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Abstract:   
In the present article we report on the calculation of analytical results of the one-loop 
amplitudes up to O(ε2)  relevant for the next-to-next-to-leading-order (NNLO) quark-
parton model description of the hadroproduction of heavy quarks .  
We have analytically evaluated the relevant off-shell master scalar integrals as well as 
corresponding matrix elements of up to a maximum of 4-point off-shell function level in 
d=4-2ε dimension.These one-loop amplitudes can also be used as input in the 
determination of the corresponding NNLO cross sections for heavy flavor 
photoproduction and in photon-photon reactions  
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I. INTRODUCTION 
 
    It has been already 25 years since the next-to-leading-order (NLO) corrections to the 
hadroproduction of heavy flavors were first presented in the seminal work [1]. These results were 
confirmed yet in another seminal work [2]. 
    In the past few years there was much progress in describing the experimental results on heavy-
flavor production. For instance, in a recent work [3] it was shown that a NLO analysis of the 
transverse-momentum distributions does in fact properly describe the latest bottom quark 
production data [4] in a surprisingly large kinematical range.The improvement in the theoretical 
prediction is mainly due to  
advances in the analysis of parton distribution functions and the QCD coupling constant.Data on 
top-quark pair production also agrees with the NLO prediction within theoretical and experimental 
errors (see e.g. Ref. [5]).However, in all the NLO calculations there remains, among others, the 
problem that the renormalization and factorization scale dependences render the theoretical 
predictions to have much larger uncertanties than today's standards require. This calls for a next-to-
next-to-leading-order (NNLO) calculation of heavy-quark production in hadronic collisions. In fact, 
the scale dependence of the theoretical prediction is expected to be considerably reduced when 
NNLO partonic amplitudes are folded with the available NNLO parton 
distributions.  For example, by calculating the inclusive top pair hadroproduction one finds a NNLO 
scale uncertainty of about 3\% [6], which is below the parton distribution uncertainty and in line 
with the present experimental error [7]. 
    In view of a recent discovery of the Higgs boson at the CERN Large Hadron Collider (LHC) [8], 
as well as anticipated searches for new physics beyond the standard model, precise 
phenomenological calculations of heavy-quark production processes become of utmost importance. 
For they constitute an irreducible background and need to be taken into account when the Higgs 
boson properties are determined or new physics is being explored. 
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   Several years ago the NNLO contributions to hadron production were calculated  by several 
groups in massless QCD (see e.g. Ref. [9] and references therein).The completion of a similar 
program for processes that involve massive quarks requires much more dedication, since the 
inclusion of an additional mass scale dramatically complicates the whole calculation. 
   At the lower energies of Tevatron II, top-quark pair production is dominated by qq  annihilation 
(85%). The remaining 15% comes from gluon fusion. At the higher energies of the LHC, gluon 
fusion dominates the production process (90%) leaving 10% for  qq  annihilation. This shows that 
both qq  annihilation and gluon fusion have to be accounted for in the calculation of top-quark pair 
production. Since gluon fusion makes up the largest part of the heavy-quark pair production cross 
section at the LHC it is important to reduce renormalization and factorization scale uncertainties 
in the gluon fusion process as much as possible in view of the fact that the large uncertainties in the 
gluonic parton distribution functions translate to large cross section uncertainties at the LHC. 
 

 
 

FIG.1: Exemplary gluon fusion diagrams for the NNLO calculation of heavy-hadron production 
 
