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Abstract 

Nowadays, all most personal computers have multi-core processors. We try to 
exploit computational power from the multi-core architecture. We need a new design on 
existing algorithms and software. In this paper, we propose the parallelization of the 
well-known k-means clustering algorithm. We employ Parallel for-Loops (parfor) in 
MATLAB. Where a loop of n iterations could run on a cluster of m MATLAB workers 
simultaneously, each worker executes only n/m iterations of the loop. The experimental 
results demonstrate considerable speedup rate of the proposed parallel k-means 
clustering method run on a multicore/multiprocessor machine, compared to the serial k-
means approach. 
Keywords: Clustering Algorithms, High Performance Computing, K-means Algorithm, 
and Parallel Computing.  
 

1. Introduction 

The huge amount of data collected and stored in databases increases the need for effective 
analysis methods to use the information contained implicitly there. One of the primary data analysis 
tasks is cluster analysis, intended to help a user understand the natural grouping or structure in a 
dataset. Therefore, the development of improved clustering algorithms has received much attention. 
The goal of a clustering algorithm is to group the objects of a database into a set of meaningful 
subclasses [6].  

Clustering is the process of partitioning or grouping a given set of patterns into disjoint 
clusters. This is done such that patterns in the same cluster are alike, and patterns belonging to two 
different clusters are different. Clustering has been a widely studied problem in a variety of 
application domains including data mining and knowledge discovery [4], data compression and 
vector quantization [7], pattern recognition and pattern classification [2], neural networks, artificial 
intelligence, and statistics. Many clustering algorithms proposed, but the most widely used one is 
the k-means method [13]. 

The popularity of k-means algorithm is due to its linear computational complexity that is 
O(nkt), where n is the number of data points or objects, k is the number of desired clusters, and t is 
the number of iterations the algorithm takes for converging to a stable state. The computing process 
needs improvements to efficiently apply the method to applications with  huge  number of data  
objects  such  as genome  data  analysis  and  geographical  information systems. 

Parallelization is one of the obvious solution to this problem and many researchers have 
proposed the idea many years ago such as [12] [8] [9] [22] [23] [15]. This paper also focuses on 
parallelizing k-means algorithm, but we base our study on the multi-core architecture.  We 
implement our extension of the k-means algorithm using parallel MATLAB, where we use parfor 
loop, part of the parfor body is executed on the MATLAB client (where the parfor is issued) and 
part is executed in parallel on MATLAB workers working together as a parallel pool. The 
necessary data on which parfor operates is sent from the client to workers, where most of the 
computation happens, and the results are sent back to the client and pieced together. Because 
several MATLAB workers can be computing concurrently on the same loop, a parfor-loop can 
provide significantly better performance than its analogous for-loop [14]. 

We are interested in developing k-means algorithm because it is simple and widely used in 
practice. In addition, it is ideal algorithm for using parallel for in MATLAB. Our contributions in 
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this paper is significantly reduce time complexity of the serial k-means algorithm by data 
parallelism. The rest of the paper is organized as follows. Discussion of related work in parallel k-
means is presented in Section 2. Our proposed algorithm; a parallel k-means method is explained in 
Section 3. Some experimental results are demonstrated in Section 4.  The conclusion appears as the 
last section of the paper. 

 
2. Related Work 

A  serial  k-means  algorithm  was  proposed  in  1967  [13]  and  since  then  it  has  gained 
great interest from data analysts and computer scientists. The algorithm has been applied to variety 
of applications ranging from medical informatics [10], genome analysis [15], image processing and 
segmentation [20, 21], to aspect mining in software design [1].  Despite its simplicity and great 
success, the k-means algorithm is known to degrade when the dataset grows larger in terms of 
number of objects and dimensions [8, 11]. To obtain acceptable computational speed on huge 
datasets, most researchers turn to parallelizing scheme. 

Li and Fang [12] are among the pioneer groups on studying parallel clustering. They proposed 
a parallel algorithm on a single instruction multiple data (SIMD) architecture. Dhillon and Modha 
[3] proposed a distributed k-means that runs on a multiprocessor environment. Kantabutra and 
Couch [9] proposed a master-slave single program multiple data (SPMD) approach on a network of 
workstations to parallel the k-means algorithm. Their experimental results reveal that when on 
clustering four groups of two-dimensional data the speedup advantage can be obtained when the 
number of data is larger than 600,000, and their maximum speedup was 2.1, it is very small value. 
Tian and colleagues [19] proposed the method for initial cluster center selection and the design of 
parallel k-means algorithm. Stoffel and Belkoniene proposed parallel k-means works on a 
distributed database, the database was distributed over a network of 32 PCs, their results revealed 
that as the number of node increase the speedup degrades because of the increase of communication 
overhead and the variations in the execution times of the different processors [17]. 

