
GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 69

UDC 004.4
Runtime Composition of Domain-specific Services

Nikoloz Pachuashvili

St. Andrew the First called Georgian University of the Patriarchy of Georgia, Tbilisi, Georgia

Abstract
Architectural specialization makes easy to create reusable software components

which can be effectively reused in future compositions. In this paper we discussed the
domain-specific architecture, where general constraints are the nature of components
and state (the data). Components are representing as services with sole operation and
all service have same interface, i.e. all service accepts the same data, and result of
service actions are stored in the same state. We discussed the possibility of runtime
service compositions using the domain specific functional concepts, which are
organized and represented as independent software components, calling them services.
On the other hand, functional concepts are declared using domain-specific semantic
functional descriptors.

Keywords: composition, reuse, functional concepts, domain-specific modeling,
hypermedia

Introduction
Reusable components are building blocks for software systems. When we are designing new

software application, we have two general issue: satisfy all requirements of given application and
create components which can be reused in future to create new or extend existing software systems.
Reusable parts of existing software system is the effective way to compose new composite
components. However, creating reusable parts of software was and still remains the big challenge.
In 1995 David Garlan, Robert Allen and John Ockerbloom published the article [1], where was
discussed the problems of reuse which was attributed to architectural mismatch. After the decade
and half since that publication, same authors issued the second version of that paper [2], where was
described the modern challenges of reuse and the contemporary state of architectural mismatch.
Garlan, Allen and Ockerbloom examined four general categories of assumptions that can lead
architectural mismatch: The nature of the components (including the control model), the nature of
connectors (protocols and data), the global architectural structure, and the construction process
(development environment and build) [1, 2]. The Architectural specialization was proposed as one
way to help prevent architectural mismatch [2]. Our general purpose is to find effective way for
runtime component composition, which is tightly depended on highly reusable parts deployed
software. Architectural specialization gives ability to restrict the nature of components, connectors
and data, using constraints which are legitimate in the scope of the particular domain. Thus, by
narrowing the design context, our purposes becomes more prospective. In “Formal Method of
Service Oriented Functional Decomposition” [3] we described technique which was used to extract
and identify functional concepts of particular unknown domain. This technique helps us to
distinguish functional attributes of service candidates during the modeling stage. In this paper we
will describe how can be services composed in runtime.

Reuse and composition techniques.
The process of composition is the creational process, which uses pre-existing components to

create (compose) new software artifacts. Every composite system, contains least one reusable
component as the member of composition. This means that we cannot create composite component
without pre-existing reusable component, but not vice versa: not every case of reuse can be
considered as a composition. For more clarity we will overview the different techniques of reuse
and composition. Single inheritance is widely accepted, but not always efficient way of reuse in

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 70

object oriented programming. This manner of reuse of pre-existing logic cannot be considered as
the composition. However, in object oriented design there are more flexible ways of reusing pre-
existing components in several composition. For example, composite and decorator design patterns
[4] are good examples of flexible object-oriented composition. Mixin-based inheritance is
formulated as composition of mixins. A mixin is an abstract subclass that may be used to specialize
the behavior of a variety of parent classes, [5] Mixins are the basis for a compositional inheritance
mechanism. Another flexible instrument of composition is traits [6]. Because, traits are concerned
solely with the reuse of behavior and not with the reuse of state, they avoid the implementation
difficulties that characterize multiple inheritance and mixins. In Scala [7] modular mixin
composition [8] provides the flexible way to compose components and component types. On the
other side, composition pattern can be static and dynamic. In static composition we mean the cases
when component explicitly delegates the control to another components. The decorator and
composite design patterns allow us to compose runtime components dynamically depending of
context. In such cases the factory components are taking responsibility of actual component
binding. Our work is attempt to create framework for flexible runtime compositions within the
specific domains.

Runtime service composition
Before defining our model, let us overview the object-oriented techniques for runtime

composition. For mote clarity, let us discuss the real world situation based on motor vehicle service.
The car service center provides the variety of the services to motor vehicle owner. Such as:

• Change the engine oil
• Replace the oil filter
• Replace the air filter
• Replace the oil filter
• Tune the engine