 
There are four classes of contributions that need to be calculated for the NNLO corrections to the 
hadronic production of heavy-quark pairs. In Fig. 1 we show one generic diagram each for the four 
classes of contributions that need to be calculated for the NNLO corrections to the gluon-initiated 
hadroproduction of heavy flavors. The first class involves the pure two-loop contribution [1(a)], 
which has to be folded with the leading-order (LO) Born term. The second class of diagrams [1(b)] 
consists of the so-called one-loop squared contributions  arising from the product of one-loop 
virtual matrix elements. Further, there are the one-loop gluon emission contributions [1(c)] that are 
folded with the one-gluon emission graphs. This is the topic of the present paper. Finally, there are 
the squared two-gluon emission contributions [1(d)] that are purely of tree type. The corresponding 
graphs for the quark-initiated processes are not displayed. 
   Bits and pieces of the NNLO calculation for hadroproduction of heavy flavors are now assembled. 
In this context we would like to mention the recent two-loop calculation of the heavy-quark vertex 
form factor [10] that can be used as one of the many building blocks in the first class of processes. 
There is also a numerical approach applied to the calculation of the pure two-loop diagrams [11]. 
Recently, an analytic calculation of a subclass of the two-loop contributions to QQqq →  was 
published [12.The authors of [13] have calculated the NLO corrections to tt +jet production with 
contributions from the third class of diagrams. However, this result needs further subtraction terms 
in order to allow for an integration over the full phase space. 
   Regarding the second class of contributions, all the necessary master scalar integrals  
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needed in this calculation have been assembled in Ref. [14], with the results expressed in terms of 
so-called L -functions, which can be written as one-dimensional integral representations involving 
products of log and dilog functions. Alternatively, in [15] the results for these scalar integrals are 
rewritten as a multitude of multiple polylogarithms  of maximal weight and depth 4. The divergent 
and finite terms of the one-loop it amplitudes for QQqq →  and QQgg →  were given in Ref.[16]. 
The remaining ( )εO and ( )2εO  amplitudes have been written down in Ref.[17]. All these results 
were presented in a closed analytic form. The NNLO one-loop squared amplitudes for the quark-
initiated process were presented in Ref. [18].The calculation of the NNLO one-loop squared matrix 
elements for the process QQgg → was done in [19],as well as in [20]. In Refs. [18-20] results for 
scalar master integrals of [14,15 were used exclusively.The calculation is carried out in dimensional 
regularization [21] with space-time dimension ε24 −=n . We mention that a closed-form, one-loop 
squared results for heavy-quark production in the fusion of real photons are presented in Ref. [22].  
    The available results were collected and correspondingly combined in a semi-numerical 
calculation of the fully inclusive total cross section for top-quark production in Refs.[6,7. 
    Let us briefly describe some of the main features of the calculation of the one-loop light parton 
emission contributions.The highest singularity in the one-loop amplitudes arises from infrared (IR) 
and mass singularities (M) and is thus, in general, proportional to ( )2/1 ε . After folding the one-loop 
amplitudes with the corresponding tree amplitudes and integrating over the full phase space of the 
light parton the poles ( )ε/1  and ( )2/1 ε will arise. This in turn implies that the Laurent series 
expansion of the one-loop amplitudes has to be taken up to ( )2εO  when folding them with the 
corresponding tree level contributions and subsequently integrating over the phase space of the final 
partons. All the master scalar integrals given in Ref. [14] will be required in the present calculation. 
However, due to the complicated kinematics, some new integrals will arise in this case. All 
additional scalar master integrals needed in this paper have been assembled in Ref.[23].The aim of 
our work is to obtain a complete analytical result for the third class of diagrams in Fig. 1, i.e. 
calculate the various coefficient functions of the corresponding Laurent series expansions. 
 
II. NOTATION 
 
There are four partonic reactions representing the tree one-gluon emission graphs that are to be 
folded with the one-loop 32 → diagrams of class [1(c)]: 
                                             ,gQQgg →       ,gQQqq →        
                                            ,qQQgq →       .qQQgq →                                       (2.1) 
 
 
 
 

 
 

FIG. 2. The lowest order Feynman diagram representing gluon and light (anti)quark collision 
In Fig.2 we present an exemplary set of the lowest order tree diagrams for the third reaction above. 
Apparently, the corresponding virtual diagrams can be obtained from the above graphs by inserting 
the loops into every line by all possible means. Alternatively, the virtual 32 →  graphs for the 
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gluon fusion reaction can be obtained from the graphs e.g. of Figs. 3 and 4 by insertion of an 
additional gluon external leg into every 3-gluon vertex, propagator, and external line. The 
remaining tree 32 →  graphs arising at this ( )2

sO α  level of a QCD perturbation theory are due to a 
quark-gluon annihilation subprocess. Note that the last three reactions in (2.1) can be obtained from 
each other by crossing. 
 