Zhang  and  colleagues [23]  presented the  parallel  k-means  with  dynamic  load  balance  
that  used  the master/slave model. Their method can gain speedup advantage at the two-
dimensional data of size greater than 700,000. Prasad [16] parallelized the k-means algorithm on a 
distributed memory multi-processors using the message passing scheme. Farivar and colleagues [5] 
studied parallelism using the graphic coprocessors to reduce energy consumption of the main 
processor.  

Zhao and colleagues [22] proposed parallel k-means method based on map and reduce 
functions to parallelize the computation across machines. Tirumala Rao and colleagues [18] studied 
memory mapping performance on multi-core processors of k-means algorithm.  They conducted 
experiments on quad-core and dual-core shared memory architecture using OpenMP and POSIX 
threads. The speedup on parallel clustering is observable. 
 

3. The Proposed Algorithm 

Given a data set containing n objects, k-means partitions these objects into k groups. Each 
group is represented by the centroid, or central point, of the cluster. Once cluster means or 
representatives are selected, data objects are assigned to the nearest centers. The algorithm 
iteratively selects new better representatives and reassigns data objects until the stable condition has 
been reached. The stable condition can be observed from cluster assigning that each data object 
does not change its cluster. The serial  k-means  algorithm [13], shown in Figure 1, takes much 
computational time on calculating distances between each of  n data points and the current k 
centers. Then iteratively assign each data point to the closest cluster. The proposed algorithm 
concentrates on distance calculation between each point and the k centers, performs these 
calculations in parallel way. If we have m cores and n data points then each core will approximately 
calculate the distances between n/m points and k centers. As m increase, the amount of calculation 
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per each core will decrease. Since these calculations is iterated t times until each point stay in its 
cluster, this parallel paradigm significantly improves running time of the k-means algorithm. 

 
Serial k-mean(DS,k) 
1. Select initial k centers 
2. Repeat 
3. For i=1 to n 
4. Calculates the distances between the current point and k centers 
5. Endfor 
6. Assign each point to its nearest cluster 
7. Calculate the new k centers 
8. Until stable k centers reached 

Fig. 1: Serial K-means Algorithm. 
 

 
Parallel k-mean(DS,k) 
1. Select initial k centers 
2. Repeat 
3. parfor i=1 to n 
4. Calculates the distances between the current point and k centers 
5. Endfor 
6. Assign each point to its nearest cluster 
7. Calculate the new k centers 
8. Until stable k centers reached 

Fig. 2: Parallel K-means Algorithm. 
 

Because the distance between point i and k centers is completely independent of the distance 
between point j and k centers, so these calculation can be performed in parallel using parallel for in 
MATLAB. To run code that contains a parallel loop, we first open MATLAB pool. This reserves a 
collection of MATLAB worker sessions to run loop iterations. The MATLAB pool can consist of 
MATLAB sessions running on local machine or on a remote cluster. Because the iterations run in 
parallel in other MATLAB sessions, each iteration must be completely independent of all other 
iterations. The worker calculating the distance between point i and k centers might not be the same 
worker calculating the distance between point j and k centers. There is no guarantee of sequence 
[14]. 
 

4. Experimental Results 

We implemented the proposed algorithm (parallel k-means) and the serial k-means using 
MATLAB R2009b language. The code is executed on dell inspiron 1525 Laptop, Intel(R) 
Core(TM)2 Duo Processor 2.00 GHz, 2 MB cache memory, 2GB RAM, 32-bit Windows 7 
Ultimate. We generated 19 synthetic two-dimensional datasets containing form 10000 to 1000000 
data points with random values grouped into 100 cluster as shown in Figure 3. 
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Fig.3: Synthetic Dataset Containing 100 Clusters. 
 

We evaluate performances of the proposed algorithm on synthetic two-dimensional dataset, 
four and hundred clusters, run concurrently on two lab (session or core).  The computational speed 
of parallel k-means as compared to serial k-means is given in Table1 where we set k to 100 cluster, 
in Table2 where we set k to four cluster, and finally in Table3 we set dataset size to 100000 point 
and k varied from 10 to 100 cluster. Ts refers to execution time of serial k-means, Tp refers to 
execution time of parallel k-means, and TD refers to time difference. The speedup is calculated 
according to the following equation. 

 .                                                                              (1) 

Linear speedup or ideal speedup is obtained when speed up is equal to number of processors 
(cores). In our case, linear speedup is equal to two. 

 
Table 1: The Execution Time of Serial k-means versus Parallel k-means, k=100. 

