
GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 53

Parallel Implementation of K-Means on Multi-Core Processors
Fahim Ahmed M.

Faculty of Science, Suez University, Suez, Egypt, ahmmedfahim@yahoo.com

Abstract

Nowadays, all most personal computers have multi-core processors. We try to
exploit computational power from the multi-core architecture. We need a new design on
existing algorithms and software. In this paper, we propose the parallelization of the
well-known k-means clustering algorithm. We employ Parallel for-Loops (parfor) in
MATLAB. Where a loop of n iterations could run on a cluster of m MATLAB workers
simultaneously, each worker executes only n/m iterations of the loop. The experimental
results demonstrate considerable speedup rate of the proposed parallel k-means
clustering method run on a multicore/multiprocessor machine, compared to the serial k-
means approach.
Keywords: Clustering Algorithms, High Performance Computing, K-means Algorithm,
and Parallel Computing.

1. Introduction

The huge amount of data collected and stored in databases increases the need for effective
analysis methods to use the information contained implicitly there. One of the primary data analysis
tasks is cluster analysis, intended to help a user understand the natural grouping or structure in a
dataset. Therefore, the development of improved clustering algorithms has received much attention.
The goal of a clustering algorithm is to group the objects of a database into a set of meaningful
subclasses [6].

Clustering is the process of partitioning or grouping a given set of patterns into disjoint
clusters. This is done such that patterns in the same cluster are alike, and patterns belonging to two
different clusters are different. Clustering has been a widely studied problem in a variety of
application domains including data mining and knowledge discovery [4], data compression and
vector quantization [7], pattern recognition and pattern classification [2], neural networks, artificial
intelligence, and statistics. Many clustering algorithms proposed, but the most widely used one is
the k-means method [13].

The popularity of k-means algorithm is due to its linear computational complexity that is
O(nkt), where n is the number of data points or objects, k is the number of desired clusters, and t is
the number of iterations the algorithm takes for converging to a stable state. The computing process
needs improvements to efficiently apply the method to applications with huge number of data
objects such as genome data analysis and geographical information systems.

Parallelization is one of the obvious solution to this problem and many researchers have
proposed the idea many years ago such as [12] [8] [9] [22] [23] [15]. This paper also focuses on
parallelizing k-means algorithm, but we base our study on the multi-core architecture. We
implement our extension of the k-means algorithm using parallel MATLAB, where we use parfor
loop, part of the parfor body is executed on the MATLAB client (where the parfor is issued) and
part is executed in parallel on MATLAB workers working together as a parallel pool. The
necessary data on which parfor operates is sent from the client to workers, where most of the
computation happens, and the results are sent back to the client and pieced together. Because
several MATLAB workers can be computing concurrently on the same loop, a parfor-loop can
provide significantly better performance than its analogous for-loop [14].

We are interested in developing k-means algorithm because it is simple and widely used in
practice. In addition, it is ideal algorithm for using parallel for in MATLAB. Our contributions in

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 54

this paper is significantly reduce time complexity of the serial k-means algorithm by data
parallelism. The rest of the paper is organized as follows. Discussion of related work in parallel k-
means is presented in Section 2. Our proposed algorithm; a parallel k-means method is explained in
Section 3. Some experimental results are demonstrated in Section 4. The conclusion appears as the
last section of the paper.

2. Related Work

A serial k-means algorithm was proposed in 1967 [13] and since then it has gained
great interest from data analysts and computer scientists. The algorithm has been applied to variety
of applications ranging from medical informatics [10], genome analysis [15], image processing and
segmentation [20, 21], to aspect mining in software design [1]. Despite its simplicity and great
success, the k-means algorithm is known to degrade when the dataset grows larger in terms of
number of objects and dimensions [8, 11]. To obtain acceptable computational speed on huge
datasets, most researchers turn to parallelizing scheme.

Li and Fang [12] are among the pioneer groups on studying parallel clustering. They proposed
a parallel algorithm on a single instruction multiple data (SIMD) architecture. Dhillon and Modha
[3] proposed a distributed k-means that runs on a multiprocessor environment. Kantabutra and
Couch [9] proposed a master-slave single program multiple data (SPMD) approach on a network of
workstations to parallel the k-means algorithm. Their experimental results reveal that when on
clustering four groups of two-dimensional data the speedup advantage can be obtained when the
number of data is larger than 600,000, and their maximum speedup was 2.1, it is very small value.
Tian and colleagues [19] proposed the method for initial cluster center selection and the design of
parallel k-means algorithm. Stoffel and Belkoniene proposed parallel k-means works on a
distributed database, the database was distributed over a network of 32 PCs, their results revealed
that as the number of node increase the speedup degrades because of the increase of communication
overhead and the variations in the execution times of the different processors [17].

