nidhi.bathre@gmail.com

Abstract
 A multiprocessor system is a computer system with more than one processor. Task
scheduling on a multiprocessor environment is an important area of research as it has a
number of applications in scientific and commercial problems. The objective of task
scheduling is to minimize the total completion time of a given application program that
is represented by Directed Acyclic Graphs (DAGs). Task scheduling may be classified
into static task scheduling and dynamic task scheduling. In this paper, we have studied
various types of task scheduling and their properties. Also, we have studied
performance metrics for task scheduling.

Keywords: Task scheduling, DAG, Speedup, Parallel processing.

I. INTRODUCTION

Parallel computing is an important research area in Computer Science. However, it consist
number of problems that are not solved in sequential machine such as designing of parallel
algorithms for an application program, dividing of an application program into subtasks,
synchronization and coordinating communication, and scheduling of the tasks onto the processors.

Parallel computing is the next generation of computers and has made impact on various areas
from scientific and engineering applications to commercial applications.

Scheduling [1] a set of dependent or independent tasks for parallel execution on a set of
multiple processors is an important computational problem where a large problem or an application
is divided into a set of subtasks and these subtasks are distributed among the processors. The
allocation of subtasks on processors and defining their order of execution is called as Task
scheduling.

Task scheduling is an NP-complete problem of its simple case [2] and some restricted cases
[3,4,5,6,7]. It has been used in number of application from scientific to engineering problems.

Figure.1 [8] shows the layout of transformation from an application program to task
scheduling. Here, an application program is divided into a number of subtasks that are represented
by Directed Acyclic Graph. They are allocated to the multiple processors and should be maintained
precedence constraints [9] among the subtasks.

mailto:cpkatti@mail.jnu.ac.in

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 39

 II. TASK SCHEDULING

The major objective of the task scheduling in multiprocessor environment is to minimize the
execution time of tasks. There are number of issues in task scheduling such as communication time
has to be considered or not and multiprocessors environment is either heterogeneous or
homogeneous. Here, heterogeneous means all the processors are different and homogeneous means
all the processors are identical.

The generalized model of a task scheduler [10] consists of:

 Task Queue: It contains all the incoming tasks.
 Scheduler: It works simultaneously with the processors and also schedules arrived tasks
towards dispatcher of the respective processor.

 Dispatch Queues: It is a mediator between scheduler and processor for the tasks. Each of
the processor is associated with it.

 There are mainly three components [11] for execution of task scheduling:

 Performance of processors.
 Tasks mapping onto processors.
 Execution order of the tasks on processors.

Task Queue

Scheduler

Queue 1

Queue 2

Queue 3

P1

P2

P3

Fig. 2.Task Scheduler Model

Application
program

Subtask

SubtaskSubtask

SubtaskSubtask

Subtask Decomposition Task Scheduling

Processor 2

Processor 1

Processor 3

Subtask

SubtaskSubtask

SubtaskSubtask

Fig.1. Transforming from an application program to task scheduling

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 40

 Therefore, it deals [12] with the allocation of each task to the suitable processors and
assignment of proper order of task.

 Task scheduling is classified on the basis of following characteristics [13]:
 Number of tasks and their dependencies.
 Execution time and communication time of the tasks.
 Number of processors and their uniformity.
 Topology of task graph.

It is classified into two categories: static task scheduling [14] and dynamic task scheduling

[3].

A. Static Task Scheduling

Static task scheduling is the assignment of various tasks of task graph on the multiple
processors during compile time. It is also called as deterministic and compiles time scheduling
because the information of computational time of tasks, communication between the tasks and their
precedence constraints are known in advance. There are two objective of static task scheduling[15]:
minimize the completion time of the task graph and minimize the inter-task communication delay.

B. Dynamic Task Scheduling

Dynamic task scheduling is reassignment of various tasks of task graph on the multiple
processors during the time of execution. It is also called as non-deterministic and dynamic load
balancing scheduling because the information of computational time of tasks, communication
between the tasks and their precedence constraints are not known in advance. The major objective
of dynamic task scheduling is to maximize the utilization of the processor in the system at all the
times.