 
Dataset size Ts Tp TD: Time Difference Speedup 
10000 10.631 6.431 4.2 1.65 
20000 16.035 9.257 6.778 1.73 
30000 31.900 18.161 13.739 1.76 
40000 42.148 24.174 17.974 1.74 
50000 52.989 29.917 23.072 1.77 
60000 63.171 36.364 26.807 1.74 
70000 74.130 42.603 31.527 1.74 
80000 84.051 47.966 36.085 1.75 
90000 95.062 55.008 40.054 1.73 
100000 79.339 45.351 33.988 1.75 
200000 219.693 127.674 92.019 1.72 
300000 240.641 138.382 102.259 1.74 
400000 424.670 252.474 172.196 1.68 
500000 399.876 229.146 170.73 1.75 
600000 637.507 Out of memory   
700000 738.981 Out of memory   
800000 634.420 Out of memory   
900000 951.472 Out of memory   
1000000 798.441 Out of memory   

 
If we compare the results shown in Table 1 with that of [9] and [23] we get better results from 

our proposed algorithm, because we get speedup form dataset of size 10000 object compared with 
dataset of size greater than 600000 and 700000 in [9] and [23] respectively. It is noticeable from 
Table 1 that at data size from 600000 points, running time of parallel k-means is unobservable 
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because the machine is out of memory. This is due to the overhead of communication between 
cores requires some memory. It is also noticeable from Table 2 that running time of parallel k-
means is a little bit longer than that of the serial k-means for the smallest dataset (10000 object). 
This is due to the overhead of communication between cores (labs, sessions, workers) requires some 
communication time. 

 

Table 2: The Execution Time of Serial k-means versus Parallel k-means, k=4. 
 

Dataset 
size 

Ts Tp TD: Time 
Difference 

Speedup 

10000 1.044 1.051 -0.007 0.99 
20000 2.005 1.718 0.287 1.17 
30000 2.974 2.299 0.675 1.29 
40000 3.991 2.880 1.111 1.39 
50000 4.964 3.490 1.474 1.42 
60000 6.651 4.548 2.103 1.46 
70000 6.861 4.706 2.155 1.46 
80000 7.867 5.327 2.54 1.48 
90000 8.903 5.924 2.979 1.50 
100000 9.914 6.539 3.375 1.52 
200000 22.080 14.316 7.764 1.54 
300000 29.423 18.780 10.643 1.57 
400000 39.150 25.225 13.925 1.55 
500000 48.788 31.113 17.675 1.57 
600000 58.792 38.139 20.653 1.54 
700000 68.459 43.508 24.951 1.57 
800000 78.352 49.591 28.761 1.58 
900000 87.921 55.677 32.244 1.58 
1000000 97.795 62.205 35.59 1.57 

 
Running time comparison of parallel against serial k-means is graphically shown in Figure 4 

where k=100, and in Figure 5 where k=4. There is large variance in running time due to the large 
variance of required clusters. Figure 6 shows the behavior of running time as the number of cluster 
increase. This Figure is a little bit strange; this is appear because of large variance of k-mean 
iteration. Percentage of running time speedup is shown in Figure 7.  Speedup average is very high. 
Figure 8 and Figure 9 graphically show the resulting clusters for k=4, and k=100 respectively. 

 
Table 3: The Execution Time of Serial k-means versus Parallel k-means,  

Dataset Contains 100000 Point. 
K Ts Tp TD: Time 

Difference 
Speedup 

10 119.618 73.292 46.326 1.63 
20 309.670 182.368 127.302 1.70 
30 444.802 259.670 185.132 1.71 
40 1094.742 696.940 397.802 1.57 
50 1432.632 880.163 552.469 1.63 
60 639.321 400.931 238.39 1.59 
70 516.367 320.706 195.661 1.61 
80 1668.612 1037.094 631.518 1.61 
90 683.952 401.470 282.482 1.70 
100 77.784 43.822 33.962 1.77 
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Fig. 4: Running Time Comparisons of Serial versus Parallel k-means, k=100 Clusters. 

 
 

 
 

Fig. 5: Running Time Comparisons of Serial versus Parallel k-means, k=4 Clusters. 
 
 
 

 
 

Fig. 6: Effect of Increasing Clusters on Running Time. 
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Fig. 7: Speedup Ratio at Different Sizes of Dataset. 

 
 

Fig. 8: Resulting Clusters for k=4. 
 

 
 

Fig. 9: Resulting Clusters for k=100. 
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5. Conclusion 

The k-means algorithm is simple but it performs intensive calculation on computing distances 
between data points and cluster central points. For the dataset with n data points and k clusters, each 
iteration of k-means requires as much as (n×k) computations.  

Fortunately, the distance computation of one data point does not interfere the computation of 
other points. Therefore, k-means clustering is a good candidate for parallelism.  

In this paper, we propose the design and implementation of parallel k-means algorithm: we 
paralyzed the k-means method by using parallel for that run distance computation concurrently on 
multi-cores machine. The parallel programming model used in our implementation is based on 
parallel MATLAB programming. 

The experimental results reveal that the parallel method considerably speedups the 
computation time. Our future work will focus on the real applications. We will test our algorithm 
with a genome dataset.   
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