Zhang and colleagues [23] presented the parallel k-means with dynamic load balance
that used the master/slave model. Their method can gain speedup advantage at the two-
dimensional data of size greater than 700,000. Prasad [16] parallelized the k-means algorithm on a
distributed memory multi-processors using the message passing scheme. Farivar and colleagues [5]
studied parallelism using the graphic coprocessors to reduce energy consumption of the main
processor.

Zhao and colleagues [22] proposed parallel k-means method based on map and reduce
functions to parallelize the computation across machines. Tirumala Rao and colleagues [18] studied
memory mapping performance on multi-core processors of k-means algorithm. They conducted
experiments on quad-core and dual-core shared memory architecture using OpenMP and POSIX
threads. The speedup on parallel clustering is observable.

3. The Proposed Algorithm

Given a data set containing n objects, k-means partitions these objects into k groups. Each
group is represented by the centroid, or central point, of the cluster. Once cluster means or
representatives are selected, data objects are assigned to the nearest centers. The algorithm
iteratively selects new better representatives and reassigns data objects until the stable condition has
been reached. The stable condition can be observed from cluster assigning that each data object
does not change its cluster. The serial k-means algorithm [13], shown in Figure 1, takes much
computational time on calculating distances between each of n data points and the current k
centers. Then iteratively assign each data point to the closest cluster. The proposed algorithm
concentrates on distance calculation between each point and the k centers, performs these
calculations in parallel way. If we have m cores and n data points then each core will approximately
calculate the distances between n/m points and k centers. As m increase, the amount of calculation

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 55

per each core will decrease. Since these calculations is iterated t times until each point stay in its
cluster, this parallel paradigm significantly improves running time of the k-means algorithm.

Serial k-mean(DS,k)
1. Select initial k centers
2. Repeat
3. For i=1 to n
4. Calculates the distances between the current point and k centers
5. Endfor
6. Assign each point to its nearest cluster
7. Calculate the new k centers
8. Until stable k centers reached

Fig. 1: Serial K-means Algorithm.

Parallel k-mean(DS,k)
1. Select initial k centers
2. Repeat
3. parfor i=1 to n
4. Calculates the distances between the current point and k centers
5. Endfor
6. Assign each point to its nearest cluster
7. Calculate the new k centers
8. Until stable k centers reached

Fig. 2: Parallel K-means Algorithm.

Because the distance between point i and k centers is completely independent of the distance
between point j and k centers, so these calculation can be performed in parallel using parallel for in
MATLAB. To run code that contains a parallel loop, we first open MATLAB pool. This reserves a
collection of MATLAB worker sessions to run loop iterations. The MATLAB pool can consist of
MATLAB sessions running on local machine or on a remote cluster. Because the iterations run in
parallel in other MATLAB sessions, each iteration must be completely independent of all other
iterations. The worker calculating the distance between point i and k centers might not be the same
worker calculating the distance between point j and k centers. There is no guarantee of sequence
[14].

4. Experimental Results

We implemented the proposed algorithm (parallel k-means) and the serial k-means using
MATLAB R2009b language. The code is executed on dell inspiron 1525 Laptop, Intel(R)
Core(TM)2 Duo Processor 2.00 GHz, 2 MB cache memory, 2GB RAM, 32-bit Windows 7
Ultimate. We generated 19 synthetic two-dimensional datasets containing form 10000 to 1000000
data points with random values grouped into 100 cluster as shown in Figure 3.

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 56

Fig.3: Synthetic Dataset Containing 100 Clusters.

We evaluate performances of the proposed algorithm on synthetic two-dimensional dataset,
four and hundred clusters, run concurrently on two lab (session or core). The computational speed
of parallel k-means as compared to serial k-means is given in Table1 where we set k to 100 cluster,
in Table2 where we set k to four cluster, and finally in Table3 we set dataset size to 100000 point
and k varied from 10 to 100 cluster. Ts refers to execution time of serial k-means, Tp refers to
execution time of parallel k-means, and TD refers to time difference. The speedup is calculated
according to the following equation.

 . (1)

Linear speedup or ideal speedup is obtained when speed up is equal to number of processors
(cores). In our case, linear speedup is equal to two.

Table 1: The Execution Time of Serial k-means versus Parallel k-means, k=100.