 
 

                           
 
 

FIG.3. The t channel one-loop graphs contributing to the gluon fusion amplitude. 
Loops with dotted lines represent the gluon, ghost, and light and heavy quarks 

 
   
   Irrespective of the partons involved, the general kinematics is, of course, the same in all these 
subprocesses. In general, we have 
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                                      )(+)(+)(→)(+) 54

_

321 ppp(p pfQQff                      (2.2) 
where f stands for a light parton, e.g. gluon or quark.The momentum flow directions correspond to 
the physical configuration, i.e. 1p  and 2p  are ingoing whereas 3p , 4p and 5p are outgoing. With m  
being the heavy-quark mass, one has 
            ,54321 ppppp ++=+    ,02

5
2
2
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1 === ppp    .22
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3 mpp ==              (2.3)   
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In our presentation, we shall make use of our notation for the coefficient functions of the relevant 
scalar one-loop master integrals calculated up to ( )2εO  in Refs. [14,15,23]. Taking the  complex 
scalar three-point function iC  as an example,we define successive coefficient functions ( )j

iC  for the 
Laurent series expansion of iC  . 
One has 

               ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +++++= −− 3221012

2
2 11 εεε

εεε OCCCCCmiCC iiiiii ,      (2.5) 

where ( )2mCε  is defined by 

                                              ( ) ( )
( )

ε

ε
πμ

π
ε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+Γ
≡ 2

2

2
2 4

4
1

m
mC                                     (2.6) 

We use this notation for both the real and imaginary parts of iC , i.e. for iCRe  and  iCIm .Similar 
expansions hold for the scalar one-point function iA , the scalar two-point functions iB , and the 
remaining scalar three-point functions iS .Thus our task is to define these coefficient functions. 
  As was shown e.g. in Refs. [16,17] the self-energy and vertex diagrams contain ultraviolet (UV), 
infrared and collinear (IR/M) poles after heavy-mass renormalization. The UV poles need to be 
regularized. 
   Our renormalization procedure is carried out in a mixed renormalization scheme. When dealing 
with massless quarks, we work in the modified minimal-subtraction ( )SM  scheme, while heavy 
quarks are renormalized in the on-shell scheme  defined by the following conditions for the 
renormalized external heavy-quark self-energy graphs: 

                              ( ) ,0=Σ
=mpr p     ( ) 0=Σ

∂
∂

=mpr p
p

                                        (2.7)                        

 
In the on-shell scheme, the first condition in Eq. (2.7) ensures that the heavy-quark mass is the pole 
mass. 
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FIG. 4. The s -channel one-loop graphs contributing to the gluon fusion amplitude. 
                         Loops with the dotted lines as in g1, h, j1, and j2 represent the gluon,ghost, and light    

