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                  Abstrac: 

In work the new nonlinear mathematical model describing assimilation of the 
people (population) with some less widespread language by two states with two 
different widespread languages is offered. In model three subjects are considered: the 
population and government institutions with the widespread first language, influencing 
by means of state and administrative resources on the third population with some less 
widespread language for the purpose of their  assimilation; the population and 
government institutions with the widespread second language, influencing by means of 
state and administrative resources on the third population with some less widespread 
language for the purpose of their assimilation; the third population (probably small 
state education, an autonomy), exposed to bilateral assimilation from two powerful 
states. In that specific case, a natural zero increase of the population of these three 
subjects, Cauchy's problem for nonlinear system of the differential equations is solved 
analytically exactly. Cases of two powerful states assimilating the population of small 
state education (autonomy), with different number of the population, economic and 
technological capabilities are considered. The analytical  formulas showing in what 
proportions are received two powerful states assimilate all third population 
(autonomies). And, conditions under which the first powerful state with the smaller 
population, than the second powerful state, at the expense of more effective economic 
and technological capabilities assimilates the most part of the third population 
(autonomy) are found.         
 
Keywords: Nonlinear mathematical model; bilateral assimilation; exact analytical 
solution; result  of  assimilation. 

 
 
Introduction 
Mathematical modeling and computing experiment in the last decades gained all-round 

recognition in science as the new methodology which is roughly developing and widely introduced 
not only in natural science and technological spheres, but also in economy, sociology, political 
science and other public disciplines [1 - 4].  

In [5 - 7] the mathematical model of political rivalry devoted to the description of fight 
occurring in imperious elite competing (but not necessarily antagonistic) political forces, for 
example, power branches is considered. It is supposed that each of the parties has ideas of "number" 
of the power which this party would  like to have itself, and about "number" of the power which she 
would like to have for the partner. 

Works [8 - 12] are devoted to creation of mathematical model of such social process what 
administrative (state) management is.  The last can be carried out as at macro-level (for example, 
the state) and at micro-level (for example, an educational or research institution, industrial or 
financial facility, etc.).  

In the real work the new nonlinear mathematical model describing assimilation of some 
poorly widespread language (the people speaking this language) by two other widespread languages 
is offered.  In model three objects are considered: 
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1. The population and government institutions with widespread first language (for example, 
English), influencing by means of state and administrative resources on the population of the third 
state for the purpose of their assimilation; 

2.The population and government institutions with widespread second language (for example, 
French, Russian, Spanish), influencing by means of state and administrative resources on the 
population of the third state for the purpose of their assimilation; 

3. Population of the third state which is exposed to bilateral assimilation from two powerful 
states or the coalitions. 
 

1 . System of the equations and initial conditions 
For the description of dynamics of the population of three associations (the state, to the 

coalition of the states with the same state language), speaking different languages on prevalence and 
opportunities of the respective states, we offer the following nonlinear mathematical model: 
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        ,)0(,)0(,)0( 000 zzxxyy ===                                                                             (1.2) 
−)(ty number of people at present time t , talking in the first widespread language (for example, 

English, official language of the UN);  
−)(tx number of people at present time t , talking in the second widespread language (for example, 

French, Russian, Spanish, official languages of the UN); 
−)(tz number of people at present time t , talking in the language which is exposed from two 

widespread languages of assimilation; 
21 ,αα – respectively coefficients of distribution (assimilation) of the first and second languages 

(assimilating impact on the people talking on third, not widespread language); 
321 ,, βββ  - respectively coefficients of natural change (increase, reduction or constancy) 

populations of the people talking in the first, second and third languages. 
We will consider a special case: 

                  0321 === βββ                                                                                                        (1.3) 
i.e. quantities of a natural increase are equal to zero (quite real situation). 
         In case of (1.3) systems of the differential equations (1.1) first integral, taking into account 
entry conditions (1.2) has an appearance: 

                        000)()()( zxybtztxty ++==++  .                                                                    (1.4) 