Dataset size Ts Tp TD: Time Difference Speedup
10000 10.631 6.431 4.2 1.65
20000 16.035 9.257 6.778 1.73
30000 31.900 18.161 13.739 1.76
40000 42.148 24.174 17.974 1.74
50000 52.989 29.917 23.072 1.77
60000 63.171 36.364 26.807 1.74
70000 74.130 42.603 31.527 1.74
80000 84.051 47.966 36.085 1.75
90000 95.062 55.008 40.054 1.73
100000 79.339 45.351 33.988 1.75
200000 219.693 127.674 92.019 1.72
300000 240.641 138.382 102.259 1.74
400000 424.670 252.474 172.196 1.68
500000 399.876 229.146 170.73 1.75
600000 637.507 Out of memory
700000 738.981 Out of memory
800000 634.420 Out of memory
900000 951.472 Out of memory
1000000 798.441 Out of memory

If we compare the results shown in Table 1 with that of [9] and [23] we get better results from

our proposed algorithm, because we get speedup form dataset of size 10000 object compared with
dataset of size greater than 600000 and 700000 in [9] and [23] respectively. It is noticeable from
Table 1 that at data size from 600000 points, running time of parallel k-means is unobservable

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 57

because the machine is out of memory. This is due to the overhead of communication between
cores requires some memory. It is also noticeable from Table 2 that running time of parallel k-
means is a little bit longer than that of the serial k-means for the smallest dataset (10000 object).
This is due to the overhead of communication between cores (labs, sessions, workers) requires some
communication time.

Table 2: The Execution Time of Serial k-means versus Parallel k-means, k=4.

Dataset
size

Ts Tp TD: Time
Difference

Speedup

10000 1.044 1.051 -0.007 0.99
20000 2.005 1.718 0.287 1.17
30000 2.974 2.299 0.675 1.29
40000 3.991 2.880 1.111 1.39
50000 4.964 3.490 1.474 1.42
60000 6.651 4.548 2.103 1.46
70000 6.861 4.706 2.155 1.46
80000 7.867 5.327 2.54 1.48
90000 8.903 5.924 2.979 1.50
100000 9.914 6.539 3.375 1.52
200000 22.080 14.316 7.764 1.54
300000 29.423 18.780 10.643 1.57
400000 39.150 25.225 13.925 1.55
500000 48.788 31.113 17.675 1.57
600000 58.792 38.139 20.653 1.54
700000 68.459 43.508 24.951 1.57
800000 78.352 49.591 28.761 1.58
900000 87.921 55.677 32.244 1.58
1000000 97.795 62.205 35.59 1.57

Running time comparison of parallel against serial k-means is graphically shown in Figure 4

where k=100, and in Figure 5 where k=4. There is large variance in running time due to the large
variance of required clusters. Figure 6 shows the behavior of running time as the number of cluster
increase. This Figure is a little bit strange; this is appear because of large variance of k-mean
iteration. Percentage of running time speedup is shown in Figure 7. Speedup average is very high.
Figure 8 and Figure 9 graphically show the resulting clusters for k=4, and k=100 respectively.

Table 3: The Execution Time of Serial k-means versus Parallel k-means,

Dataset Contains 100000 Point.
K Ts Tp TD: Time

Difference
Speedup

10 119.618 73.292 46.326 1.63
20 309.670 182.368 127.302 1.70
30 444.802 259.670 185.132 1.71
40 1094.742 696.940 397.802 1.57
50 1432.632 880.163 552.469 1.63
60 639.321 400.931 238.39 1.59
70 516.367 320.706 195.661 1.61
80 1668.612 1037.094 631.518 1.61
90 683.952 401.470 282.482 1.70
100 77.784 43.822 33.962 1.77

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 58

Fig. 4: Running Time Comparisons of Serial versus Parallel k-means, k=100 Clusters.

Fig. 5: Running Time Comparisons of Serial versus Parallel k-means, k=4 Clusters.

Fig. 6: Effect of Increasing Clusters on Running Time.

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 59

Fig. 7: Speedup Ratio at Different Sizes of Dataset.

Fig. 8: Resulting Clusters for k=4.

Fig. 9: Resulting Clusters for k=100.

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 60

5. Conclusion

The k-means algorithm is simple but it performs intensive calculation on computing distances
between data points and cluster central points. For the dataset with n data points and k clusters, each
iteration of k-means requires as much as (n×k) computations.

Fortunately, the distance computation of one data point does not interfere the computation of
other points. Therefore, k-means clustering is a good candidate for parallelism.

In this paper, we propose the design and implementation of parallel k-means algorithm: we
paralyzed the k-means method by using parallel for that run distance computation concurrently on
multi-cores machine. The parallel programming model used in our implementation is based on
parallel MATLAB programming.

The experimental results reveal that the parallel method considerably speedups the
computation time. Our future work will focus on the real applications. We will test our algorithm
with a genome dataset.

6. References

1. Czibula G., Cojocar G., and Czibula I., “Identifying Crosscutting Concerns using Partitional
Clustering”, WSEAS Transactions on Computers, 2009, 8(2): pp. 386-395.