and heavy quarks. The four-gluon coupling contribution appears in g2. 
For completeness, we list the set of one-loop renormalization constants used in this paper. One has 
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with ( ) 3/2110 lC nN −=β  being the first coefficient of the QCD beta function, ln the number of 
light quarks, 3/4=FC  and 3=CN the number of colors. The arbitrary mass scale μ  is the scale at 
which the renormalization is carried out. The above renormalization constants renormalize the 
following quantities: 1Z  for the three-gluon vertex, mZ  for the heavy-quark mass, 2Z   for the 
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heavy-quark wave function, FZ1  for the ( )gQQ  vertex, fZ1 for the ( )gqq  vertex 3Z  for the gluon 
wave function and gZ for the strong-coupling constant sα . For the massless quarks, there is no 
mass and wave function renormalization. 
    Let us sketch the two alternative ways of getting the final one-loop-renormalized amplitude from 
the mass-renormalized amplitude: 
i) Take the given mass-renormalized matrix element or the square of that matrix element and 
multiply all the self-energy graphs by a factor 1/2. Then renormalize the coupling constant in the 
LO Born amplitude. 
ii) Take the given mass-renormalized matrix element and apply the corresponding counterterms 
obtained from the LO matrix element by inserting the relevant 1−Z  factors into the internal 
propagators and vertices. All the renormalization constants we need are presented in Eq. (2.8).We 
will get the renormalized vertex function ( )N

RΓ , where ( )N denotes the set of N  external particles. 
The renormalized matrix element is obtained from 

                                               ( ) ( )( )∏
=

Γ=
N

i

i
R

N
RR ZM

1

2
1

                                             (2.9)  

 
 
where ( )i

RZ  are the residues of the renormalized propagators at the poles for all the particles under 
consideration. They are related to the residues of the unrenormalized propagators via 
                                                      ( ) ( ) 1−= i

i
U

i
R ZZZ                                                  (2.10) 

where the iZ  are the respective external wave function renormalization constants. 

    Working at the one-loop order, we note that in the on-shell scheme ( ) 1=i
RZ  . This is a direct 

consequence of the second condition in Eq (2.7), which effectively cuts off the external massive 
lines. For the case of external massless partons ( ) 1=i

UZ . It is important to note that the gluon wave 

function renormalization constant 3Z  is a mixture of two parts: the part which multiplies ( )2μεC  is 
derived in the SM scheme, while the last term due to the heavy-quark loop is derived in the on-shell 
scheme. For mrenormalization constant in Eq.(2.10). Since in our case we have two gluon and two 
heavy-quark fields, we therefore obtain 
                                               ( ) 1

3
−Γ= ZM N

RR                                                          (2.11) 
    The final result should not depend on which of the two ways has been chosen to do the 
renormalization. We have checked that, in both ways, one arrives at the same renormalized matrix 
element. 
     In order to fix our normalization, we write down the differential cross section for QQgg →  in 

terms of the squared amplitudes 2M . One has 
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,1

142
1 2

22
2

QQgg
A

QQgg M
d

PSd
s

d
→→ −

=
ε

σ                                  (2.12) 

where the n -dimensional two--body phase space is given by        
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 We explicitly exhibit the flux factor ( ) ( ) 11
21 24 −− = spp , the spin ( ) ( ) 22 222 −− −=− εn and color 

2−
Ad  averaging factors for the initial gluons. 

Here 812 =−= CA Nd  is the dimension of the adjoint 
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representation of the color group ( )CNSU . 
 
 
III.TWO AND  THREE-POINT FUNCTIONS 
 
    The one-loop two-point functions are defined by ε24 −=n  

            ( )
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2
1

2
1

2
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where the ( )2,1=imi can be either m  or 0. In the denominators of the relevant functions we always 
imply the ``causal'' δi+  prescription to deal with singularities in 
pseudo-Euclidean space. The ε -expansion of the two-point functions starts at 1−ε  . It 
turns out that ( ) 11 =−

iB  for all i . The general two-point function 
                                                  ( )mqBB ,0,16 ≡                                                       (3.2) 
can be cast into the following compact form: 
                        ( ) 16 =−B  

                       ( )
2

2
1

2

2
1

2
1

2
0

6 ln2
m

qm
q

qm
B

−−
+=                                                          (3.3) 

                       ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛−
−

−−
−= 2

2
1

22
1

2
1

2

2

2
1

2

2
1

2
1

2
0

6
1

6 ln2
m
q

Li
q

qm
m

qm
q

qm
BB                   

 