Obviously, this is not the complete list of services which are provided by the motor vehicle
service. But for our purposes it is enough. Let us imagine that particular customer (the owner of
motor vehicle) appeared with specific requests: “Change the engine oil”, “Replace the oil filter” and
“Check the condition of tire”. The motor vehicle can be considered as the sole input parameter for
these services. The interfaces all of these services are same, they are accepting same state (motor
vehicle) and are returning it back after the processing is done. The customer of motor vehicle
service center has no information how to access (invoke) these services, owner of vehicle does not
knows and does not care how these services are separated. From service consumer’s view this is
one multi-functional service. Thus, customer requests the sole service, which one the other side is
the composition of other services. The car service employee is responsible to help customer to
locate desired service, then motor vehicle owner can consume this service, by accepting the vehicle
as the input parameter.
/**
 * The general abstraction of car service.
 */
public interface MotorVehicleService {

 /**
 * Provides the service to vehicle
 *
 * @param vehicle (The state)
 */
 public void serve(Vehicle vehicle);
}

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 71

The “MotorVehicleService” represents the Java interface, which is the abstraction of all types
of motor vehicle services. “ChangeEngineOil” and “ReplaceOilFilter”, are concrete
implementations of abstract “MotorVehicleService” interface:
public final class ChangeEngineOilService implements MotorVehicleService {

 @Override
 public void serve(Vehicle vehicle) {
 System.out.println("Changing the engine oil");
 }
}

public final class ReplaceOilFilterService implements MotorVehicleService {

 @Override
 public void serve(Vehicle vehicle) {
 System.out.println("Replacing the oil filter");
 }
}

Appling the composite design pattern, allows us to create runtime component which conforms
the abstract “MotorVehicleService” interface, and provides to consumer the composition of simple
services. “CompositeService” represents the implementation of composite motor vehicle service,
using the classic composite design pattern.
import java.util.ArrayList;

public final class CompositeService implements MotorVehicleService {
 private ArrayList<MotorVehicleService> mix = new
ArrayList<MotorVehicleService>();

 @Override
 public void serve(Vehicle vehicle) {
 for (MotorVehicleService service: this.mix) {
 service.serve(vehicle);
 }
 }

 public void addService(MotorVehicleService service) {
 this.mix.add(service);
 }

 public void removeService(MotorVehicleService service) {
 this.mix.remove(service);
 }
}

Now, if we have appropriate factory class (Implementation of Abstract Factory design pattern
[4]), it is easy to create runtime composite component which add the factory component. For
example, if customer request the “Change engine oil” and “Replace oil filters” services, service
factory will create the instance of composite service:
MotorVehicleService compositeService = new CompositeService();
compositeService.add(new ChangeEngineOilService());
compositeService.add(new ReplaceOilFilterService());

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 72

We aim to create runtime service composition framework which will offer to customers,
dynamic service composition. General technique which we are going to use is the domain specific
functional descriptors, which will be used by service consumers to originate service request query.

Domain-specific vocabulary
In domain-specific vocabulary, we mean the collection of domain-specific semantic

descriptors (keywords) with distinguished meanings, which are used to describe the functional
characteristics of particular object. Using these descriptors, humans can exchange knowledge about
several concepts from domain. The set of domain-specific descriptors, can be represented as a list of
key value pairs, where key is the descriptor name and the value is the meaning of this descriptor.
We assume that each element of this vocabulary has strongly distinguished meaning in particular
domain, and any overlapping case is excluded. Based on this constraint we can assume that any
concept in domain can be described using with keywords from domain-specific descriptor
vocabulary. This gives us possibility to construct service query, which can be issued from service
requestor to extract service. Before we will describe the service query syntax, let us assume that
domain-specific vocabulary is accessible as the hypermedia resource.

Domain-specific functional concepts
In our previous work [3], we defined the functional concept as the general basis of service

components. Using formal method of service-oriented functional decomposition, we showed to how
can be extracted functional concepts of unknown, or partially unknown domain. General factor is
service request which is formulated using domain specific functional descriptors. Our general
purpose is to organize functional concepts such way, that service requestors be able to easily locate
appropriate service if it exists. To formalize service request query we will use domain specific
functional descriptors and concepts.

Service Request Query
Now, let us assume that all domain-specific functional descriptors which can be used to

describe functional concepts are populated in domain-specific vocabulary. Using these descriptors
service requestor can form the service request query. Service requestor can also use already defined
functional concepts in query to identify the particular requirements. We, mentioned that domain
specific vocabulary is accessible as the shared resource. Now, we will add another hypermedia
resource, we will call them domain-specific functional concept. This resource will be serve service
requestor queries to locate corresponding service. Thus, service request query can be formulated as
the HTTP request. We are not going to represent final specification of this query syntax, but we will
show the prototype. Let us discuss the same example of motor vehicle service.
Functional descriptors of all services, which are provided by motor vehicle service is populated in
domain-specific vocabulary. To browse all of these descriptors we can send HTTP query to
vocabulary resource server:
HTTP/1.1 GET /vocabulary

HTTP/1.1 200 OK
Content-Type: application/json
[
 {

“key”: “change_engine_oil”,
“value”: “Change the engine oil”

},
{
 “key”: “replace_oil_filter”,
 “value: “Replace the oil filter”

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 73

},
{
 “key”: “tune_engine”,
 “value: “Tune the engine”
}
. . .