Following policies [15] are used for dynamic task scheduling:

 Load estimation policy: It determines how to estimate the load of each processor.
 Task transfer policy: It determines whether or not a task is to be transferred to another
processor.

 State information exchange policy: It determines how to exchange the system load
information among the processors.

 Location policy: It determines the processor to which a task should be transferred.

III. FORMULATION OF TASK SCHEDULING PROBLEM

A task scheduling problem consists of the application model, system computing model and
performance evaluation metrics. This section will discuss an application model, a system computing
model followed by performance evaluation metrics.

Task Scheduling

Dynamic Task scheduling Static Task Scheduling

Fig.3. Classification of Task Scheduling.

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 41

A. Application model

Task scheduling of a given application is represented by directed acyclic graph (DAG) G1=
(T, E), where T is the finite set of m tasks {T1, T2, T3…Tm} and E is the set of edges {eij }between
the tasks Ti and Tj. Here, each edge represents the precedence constraints between the tasks Ti and
Tj such that Tj can not start until Ti completes its execution. Each task Ti is associated with an
execution time ET (Ti) and each edge eij is associated with a communication time CT (Ti, Tj) for data
transfer from Ti to Tj. If there is a direct path from Ti to Tj then Ti is the predecessor of Tj and Tj is the
successor of Ti. A entry task does not any predecessor, similarly, an exit task does not any
successors. Layout of a DAG with six tasks is shown in figure 4 [16],

where T1, T2, T3, T4, T5 and T6 are different tasks of the given DAG. The execution time ET (Ti) and
communication time CT (Ti, Tj) [16] of tasks are:

ET (T1) = 2 ET (T2) = 3 ET (T3) = 4

ET (T4) = 4 ET (T5) = 2 ET (T6) = 3

CT (T1, T2) = 5 CT (T1, T3) = 4 CT (T2, T4) = 3 CT (T2, T5) = 4

CT (T3, T5) = 3 CT (T3, T6) = 5 CT (T4, T6) = 5 CT (T5, T6) = 2

B. System Computing Model

A multiprocessor system is either heterogeneous or homogeneous. Considered homogeneous
processors for the purpose of methodology that can be represented by a directed graph G2 = (Proc,
Link), where Proc is a set of p processors {P1, P2, P3 ...Pp} connected to each other through a
network. Link is a set of links between the processors Pi and Pj . If both of the tasks Ti and Tj are
scheduling on the same processor, then communication time of the direct path between Ti and Tj is
negligible. Figure 5 shows [17] three fully connected homogenous processors via common link.

 Communication Time (CT) 4

3

5

T5
2

T6
 3

T3

 4

T4
 4

T2
 3

T1
 2

3
4

5
52

Entry task (T1)
Execution Time (ET)

Fig.4. DAG Model with six tasks

Exit Task (T6)

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 42

The objective of multiprocessors task scheduling is to minimize the overall execution time of
the tasks as well as to preserve the precedence constraints. If a task Ti is scheduled on a processor P,
then starting time of task and finishing time of task is denoted by STT (Ti, P) and FTT (Ti, P),
respectively. The scheduling length is defined by Slen = Max { FTT (Ti, P)}for all the processors.

IV. TASK SCHEDULING EXAMPLES

This section is considered two examples for task scheduling: a task graph with
communication time and task graph without communication time with the assumption that number
of processors is finite and homogeneous. The schedule of tasks on the processor is shown with help
of a Gantt chart. A Gantt chart is a common graphical representation of task schedule. It consists of
start time and finish time of each task on the available processor. It also represents the idle time
between the tasks.

A. Task Scheduling with Communication Time

Task scheduling with communication time means consideration of communication time
during assignment of tasks on the processors. The communication time is required due to inter-
dependency of tasks. A dependent task will not start execution until it gets all the information from
previous tasks. If two tasks are scheduled on same processor then their communication time would
be negligible. Consider an example of DAG that consists of four tasks and also consider two
processors for scheduling as shown in Figure 6 [18].