                      ( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

−−
+= 2

2
1

322
1

2
1

32

2
1

2
3

2
1

2
1

2
1

6
2

6 2ln
3
12

m
qLi

mq
qLi

m
qm

q
qmBB  

                       δiqq +→ 2
1

2
1  

The integral 6B arises for quark self-energy insertions. For the V6 type diagrams, e.g. when quark 
self-energy loop is inserted into internal propagator of the leading order Born graph, the extra gluon 
can be radiated from the upper (above loop, then 421 ppq −= ) or lower part (below loop, then 

131 ppq −= ) of the graph. Correspondingly, 

                                  421 ppq −= ,   42
2
1

2 2 ppqm =− ; 
                                  131 ppq −= ,    31

2
1

2 2 ppqm =−  
and all the relevant integrals are real (e.g. no imaginary parts). 
    For the graphs of type V7, V8 (e.g. quark self-energy loop is inserted into external line of the 
leading order Born graph), when bremss gluon is radiated before the loop 

       
,321541
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pppppq
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−+=+=
−+=+=
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2
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2
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respectively. When gluon radiates after the loop, this is similar to the NLO case, i.e. such a self-
energy graph is subtracted in our renormalization procedure. 
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     The one-loop three-point functions are defined by  

( )
( ) ( )( )[ ]( )[ ]∫
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2
2
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2
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qdmmmqqC n

n

π
μ ε  (3.4)      

The vertex integrals to be calculated have to be in the form of Eq. (2.5). For our purposes we do not 
need imaginary parts of the integrals: as the phase space is real, the imaginary parts of the 
amplitudes will cancel out in the sum of the complex conjugate quantities.With the above notation 
in mind, the additional and most complicated three-point one-leg-off-shell integrals are: 
 

                                                     
( );,,0,, 153 mmpppC −−

                                     (3.5) 

                                                      ( )mpppC ,0,0,, 351 +−
                                      (3.6) 

 
Together with the previously calculated scalar integrals, these new functions  
constitute a full set of the required vertex integrals. 
    The one-loop four-point functions are defined by 
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The required 1D -type four-point one-leg-off-shell integrals are: 
                       ( );,.,0,,, 213 mmmpppD −−                                                                  (3.8) 
                       ( );,.,0,,, 124 mmmpppD −−                                                                 (3.9)  
                   ( );,.,0,,, 5213 mmmppppD +−−                                                           (3.10) 
                   ( );,.,0,,, 5124 mmmppppD +−−                                                           (3.11) 
Bearing in mind that the scalar 1D  integral can be expressed as a function of only 21, pp and 

3p momenta, or alternatively via s,t,u variables, one can verify that the first integral above is 
identical to the 1D expression, while the second one equals to ( )41421 2,2 ppupptD −→−→ .The 
last two integrals cannot be easily related to the 1D  function and, therefore, had to be reevaluated. 
     The required 2D -type four-point one-leg-off-shell integrals are: 
                   ( );0,.0,0,,, 5431 mppppD −−−                                                             (3.12) 
                   ( );0,.0,0,,, 5342 mppppD +                                                                 (3.13)  
                  ( );0,.0,0,,, 431 mpppD −−                                                                       (3.14) 
                   ( );0,.0,0,,, 342 mpppD −                                                                       (3.15) 
Because the original 2D  integral was dependent on 43 , pp  and either 1p  or 2p , due to the present 

32 →  kinematics the first two integrals needed to be recalculated. The third one is 
( )412 2 ppuD −→ , while the fourth integral above is ( )422 2 pptD −→ .The eight 3D -type four-

point one-leg-off-shell integrals can be written down analogously. 
 