]

This collection contains all functional descriptors which can be used to form service request
query. Now, let us discuss the hypermedia resource of domain-specific functional concepts. To
browse all functional concepts we have to send HTTP request to concept server:
HTTP/1.1 GET /concepts

HTTP/1.1 200 OK
Content-Type: application/json
[
 {

“name”: “change_engine_oil”,
“descriptors”: [“change_engine_oil”],
“sub_concepts”: [],
“service_ref”: “/services/change_engine_oil”,

},
{

“name”: “replace_oil_filter”,
“descriptors”: [“replace_oil_filter”],
“sub_concepts”: [],
“service_ref”: “/services/change_oil_filter”,

},
{
 “name”: “change_oil_and_filter”,
 “descriptors”: [],
 “sub_concepts”: [“change_engine_oil”, “replace_oil_filter”]
 “service_ref”: “/services/change_oil_and_filter”
}
. . .

]

In this example, we have three static functional concepts, which have corresponding service,
specified in “service_ref” element. Now let us discuss the case when motor vehicle owner request to
change motor oil, replace oil filter and tune the engine. We have to send corresponding HTTP
request to server:
HTTP/1.1 GET /concepts?tags=[change_engine_oil,replace_oil_filter,tune_engine]

HTTP/1.1 200 OK
{
 “service_ref”: “/runtime-services/change_oil_and_filter_tune_engine”
}

This response contains the service reference which was composed in runtime using two
existing service: “change_oil_and_filter” and “tune_engine”.

Future Work
The service query syntax is the very experimental illustration of our future work. We are

going to define both domain-specific vocabulary and concept resource as the true hypermedia

GESJ: Computer Science and Telecommunications 2014|No.1(41)
ISSN 1512-1232

 74

resource. Finally we are planning to create simple framework for flexible composition. The
consumers of this framework will be humans and applications. Humans can use this framework
during the designing phase.

Conclusion
We examined that the architectural specialization, makes it easy to estimate the possibilities

of reuse and c`omposition in particular situations. Main constraints in our method is that we have
the few states (the data model) and many components (functions) which are modifying the state.
Because the nature of such elements and constrains, it becomes easy to achieve architectural
flexibility.

References
1. Garlan D., Allen R., Ockerbloom J., Architectural Mismatch: Why Reuse Is So Hard, 1995,

IEEE Softw. 12, 6 (November 1995), 17-26. DOI=10.1109/52.469757
http://dx.doi.org/10.1109/52.469757

2. Garlan D., Allen R., Ockerbloom J., Architectural Mismatch: Why Reuse Is Still So
Hard. 2009, IEEE Softw. 26, 4 (July 2009), 66-69. DOI=10.1109/MS.2009.86
http://dx.doi.org/10.1109/MS.2009.86

3. Pachuashvili N., Kiviladze T., Formal Method of Service Oriented Functional
Decomposition, Journal of Mathematics and System Science, 2013, 3, 4, 195-200.

4. Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of Reusable
Object-Oriented Software, New York, Addison-Wesley, 1995. - P. 11-13.

5. Bracha G., Cook W., Mixin-based Inheritance, In Proceedings of the European conference
on object-oriented programming on Object-oriented programming systems, languages, and
applications (OOPSLA/ECOOP '90). ACM, New York, NY, USA, 303-311.
DOI=10.1145/97945.97982 http://doi.acm.org/10.1145/97945.97982

6. Shärli N., Ducasse S., Nierstrasz O., and Black A., 2003. Traits: Composable units of
behavior. In Proceedings ECOOP 2003 (European Conference on Object-Oriented
Programming). LNCS, vol. 2743. Springer Verlag, 248–274.

7. Odersky M., The Scala Language Specification Version 2.9, 2014, Programming Methods
Laboratory, EPFL, Switzerland

8. Odersky M., Zenger M., Scalable Component Abstractions, In Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications (OOPSLA '05). ACM, New York, NY, USA, 41-57.
DOI=10.1145/1094811.1094815 http://doi.acm.org/10.1145/1094811.1094815

Article received: 2014-03-25

http://doi.acm.org/10.1145/97945.97982