 A

 D

 C B

2

2

3 3

1
2

2 2

Fig.6 DAG with four tasks

 P1

 P2 P3

Fig.5. Fully connected homogeneous processors

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 43

 Fig.7. Scheduling length is nine time units.

B. Task Scheduling without Communication Time

Task scheduling without communication time means do not consider communication time
during the scheduling of tasks on the processors. It reduces the scheduling length. Consider the
same example as shown in Figure 8 without communication time with the same number of
processors.

Scheduling length of this system is decreased by two units as compared to previous example.

V. PERFORMANCE METRICS OF TASK SCHEDULING

Following metrics are used for performance evaluation of task scheduling algorithms:

A. Scheduling Length
Scheduling length is the maximum time required to execute the last task on a processor as

shown in (1).
. (1)

 A

 D

 C B

2

3 3

2

Fig.8. DAG with four tasks.

0 1 2 3 4 5 6 7 8 9 10

P1 A A B B B

P2 C C C D D

0 1 2 3 4 5 6 7 8 9 10

P1 A A B B B

P2 C C C D D

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 44

B. Total Parallel Overhead
Total parallel overhead [19] is the total time spent by all PEs over and above that required by

the fastest known sequential algorithms for solving the same problem on a single PE.
It is denoted T and can be expressed as shown in (2).

 , (2)
Where Ts is sequential time, Tp is the parallel execution time and p is total processors for Tp.

C. Cost
Cost [20] is defined as the product of parallel execution time (Tp) and the number of

processing elements (P) used as shown in (3).
 . (3)

D. Speedup

Speedup [21] is as the ratio of sequential execution time () and parallel execution time
(). Sequential execution time is the total execution time of each task in uni-processor
environment and a parallel execution time is the last execution time of a task on bounded number of
processors in multiprocessors environment. It can be expressed as shown in (4).

 . (4)

E. Efficiency

Efficiency [21] of a parallel program is the ratio of speedup and the number of processors
used as shown in (5).

 . (5)

F. Normalized Scheduling length (NSL)

Normalized Scheduling Length (NSL) [22] of a scheduling algorithm is written as shown in
(6).

 . (6)

G. Load Balancing

Load balancing [23] is the ratio of scheduling length to the average execution time over all the
processors as shown in (7).

 , (7)

where Average is the ratio of sum of processing time of each processor to the number of processors
are used.

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 45

CONCLUSION
In this paper, we have studied task scheduling, components and types of task scheduling.

Here, an application program is represented by DAG. A DAG model consists of tasks and edges
represent the communication time between the tasks.

The edges also represent the data dependency between two tasks. Each task and edge is
associated with execution time of each task and communication time between the two tasks. The
multiprocessor model may be either homogeneous or heterogeneous. We have evaluated task
scheduling with considered communication time and without considered communication time. The
Gantt. Charts for both cases showed that the task scheduling without communication time gives
minimum scheduling length as compared to task scheduling with communication time. We can also
evaluated different task scheduling algorithms on the basis of performance metrics.

REFERENCES

1. Shiyuan Jin, Guy Schiavona and DamlaTurgut, “A performance study of multiprocessor
task scheduling algorithms”, Journal of Supercomputing ,Vol.43,pp.77-97,2008.

2. M.R.Garey and D.S.Johson,Computers and Intractability: A Guide to the Theory of NP -
completeness,1979.

3. G.N Srinivas and Bruce R. Musicus. “Generalized Multiprocessor Scheduling for Directed
Acyclic Graphs” In Third Annual ACM Symposium on Parallel Algorithms and
Architectures, pp.237-246, 1994.

4. G.L.Park, BehroozShirazi, Jeff Marquis and H.Choo. “Decisive Path Scheduling: A new
List Scheduling Method” Communication of the ACM, vol.17, no.12, pp. 472-480,Dec1974.