2. Duda R.O., Hart P.E., “Pattern Classification and Scene Analysis”. John Wiley & Sons,
New York. 1973

3. Dhillon and Modha D., “A Data-Clustering Algorithm on Distributed Memory
Multiprocessors”, Proceedings of ACM SIGKDD Workshop on LargeScale Parallel KDD
Systems, 1999, pp. 47-56.

4. Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R., “Advances in Knowledge
Discovery and Data Mining” AAAI/MIT Press, 1996.

5. Farivar R., Rebolledo D., Chan E., and Campbell R., “A Parallel Implementation of k-means
Clustering on GPUs”, Proceedings of International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), 2008, pp. 340-345.

6. Fahim A. M., Salem A. M., Torkey F. A., Ramadan M. A., “An efficient enhanced k-means
clustering algorithm”. Journal of Zhejiang University SCIENCE A, 2006, 7(10): pp. 1626-
1633.

7. Gersho A., Gray R. M., “Vector Quantization and Signal Compression”. Kluwer Academic,
Boston, 1992.

8. Joshi M., “Parallel k-means algorithm on distributed memory multiprocessors”, Technical
Report, University of Minnesota, 2003, pp. 1-12.

9. Kantabutra S. and Couch A., “Parallel k-means clustering algorithm on NOWs”, NECTEC
Technical Journal, 2000, 1(6): pp. 243-248.

10. Kerdprasop N. and Kerdprasop K., “Knowledge Induction from Medical Databases with
Higher-order Programming”, WSEAS Transactions on Information Science and
Applications, 2009, 6(10): pp. 1719-1728.

11. Kerdprasop K., Kerdprasop N., and Sattayatham P., “Weighted k-means for density-biased
clustering”, Lecture Notes in Computer Science, Vol.3589: pp. 488-497, Data Warehousing
and Knowledge Discovery (DaWaK), August 2005,.

12. Li X. and Fang Z., “Parallel clustering algorithms”, Parallel Computing, 1989, 11(3): pp.
275-290.

13. MacQueen J., “Some methods for classification and analysis of multivariate observations”,
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability,
1967, pp. 281-297.

14. MathWorks, Parallel Computing Toolbox™ User’s Guide_R2011b,[Online]._Available:
http://www.mathworks.com/help/distcomp/getting-started-with-parfor.html?s_tid=doc_12b

http://www.mathworks.com/help/distcomp/getting-started-with-parfor.html?s_tid=doc_12b

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 61

15. Othman F., Abdullah R., Abdul Rashid N., and Abdul Salam R., “Parallel k-means
clustering algorithm on DNA dataset”, Proceedings of the 5th International Conference on
Parallel and Distributed Computing: Applications and Technologies (PDCAT), 2004, pp.
248-251.

16. Prasad, “Parallelization of k-means clustering algorithm”, Project Report, University of
Colorado, 2007, pp. 1-6.

17. Stoffel Kilian and Belkoniene Abdelkader, “Parallel k/h-Means Clustering for Large Data
Sets”, Euro-Par'99, LNCS 1685, 1999, pp. 1451-1454.

18. Tirumala Rao S., Prasad E., and Venkateswarlu N., “A critical performance study of
memory mapping on multi-core processors: An experiment with k-means algorithm with
large data mining data sets”, International Journal of Computer Applications, 2010,
1(9): pp. 1–8.

19. Tian J., Zhu L., Zhang S., and Liu L., “Improvement and parallelism of k-means clustering
algorithm”, Tsignhua Science and Technology, 2005, 10(3): pp. 277-281.

20. Wang H., Zhao J. , Li H., and Wang J., “Parallel clustering algorithms for image
processing on multicore CPUs”, Proceedings of International Conference on Computer
Science and Software Engineering (CSSE), 2008, pp. 450-53.

21. Ye Z., Mohamadian H., Pang S. , and Iyengar S., “Contrast enhancement and clustering
segmentation of gray level images with quantitative information evaluation”, WSEAS
Transactions on Information Science and Applications, 2008, 5(2): pp. 181-188.

22. Zhao W., Ma H., and He Q., “Parallel k-means clustering based on MapReduce”,
Proceedings of the First International Conference on Cloud Computiong (CloudCom), 2009,
pp. 674-679.

23. Zhang Y., Xiong Z., Mao J., and Ou L., “The study of parallel k-means algorithm”,
Proceedings of the 6th World Congress on Intelligent Control and Automation, 2006, pp.
5868-5871.

Article received: 2014-02-20

	Prasad, “Parallelization of k-means clustering algorithm”, Project Report, University of Colorado, 2007, pp. 1-6.