IV. RESULTS FOR THE MATRIX ELEMENTS 
 
    At LO for  QQgg → ,we shall use a representation which differs from the one given in Refs. 
[16,17]. First note that there are only two independent color structures for this subprocess. The s-
channel matrix element is a sum of two parts, each of which is proportional to one of the two 
independent color structures.We combine terms with the same color structures of the three (e.g. s, t 



GESJ: Physics 2014 | No.1(11) 
ISSN 1512-1461 

 

27 

and u) production channels. Finally, we remove the heavy-antiquark momentum 4p  using energy-
momentum conservation and use on-shell conditions for the gluons ( 011 =⋅εp  and 022 =⋅εp ) 
and the heavy quark ( mupu 333 = ). We then obtain the two color-linked LO matrix elements 

                            tMTiTM ab
tLO /ˆ
, = ,   uMTiTM ba

uLO /ˆ
, =                                (4.1) 

with 
                    tgpsptptpspMs μνμνμννμνμ γγγγγ 13211 2222ˆ −−−+=                   (4.2) 

It can be verified that the function M̂  is ut ↔  symmetric, and consequently the color-linked Born 
amplitudes tLOM ,  and uLOM , turn into one another under ut ↔ . 
 
We then square the full Born matrix element uLOtLO MM ,, + and do the spin and color sums to 
obtain the LO amplitude 
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where we have factored out a color-reduced Born term 
2

M̂ , which reads 
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    The expression in Eq.(4.3) for the LO amplitude agrees with the  well-known result in n 
dimensions (see e.g. Ref. [2]). Note that, by using the prescription of Ref.[24], we were able to 
avoid the introduction of ghost contributions which would otherwise arise from the square of the 
three-gluon coupling amplitude.In our case the prescription of Ref.[24] consists in the use of on-
shell conditions for external gluons, i.e. 011 =⋅εp  and 022 =⋅εp  and the exclusion of the heavy-
antiquark momentum via 3214 pppp −+= .When squaring amplitudes, we sum over the two 
helicities of the gluons using the Feynman gauge, i.e. we use 
                          ( ) ( ) μνν

λ

μ λελε g−=∑
±= 1

                                                                  (4.5) 

The use of the framework set up in Ref. [24] has the advantage in the non-Abelian case that one can 
omit ghost contributions when squaring the amplitudes. Using the above on-shell conditions already 
at the amplitude level means that one takes full advantage of the gauge invariance of the problem 
when squaring the amplitudes.Thus, in general, the results for the different channels will not be 
identical to the ones which would be obtained using 't Hooft-Feynman gauge throughout. 
    In the present work we build on the programs that were developed in publications [18] and [19]. 
The total number of diagrams is 354 for the gluon fusion subprocess and 94 for the each of the light 
quark-initiated partonic processes. In this work we deal with the two-, three- and four-point 
functions described in the previous section. To reduce tensor integrals to the scalarmaster integrals 
we make use of a standard Passarino-Veltman technique. The program is written in REDUCE 
\cite{reduce}, and is being extended to take into account a great number of additional diagrams that 
include new off-shell tensor integrals. The results for the matrix elements are too large to be 
presented here and are stored as files in a REDUCE format. 
 
IV.CONCLUSIONS 
 
    We have derived analytical ( )4

sO α  NNLO results for the one-loop off-shell contributions to 
heavy-quark pair production in the hadron-hadron reaction. The corresponding result for photon-
photon fusion, as well as the relevant result for thephoton-gluon fusion process can be obtained 
from our present expressions after some color factor adjustments. As concerns hadroproduction of 
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heavy quarks, the results of the present work comprise a part of a full result. The work on the 
remaining part that includes the five-point functions is in progress.Our results form part of the 
NNLO description of heavy-quark pair production relevant for the NNLO analysis of ongoing 
experiments at the TEVATRON and the LHC. 
 
 
The present paper deals with unpolarized gluons in the initial state and unpolarized heavy quarks in 
the final state.Since our results for the original matrix elements contain the full spin information of 
the process, an extension to the polarized case with polarization in the initial state and/or in the final 
state including spin correlations would be possible. 
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