5. Min You Wu “On Parallelization of static scheduling Algorithms”, IEEE Transactions on
Parallel and Distributed Systems, Vol.10, No.4, , pp 517-528,April 1999

6. C.H.Papadimitrious and M.Yannakakis, “Scheduling Interval-Ordered Tasks, “ SIAM
Journal of Computing,Vol.8,pp.405-409,1979.

7. R.Sethi, “Scheduling Graphs on Two Processors,” SIAM Journal of Computing,Vol.5,
No.1,pp.73-82, Mar.1976.

8. Oliver Sinnen,”Task Scheduling for Parallel Systems” Wiley-Interscience Pulication, 2007.
9. Edwin S.H and Nirwan Ansari, “A Genetic Algorithm for Multiprocessor Scheduling",

IEEE Transaction on Parallel and Distributed Systems, Vol.5, No.2, Feb.1994.
10. Hadis Heidari and Abdolah Chaechale , ” Scheduling in Multiprocessor System Using

Genetic Algorithm,” International Journal of Advanced Science and Technology,Vol.43,
pp.81-93,2012.

11. RavneetKaur and RamneekKaur,”Multiprocessor Scheduling using Task Duplication Based
Scheduling Algorithms: A Review Paper”, International Journal of Application or
Innovation in Engineering and Management,Vol.2 Issue 4,pp.311-317,April,2013.

12. XiaoyongTang,Kenli Li and Guiping Liao ,” List Scheduling with duplication for
heterogeneous computing systems”, Journal of Parallel and Distribute Computing,Vol.70,
pp.323-329,2010.

13. MostafaR.Mohamed and MedhatH.A,”Hybrid Algorithms for Multiprocessor Task
Scheduling”, International Journal of Computer Science Issues, Vol.8, Issue.3 No.2
May,2011.

14. Y.C.Chung and S.Ranka, “Application and Performance Analysis of a Compile-Time
Optimization Approach for List Scheduling Algorithms on Distributed–Memory
Multiprocessors”, Proceedings of Supercomputing’92, , pp.512-521,1992.

15. V.Rajaraman and C.S.R Murthy, “ Parallel Computers : Architecture and Programming, “
PHI Publication , May.2012.

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 46

16. RanjitRajak, “Comparison of Bounded Number of Processors (BNP) Class of Scheduling
Algorithms Based on Metrics”, GESJ: Computer Science and Telecommunication, Vol.34,
No.2, 2012.

17. RanjitRajak and C.P.Katti,”Task Scheduling in Multiprocessor System using Fork-Join
Method(TSFJ)”, International Journal of New Computer Architectures and Their
Applications, Vol.3 No.3, pp.47-53, 2013.

18. AhmedZakiSemarShaul and Oliver Sinnen,”Optimal Scheduling of Task Graphs on Parallel
System”, 9th International Conference on Parallel and Distributed Computing ,Applications
and Technologies,pp.323-328,2008.

19. Vipin Kumar and Anshul Gupta,” Analysis of scalability of parallel algorithms and
architectures: a survey” ICS '91 Proceedings of the 5th international conference on
Supercomputing, pp. 396-405, 1991.

20. Ananth Gramma, Vipin Kumar and Anshul Gupta,” Introduction to Parallel Computing,
Pearson Edition,2009.

21. M.J.Quinn,Parallel Programming in C with MPI and OpenMP,Tata McGraw-Hill, Edition
2003.

22. K.SikS,Myong, J.Cha, M.S.Jang,”Task Scheduling Algorithm using Minimized
Duplication in Homogeneous Systems,” Journal of Parallel and Distributed
Computing ,Vol.68, pp. 1146-1156 , 2008.

23. F.A.Omara and M.Arafa,”Genetic Algorithm for Task scheduling Problem”, Journal
of Parallel and Distributed Computing .Vol.70, pp.13-22, 2010.

Article received: 2014-01-26