         In case of (1.3) from the first and second equations (1.1) it is easy to receive the second first 
integral of system (1.1) 
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         From the second equation (1.1), taking into account the first integrals (1.4), (1.5) we will 
receive Cauchy's following problem: 
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         We will consider some special cases. 
          1.1.  ,1=a ααα == 21 . 
         Then the exact solution of Cauchy's  problem (1.6) has an appearance 
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         Respectively from (1.4), (1.5), (1.7) we will receive 
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         From (1.7), (1.8). (1.9) it is easy to receive an asymptotics 
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         Respectively the first and second parties assimilate 
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parts of the population 0z , i.e. the most part of the population talking in the third language is 
assimilated by that widespread language which speaks bigger number of people (linear 
assimilation). 
         1.2.  ,2=a 21 2αα = . 
         Then the exact solution of  Cauchy's  problem (1.6) has an appearance 
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We  investigate a )(tx function asymptotics on infinity ).( ∞→t  
 

         Lemma 1. For function )(tx  the following asymptotics on infinity )( ∞→t is just 
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         Proof.  In equality (1.12) having passed to a limit at ∞→t , we will receive 
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         Then it agrees (1.5), (1.13) we will receive 
                                ∗∗∞→

== ysxty
t

2)(lim  ,                                                                               (1.14) 

         It is clear, that equalities are just 
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t
,                                                                                             (1.15) 

                                            byx =+ ∗∗ . 

         Lemma 2.  If the inequality 00 xy ≥  takes place, then the inequality ∗∗ > xy is just         
         Proof. From (1.13), (1.14) it is easy to receive 
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which is carried out at 00 xy ≥ . 
At the same time if the inequality is executed 

                                       0))(2( 000000 ≤+−+ yzxyxy , 
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then   ∗∗ ≥ yx . 
We will enter designations: 
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From ratios  (1.16), (1.17) taking into account assumptions of mathematical model 
                            00 yz <<   ,            00 xz << ,                                                                   (1.18) 

according to formulas of asymptotic decomposition in the small parameter (leaving the main 
member of decomposition [13]), we will receive 
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Formulas of asymptotic decomposition (1.19) show that in spite of the fact that the first party 
has bigger coefficient of assimilation, than the second party )2( 21 αα =  under a condition 

                                                              00 2yx >  
the second party will be able to assimilate the most part of the population 0z , which is talking in the 
third language, undergone to bilateral assimilation. 

In a case  00 2yx <   the strength first more assimilates the most part of the third population. 
        1.3.  ,3=a 21 3αα = . 
         We will enter designation 

                              
3)( pxxbxf −−≡   ,                                                             (1.20) 

                 ( ) ,00 >= bf     ( ) ,03 <−= pbbf
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          As )(xf  function is continuous on a ],0[ b segment, that according to the theorem of 
Bolzano- Cauchy exists a point ),,0( bx ∈∗∗  such that  
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         Then the exact solution of Cauchy's  problem (1.6) has an appearance 
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where 1, DC constants easily are from system of the linear algebraic equations 
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We investigate a )(tx  function asymptotics on infinity ).( ∞→t  

         Lemma 3. For )(tx  function the following asymptotics on infinity )( ∞→t  is just 

                          ,)( ∗∗→ xtx    ∞→t .                                                                  (1.23) 

          Proof.  In equality (1.22) having passed to a limit at ∞→t , we will receive 
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         Lemma 4. If the inequality 00 xy ≥  takes place, then the inequality ∗∗∗∗ > xy  is just.         
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         Proof. From (1.20), (1.21) it is easy to receive 
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         We will enter designations: 
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         Taking into account (1.18) and according to formulas of asymptotic decomposition in the 
small parameter (leaving the main member of decomposition [13]), from (1.26), (1.27) we will 
receive            
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         Formulas of asymptotic decomposition (1.28), (1.29) show that in spite of the fact that the first 
party has bigger coefficient of assimilation, than the second party )3( 21 αα = under a condition 
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the second party will be able to assimilate the most part of the 0z  population, which is talking in the 
third language, undergone to bilateral assimilation. 
          In case of inequality performance 
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the first more powerful party assimilates the most part of the population being talked in the third 
language, undergone to bilateral assimilation. 
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